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ABSTRACT

This paper reports a novel micromachined gyroscope design with inherent disturbance-rejection capabilities. The

proposed approach is based on increasing the degrees-of-freedom (DOF) of the oscillatory system by the use of two

independently oscillating proof masses. Utilizing dynamical ampli�cation in the 4-DOF system, inherent disturbance

rejection is achieved, providing reduced sensitivity to structural and thermal parameter uctuations and damping

changes over the operating time of the device. In the proposed system, the �rst mass is forced to oscillate in the drive

direction, and the response of the second mass in the orthogonal direction is sensed. The response has two resonant

peaks and a at region between peaks. Operation is in the at region, where the gain is insensitive to frequency

uctuations. Simulations indicate over 15 times increase in the bandwidth of the system due to the use of the proposed

architecture. In addition, the gain in the operation region has low sensitivity to damping changes. Consequently,

by utilizing the disturbance-rejection capability of the dynamical system, improved robustness is achieved, which

can relax tight fabrication tolerances and packaging requirements and thus result in reducing production cost of

micromachined gyroscopes.
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1. INTRODUCTION

With the advances in micromachining technologies, low cost, on-chip inertial micro-sensors are beginning to enter the

market. Derived from the conventional Integrated Circuit (IC) fabrication technologies, micromachining processes

allow mass-production of microstructures with moving bodies on a chip together with control and signal conditioning

electronics. Thus expensive and bulky conventional inertial sensors will be eventually replaced by their micromachined

counterparts without compromising performance. Likewise, micromachined gyroscopes could potentially provide

high accuracy rotation measurements leading to a wide range of applications including navigation and guidance

systems, automotive safety systems, and consumer electronics. Gyroscopes are probably the most challenging type

of transducers ever attempted to be designed using MEMS technology. Due to complexity of their dynamics, the

current state of the art micromachined gyroscopes require an order of magnitude improvement in performance,

stability, and robustness.

All existing micromachined rate gyroscopes operate on the vibratory principle of a single proof mass suspended

by exures anchored to the substrate. The exures serve as the exible suspension between the proof mass and

the substrate, making the mass free to oscillate in two orthogonal directions - the drive and the sense1 (Fig. 2a).

The proof mass is driven into resonance in the drive direction by an external sinusoidal force with a certain drive

frequency. If the gyroscope is subjected to an angular rotation, the Coriolis force is induced in the y-direction. The

resulting oscillation amplitude in the sense direction is proportional to the Coriolis force, and thus to the angular

velocity to be measured.3

To achieve the maximum possible gain, the conventional gyroscopes are designed to operate at the peak of the

response curve. This is typically achieved by matching drive and sense resonant frequencies (Fig. 2b). However, the

system is very sensitive to variations in system parameters causing a shift in the resonant frequency. For example,

a 1% uctuation in frequency matching between drive and sense modes will produce an error of 20% in the output

signal gain.4 Under high quality factor conditions the gain is high, however the bandwidth is extremely narrow. In

addition, the gain is a�ected signi�cantly by uctuations in damping conditions (Fig. 2b).
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Figure 1. Illustration of the proposed dual-mass z-axis gyroscope.

Fabrication imperfections are inevitable, and a�ect material properties and geometry of MEMS structures. For

surface micromachining, the thickness of the suspension elements is determined by deposition process, and the width

is a�ected by etching process. In addition, Young's Modulus of the structure is a�ected by deposition conditions.

Variations in elastic modulus, beam thickness or residual stresses have drastic e�ects on resonant frequencies of

gyroscopes. Generally, very sophisticated control electronics is used to provide operation in the region of the resonance

peak.6 Furthermore, during the operation time of these devices, uctuations in the ambient temperature alter the

gyroscope geometry together with structural properties, and pressure uctuations a�ect the damping conditions;

resulting in signi�cant errors.

