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Abstract
This paper studies the effects of a constricted squeeze film on the performance of an optical
microelectromechanical system accelerometer. Squeeze films are shown to extend the sensor
frequency range (bandwidth) in accelerometers without decreasing the mechanical sensitivity
by retarding the resonate response. By restricting the venting of a squeeze film, this
preferential behavior is observed at lower frequencies than is expected for ideally vented
accelerometers. Due to this effect, constricted squeeze films may be used to improve the
bandwidth performance of devices of lower natural frequencies and higher inertial
sensitivities. A model, extended from the existing squeeze film theory, is developed for the
squeeze film formed between circular plates with generalized mixed boundary pressure
conditions to describe the boundary flow resistance. These effects are experimentally observed
in a parallel plate Fabry–Pérot interferometric accelerometer through frequency response
characterization at mechanical resonance under pressure variation. The analytical results for
the constricted squeeze film are used to predict the performance gains due to the
frequency-dependent squeeze film parameters. These results are experimentally confirmed by
demonstrating improved bandwidth performance due to the constricted squeeze film.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Structural members, such as flexural suspension elements,
are traditionally considered to define the overall stiffness
of the proof-mass element in inertial sensors. In many
microelectromechanical system (MEMS) based sensors,
however, the stiffness due to a squeeze film may be a significant
contribution to the total stiffness of the system. In contrast to
the stiffness due to flexural suspension members, the squeeze
film stiffness is strongly frequency dependant. In specific
cases, this frequency dependence introduces a useful dynamic
response that extends the vibration range without reducing
the mechanical sensitivity. Structures with high resonant
frequencies may be required to take advantage of these
properties under ambient pressures. By restricting the venting
of squeeze films in accelerometer design, these requirements
are relaxed to devices of lower resonant frequencies and higher
inertial sensitivities.

Squeeze films are formed between closely vibrating
surfaces due to the dynamic encapsulation of viscous gases.
The earliest description of isothermal squeeze films was by
Crandell in 1918 [1] for circular plates in parallel motion
and was restated by both Langlois in 1962 [2] and Blech
in 1982 [3]. Squeeze films are commonly encountered in
MEMS sensors and actuators due to the small dimensions and
the frequent reliance on vibratory motion [4]. Most existing
efforts have focused on the characterization and reduction
of squeeze film damping levels due to its role in limiting
the quality factor of resonant devices [5]. Also frequently
examined is squeeze films characteristics under nontrivial
device geometries, especially perforations often incorporated
to facilitate fabrication or to reduce damping levels [6].

Less frequently examined is the effect of squeeze film
stiffening on non-resonant sensors, such as micromachined
accelerometers. Most prominently, Yang et al [7, 8] and
Andrews et al [9] considered the effects of both the damping
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and the stiffness of a squeeze film formed between the plates of
a vibrating microstructure on its frequency response. Viejola
et al [10] introduced advanced squeeze film models to
accurately predict the response of a micro-accelerometer. All
present the non-trivial effects of a squeeze film on the response
of capacitive micromachined devices, including those due to
the squeeze film stiffness. The general effects on the low pass
frequency response of a resonator is considered in the review
by Boa and Yang [11]. However, the specific effects of the
increased stiffness due to a squeeze film on sensor performance
are neglected.

The constriction of squeeze film venting was considered
analytically for square plates by Darling et al [12]. Simplified
models for squeeze films with venting resistance were
presented by Viejola et al [13]. However, experimental
characterization of a constricted squeeze film is absent in these
publications.

In this work, a closed-form squeeze film model is derived
for general boundary conditions for circular plates. This model
is used to demonstrate how nearly the full frequency range up
to the structural natural frequency may be used as sensing
bandwidth for accelerometers with a constricted squeeze film
(section 2). Squeeze films are studied experimentally in a
passive accelerometer based on Fabry–Pérot interferometry
with an unvented gap between the planer proof-mass plus
suspension structure and reference plates. Optical detection
is selected for the characterization due to its high sensitivity,
and external vibration excitation is used to eliminate potential
contribution to the system response from electrostatic or
magnetic fields. The stiffness contribution due to the
flexure suspension and the squeeze film are independently
evaluated using resonate characterization under a vacuum.
The experimental response and analytical model are used to
extract the squeeze film constriction parameter (section 3).
The complete model is then evaluated and the response over
the operational frequency range is considered. Finally, the
performance gains in the accelerometer due to the constricted
squeeze film are evaluated (section 4).