To eliminate the limitations of the existing micromachined gyroscopes, a design approach that does not require

the system to operate in resonance is presented in this paper. The proposed architecture suggests the use of two

independently vibrating proof masses in the dynamical system (Fig. 1) instead of one, as this is typically done in

the conventional devices. The �rst mass is forced to oscillate in the drive direction, and this forced oscillation is

ampli�ed by the second mass. The response of the second mass in the orthogonal sense direction is monitored. The

resulting 4-DOF dynamic system has a more favorable frequency response, and can operate in a wider frequency

band with insigni�cant change in the gain. The device is demonstrated to have improved robustness against expected

fabrication and packaging uctuations, especially against damping variations due to ambient pressure. The sensitivity

of performance to fabrication variations, and to temperature and pressure changes are presented in the "Parametric

Sensitivity Analysis" section.

(a) (b)

Figure 2. (a) A conventional rate gyroscope has a single proof mass which is free to oscillate in two principle directions:

drive and sense. (b) The response of the system can be viewed as a 1-DOF system excited by the Coriolis force. Note that

the gain is very sensitive to drive and sense mode resonant frequency matching variations and damping uctuations.



2. THE DUAL-MASS DESIGN APPROACH

In contrast to the conventional gyroscopes that operate in resonance mode to achieve high gain, the proposed approach

utilizes dynamic ampli�cation of mechanical motion without requiring the system to operate in resonance. In order

to achieve dynamic ampli�cation, a system containing two vibrating proof masses (Fig. 3) is used. Moreover,

the increased design parameter space allows the response to be shaped as needed with much less compromise in

performance. An implementation of the conceptual design, Fig. 3a, is illustrated in Fig. 3b (see details in9).

(a) (b)

Figure 3. (a) Lumped mass-spring-damper model of the dual-mass gyroscope. The �rst mass is driven in the x direction,

and the response of the second mass along the y-axis is sensed. (b) Schematic illustration of a MEMS implementation of

dual-mass z-axis gyroscope.

2.1. Principle of Operation

The dynamic system of the proposed micromachined gyroscope consists of the following main components: two

vibrating proof masses suspended above the substrate, the exures between the active mass and the ground which

are anchored to the substrate, and the exures between active mass and the passive mass which mechanically couple

the masses (Fig. 3b).

The gyroscope has two orthogonal principle axes of oscillation: the drive direction (x axis in Figure 3a) and the

sense direction (y axis in Figure 3a). Both of the proof masses are rendered free to oscillate in the drive and sense

directions by the suspension system.

The active mass (m1 in Figure 3a) is electrostatically forced in the drive direction by the comb-drive structures

built on each side of the mass (Fig. 3b). There is no electrostatic force applied on the passive mass (m2 in Figure

3a), and the only forces acting on this mass are the spring forces and the damping forces. The design approach is

based on dynamically amplifying the oscillation of the active mass by the passive mass, as will be explained deeper

in the "Dynamic Ampli�cation in Drive Mode" section. The response of the passive mass in the sense direction to

the rotation-induced Coriolis force is monitored by the Air-Gap Sense Capacitors built around it (Fig. 3b) providing

the angular rate information.

With appropriate selection of dynamical system parameters including the masses and the spring rates, one can

obtain the frequency response illustrated in Fig.4. There exists three regions of interest on this response curve:

two resonant peaks, regions 1 and 3; and a at region between the peaks, region 2. The nominal operation of the

gyroscope is in the at region, where the signal gain is relatively high, and the sensitivity of the gain to driving

frequency variations is low. Because of the widened bandwidth, a 1% variation in natural frequencies of the system

results in only 0.8% error in the output signal, whereas the same uctuation will produce an error of 20% in the

conventional micromachined gyroscopes.4



Figure 4. Response of the dual-mass gyroscope in the at operation region is insensitive to resonant frequency uctuations

and has over 15 times wider bandwidth than existing gyroscopes.

(a) (b)

Figure 5. The layout of the dual-mass z-axis gyroscope.

3. IMPLEMENTATION OF THE DESIGN CONCEPT

3.1. Suspension Design

The complete suspension system consists of two sets of four exible beams per each mass. For each proof mass,

one set of �xed-guided beams provides the desired spring rate in the drive direction, while the other set provides

the desired spring rate in the sense direction.9 For a single �xed-guided beam, the translational sti�ness in the

orthogonal direction to the axis of the beam is given by10



Figure 6. Suspension system con�guration provides two degrees of freedom (in drive and sense directions) for the active

proof mass and the passive proof mass.
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where E is the Young's Modulus, I is the second moment of inertia, and the beam length, thickness, and width

are L, t, w, respectively.

Spring rates for a mass in drive or sense direction are determined by four �xed-guided beams if the axial strains
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where w and t are the width and thickness of the beam elements in the suspension, respectively. The individual

beam lengths are shown in Figure 6. Finite element analysis of the gyroscope is performed using the software

package ANSYS to validate the assumptions in the theoretical analysis. The resonant frequencies obtained from

modal analysis results matched the theoretical calculations within 0.1% error. Furthermore, the operational resonant

modes were observed to be well separated from the other resonant modes.

(a) (b) (c)

Figure 7. The �rst three resonant modes of the gyroscope. The simulation is performed using the �nite element analysis

package ANSYS. FEA results were observed to agree with the theoretical analysis. In addition, non-operational resonant

modes were obtained, and were observed to be at signi�cantly higher frequencies.

3.2. Damping Estimation

The four damping coeÆcients (c1x, c1y, c2x, and c2y) in the dynamical system shown in Figure 3a are due to the

viscous e�ects of the air between the masses and the substrate, and in between the comb-drive and sense capacitor

�ngers. For the active mass, the total damping in the drive mode can be expressed as the sum of damping due to

Couette ow between the mass and the substrate, and the damping due to Couette ow between the integrated comb

�ngers2:
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where A1 is the area of the active mass, z0 is the elevation of the proof mass from the substrate, t is the thickness
of the structure, Ncomb is the number of comb-drive �ngers, ycomb is the distance between the �ngers, lcomb is the

length of the �ngers, p is the ambient pressure within the cavity of the packaged device, and �p = 3:710�4 kg

m2:s:torr

is the viscosity constant for air.

In the sense mode, the total damping is the sum of damping due to Couette ow between the proof mass and the

substrate, and the Squeeze Film damping between the integrated comb �ngers2:
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However, for the passive mass, the total damping in the drive mode results from Couette ow between the mass

and the substrate, as well as Couette ow between the air-gap capacitor �ngers2:
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where A2 is the area of the passive mass, Ncapacitor is the number of air-gap capacitors, ycapacitor is the distance
between the capacitor �ngers, and lcapacitor is the length of the �ngers.

Damping of the passive mass in the sense mode can be estimated as the combination of Couette ow between

the proof mass and the substrate, and the Squeeze Film damping between the air-gap capacitor �ngers2:
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These pressure dependent e�ective damping values will be used in the parametric sensitivity analysis simulations

of the dynamic system.

3.3. Dynamic Ampli�cation in Drive Mode

To achieve the maximum possible response of the gyroscope, amplitude of the drive-direction oscillation of the passive

mass should be maximized. In the drive mode, the dynamic system is simply a 2-DOF system. A sinusoidal force

is applied on the active mass by the comb-drive structure. Assuming a lumped parameter model, the equations of

motion in the drive mode become:

m1 �x1 + c1 _x1 + (k1 + k2)x1 = F + k2x2

m2 �x2 + c2 _xx + k2x2 = k2x1

Figure 8. Lumped model of the drive mode of dual-mass gyroscope. The passive mass (m2) acts as a vibration absorber,

to amplify the motion of the active mass (m1).

When a sinusoidal force F = F0sin(!t) is applied on the active mass by the interdigitated comb-drives, the

steady-state response of the 2-DOF system will be
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where !1 =
q

k1

m1
and !2 =

q
k2

m2
are the resonant frequencies of the isolated active and passive mass-spring

systems, respectively. When the driving frequency !drive is matched with the resonant frequency of the isolated

passive mass-spring system, i.e. !drive =
q

k2x

m2
, the passive mass moves to exactly cancel out the input force F

applied on the active mass, and maximum dynamic ampli�cation is achieved.7

(a) (b)

Figure 9. (a) The magnitude plots of each proof mass. At the antiresonant frequency, which is the resonant frequency of

the isolated passive mass-spring system, oscillation amplitude of the active mass approaches to zero. (b) The phase plots of

each proof mass.

(a) (b)

Figure 10. (a) The dynamic ampli�cation ratio reaches its maximum at the antiresonant frequency, i.e., !drive =

q
k2x

m2
.

(b) With a balanced interdigitated comb-drive scheme, a 1 um amplitude is achieved by the passive mass with a bias voltage

of about 20V.

The drive-direction oscillation amplitude values can be calculated knowing the magnitude of sinusoidal force

F = F0sin(!t) applied on the active mass by the comb-drive structure. Applying V1 = VDC + �AC to one set of

comb drives (e.g. the set on the right side in Fig. 3b), and V2 = VDC � �AC to the opposing set (the set on the

left side), a balanced interdigitated comb-drive scheme can be imposed. With this driving scheme, the resulting net

electrostatic force is linear to �AC , which will lead to simpli�cation of the dynamic model:
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where �AC = j�AC jsin!t is the sinusoidal voltage, VDC is the constant bias voltage, z0 is the �nger thickness,

and y0 is the �nger separation. Thus, for the gyroscope, the magnitude of the applied drive force is simply

F0 = 4 "0z0N
y0

VDC j�AC j.

4. DYNAMICS OF THE GYROSCOPE

The dynamics of the gyroscope should be considered in the non-inertial frame. The expression of absolute acceleration

(in the inertial frame) of a rigid body with the position vector ~r attached to a rotating reference frame B is:

~aA = ~aB + ~
x ~rB + ~
x(~
x ~rB) + 2~
x ~vB

where the subscript A denotes "relative to inertial frame A", B denotes "relative to rotating gyroscope frame B",

~vB and ~aB are the velocity and acceleration vectors with respect to the reference frame respectively, ~
 is the angular

velocity of the gyroscope frame, and the operation "x" refers to cross-product. The reference rotating gyroscope

frame is assumed to be non-accelerating. The last term 2~
x ~vB in the equation, the Coriolis term, is of special interest

since the operation of the gyroscope depends on excitation of system in the sense direction by the Coriolis force due

to this term. Thus for a mass driven into oscillation in x-direction, and subject to an angular rate of 
z about the

z-axis, the Coriolis acceleration induced in the y-direction reduces to

ay = 2
z _x(t)

Similarly, when the active and passive masses are observed in the non-inertial rotating frame, the "gyroscope

frame", additional inertial forces appear acting on both masses. The equations of motion for the two-mass system

can be written as:

m1 ~a1 = ~F2�1 + ~Fs�1 � 2m1
~
x~v1 �m1

~
x(~
x~r1)�m1
_~
x~r1

m2 ~a2 = ~F1�2 + ~Fs�2 � 2m2
~
x~v2 �m2

~
x(~
x~r2)�m2
_~
x~r2

where ~r1 and ~r2 are the position vectors, ~v1 and ~v2 are the velocity vectors of the masses de�ned in the gyroscope

frame, ~F2�1 and ~F1�2 are the opposing coupling forces between the masses that each mass applies on other depending

on relative position ~r2� ~r1, including spring and damping forces. ~Fs�1 consists of spring and damping forces between

the active mass and the substrate, and ~Fs�2 includes the passive mass - substrate damping force. Since both masses

are subject to an angular rate of 
z about the axis normal to the plane of operation (z-axis), the equations of motion

along the x-axis and y-axis become:

(a) (b)

Figure 11. (a) Representation of the position vector of a body relative to the rotating frame. (b) Representation of the

position vectors of the proof masses of the gyroscope relative to the rotating "gyroscope frame" B.
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where Fd(t) is the driving electrostatic force applied to the active mass, and 
 is the angular velocity applied to

the gyroscope about the z-axis.

The overall dynamic model can be reduced having the active mass driven into forced oscillation in drive direction

by Fd(t) with a constant amplitude xo and a frequency !d. Assuming the oscillation of the �rst mass in the drive

direction is set by the control system to be

x1 = xocos(!dt),

the system (1) reduces to 3 degrees of freedom. The equations of motion of the reduced system become4:
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where � = m2=m1, �1 = k2y=k1y, �2 = k2x=k1x, � = c2=c1, � = c1=(2m1wn), and wn is the natural frequency in

the sense direction .

5. PARAMETRIC SENSITIVITY ANALYSIS

5.1. Fabrication Variations

Fabrication variations can a�ect the parameters of gyroscopes directly. For micromachining processes, the dimensions

of the suspension beam elements are uncertain for di�erent reasons. The length of the beams are determined solely

by lithography, and are extremely accurate. However, the thickness is determined by deposition process, and the

width set by lithography is a�ected by etching process. Thus, these two parameters are less accurate, and can vary

by 1% from wafer to wafer.

In conventional gyroscopes, fabrication variations result in resonant frequency shifts, requiring compensation by

sophisticated control electronics. Yet, for the proposed system, a 0.05 �m deviation from 2 �m nominal beam width

or a 0.1 �m deviation from 2 �m nominal structure thickness results in less than 1% error in the gain (Fig. 12a and

12b, respectively). Moreover, a variation in deposition conditions that a�ect the Young's Modulus of the gyroscopes

structure by 10 GPa causes less than 0.5 % error (Fig. 12c). The same parameter variations in a conventional

micromachined gyroscope without compensation by control system result in over 10% error.

5.2. Pressure Fluctuations

Pressure uctuations can have signi�cant e�ects on resonance dependent conventional gyroscopes (Fig. 2). However,

since the proposed device utilizes dynamic ampli�cation of mechanical motion, and does not operate in resonance,

the response is insensitive to damping changes in the operation region. For a possible vacuum leakage from 100

militorrs to 500 militorrs, e.g. due to package sealing defects over the operation time of the device, the response gain

reduces by less than 2% (Fig. 12d), where the same pressure variation can result in over 20% gain reduction in a

conventional gyroscope design.



(a) (b)

(c) (d)

Figure 12. Change in the response due to: (a)0:05�m variation in the width of suspension beams, (b)0:1�m variation in

structure thickness, (c)10 GPa variation in Young's Modulus, (d) ambient pressure change form 100 militorrs to 500 militorrs.

5.3. Thermal Fluctuations

Variations in the temperature of the structure can perturb the dynamical system parameters by three means: due

to the inherent temperature dependence of Young's Modulus, due to changes in suspension geometry because of

thermal expansion, and due to the thermally induced localized stress e�ects. Young's modulus of the structure at a

given temperature can be calculated by8:

E0ÆC+�T = E0ÆCTCE�T +E0ÆC

where E0ÆC is the Young's modulus for �ne-grained polysilicon at 0 ÆC (assumed 169 GPa), TCE is the tem-

perature coeÆcient of Young's modulus for polysilicon (assumed8 -75 ppm/ÆC), and �T is the temperature change.

To reect the e�ects of temperature dependent elastic modulus and thermal expansion on the resonant frequency of

linear microresonators with folded-beam suspensions, the temperature coeÆcient of the resonance frequency can be

determined as8:

TCf =
1
2
(TCE � TCh)

where TCE is the temperature coeÆcient of the Young's modulus, and TCh is the temperature coeÆcient of

thermal expansion, which is assumed 2.5 ppm/ÆC; leading to a perturbed resonant frequency of

!n0ÆC+�T = !n0ÆCTCf�T + !n0ÆC



However, for the proposed suspension system, more accurate results can be found conducting �nite element

analysis of the system. To be able to capture parameter changes due to the temperature dependence of Young's

Modulus, due to thermal expansion generated alteration in suspension geometry, and due to thermally induced

stresses; a �nite element model of the device was created using the �nite element analysis software package ANSYS.

First, a uniform temperature loading of 100ÆC was applied to each surface, and the thermally induced localized

stresses were observed. The results of the thermal �nite element simulation indicated that a stress of 82 MPa was

induced only in the drive-direction beam elements of active mass, e�ecting only k1x. The other beam elements

of the suspension system were observed stress-free (Figure 13a). Then static structural analysis of the thermally

loaded system with the modi�ed Young's modulus was performed to calculate each of the four spring rates (k1x,
k1y, k2x, and k2y) in the dynamical system shown in Figure 3a. The same procedure was also carried out for a

uniform temperature loading of �100ÆC. The simulation of the dynamical system with the perturbed parameters

due to thermal loading indicated an deviation of less than 0.9% in the gain. Finite element analysis of a conventional

gyroscope with similar geometry demonstrated about 7% gain error for the same thermal loading.

(a) (b) (c)

Figure 13. (a) Finite element simulation of the device with a uniform temperature loading of 100ÆC. Thermally induced

localized stresses were observed only in the drive-direction beam elements of active mass, e�ecting only k1x. (b) Static �nite

element analysis of the thermally loaded system with the modi�ed Young's modulus. (c) Simulation of the dynamical system

with the perturbed parameters due to thermal loading was performed, indicating less than 0.9% gain deviation.

5.4. Residual Stresses

Accumulation of residual stresses in the structure directly a�ect the properties of the dynamical system. In the

presence of residual stresses, the beam sti�ness values, and thus the overall system spring rates change. Axial

residual stresses in x direction e�ect only the y-direction spring rates (k1y and k2y) of the suspension, while axial

residual stresses in y direction e�ect only the x-direction spring rates (k1x and k2x).

Thus, for the suspension system with an x-direction axial residual stress of "x and a y-direction axial residual

stress of "y, the spring rate values become
3
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p
12"y, �y =

p
12"y are the dimensionless strain factors for beam bending, and �1x = L1xw
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However, an axial residual stress "x in the x direction e�ect the sense-direction spring rates (k1y and k2y) of
the same order, and an axial residual stress "y in the y direction e�ect the drive-direction spring rates (k1x and



k2x) of the same order as well. In result, the overall system response is less sensitive to residual stresses (Fig.

14). To compare the sensitivity of the proposed device to the conventional approach, the designed system and a

single mass gyroscope with the same geometry of the isolated active mass-spring system were simulated with a 10

MPa compression residual stress. The single-mass system experienced approximately 2.5% gain reduction, while the

proposed device experienced less than 0.2% deviation in the gain.

(a) (b)

Figure 14. E�ect of residual stresses (a) in x-direction, (b) in y-direction.

6. CONCLUSION

A new micromachined gyroscope design with inherent disturbance-rejection is presented, the dynamical system and

the design implementation are analyzed, and e�ects of realistic parameter variations on the system response are

investigated. The implementation of the idea is based on the use of two independently oscillating proof masses.

By utilizing dynamical ampli�cation, the necessity of operation in the resonance mode is eliminated, and over 15

times increase in the bandwidth of the system is achieved. The proposed device is demonstrated to have improved

robustness against expected fabrication and packaging uctuations, especially against damping variations due to

ambient pressure, compared to the conventional micromachined gyroscopes. Sensitivity analysis revealed that, for

the same thermal loading, the device produces 87% less error than conventional gyroscopes. Moreover, the proposed

design was shown to be approximately 12 times less sensitive to residual stresses, and 20 times less sensitive to fabri-

cation variations than conventional gyroscopes. Consequently, with the presented design approach, tight fabrication

tolerances and packaging requirements can be relaxed resulting in a lower production cost of MEMS gyroscopes.
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