2. Modeling

Many micromachined structures, including the passive
proof-mass optical accelerometer based on Fabry–Pérot
interferometry shown in figure 1, may be constructed without
vertical holes or horizontal vents. Under excitation of
the sensor frame, the proof mass will deflect relative to
the reference plate forming a squeeze film between the
plates. Elimination of venting features in the proof mass
of micromachined accelerometers is generally desirable due
to the increased mass per unit area. However, the absence
of venting features requires special attention as it will
restrict the flow from the squeeze film formed between the
deflected proof-mass and reference plates. In this section, the
behavior of a squeeze film under such constricted conditions is
considered.

Proof Mass
Plate

Reference
Plate

SpacerSpacer

Frame
Optical
Cavity

Flexure
Suspension

Fixed
Support

R

dgap

Ro

Squeeze Film
Volume

Exhaust
Volume

Exhaust
Volume

Frame

Back-
plane

Figure 1. Cross-section of a Fabry–Pérot interferometric
accelerometer with squeeze film constricted by a closed, unvented
exhaust volume.
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V

Figure 2. The discrete particles of the gas forming squeeze film,
each with average velocity vavg contained in a cavity between plates
of perpendicular separation l⊥ of volume V .

2.1. Gas rarefaction

Under reduced pressures, the effects of gas rarefaction on the
behavior of a squeeze film has been shown to be characterized
by the Knudsen number Kn, which is the ratio of the gas
particle mean-free path to the plate gap separation dgap [14].
For Kn � 1 the squeeze film is considered to be in the
continuous regime and can be treated as a viscous fluid, to
which this work is constrained [15]. Under conditions in
which the Knudsen numbers approach 1, it becomes necessary
to consider the reduction in the effective gas viscosity µeff from
the gas viscosity µ due to the rarefication of the gas, which may
be estimated in the first order by µeff = µ/(1 + 6Kn) [13, 16].
Once Knudsen numbers greater than 1 are encountered, the
energy gain in the squeeze film due to a momentum exchange
between individual molecules and the vibrating plate element
must be considered [15, 17]. This work is constrained to
Knudsen numbers less than 1.

2.2. Simple compression spring

A simple model of the stiffness due to a squeeze film may be
derived by modeling the enclosed gas particles as a completely
constricted squeeze film of discrete particles, as in figure 2.
The basic kinetic theory predicts the relation between the
pressure on a surface and the kinetic energy of the surrounding
gas particles. A well-known result for an enclosed volume (V )

is that the force on one surface (Fs) of the volume is given by

Fs = Nmgasv
2
⊥

l⊥
, (1)

where N is the number of particles in the volume, mgas is
the mass of each gas particle, v⊥ is the average velocity
of the enclosed gas particles perpendicular to the surface
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x=x cos(o ωt)
r

Figure 3. A continuous squeeze film formed between the fixed
reference plate and the circular vibrating proof-mass plate with
displacement x and radius R.

and l⊥ is the dimension of the volume perpendicular to the
surface [18].

Applying Hook’s law
(
k = − dF

dx

)
, the stiffness of the

enclosed volume (kvol) under perpendicular (x) displacement
of the plate is given as

kvol = Nmgasv⊥2

l2
⊥

. (2)

Applying the ideal gas law (PaV = NkBT ) and the velocity
due to the thermal excitation of a particle

(
v⊥2 = kBT

/
mgas

)
to (2) yields

ksf,d = PaV

l2
⊥

, (3)

which is the stiffness of a squeeze film (ksf,d ) due to simple
compression of a gas in which the film can be considered as a
simple compression spring under perpendicular displacement
of the surfaces. As is frequently the most common case, for a
volume contained by vibrating planer plates (V = Al⊥), (3)
reduces to

ksf,d = PaA

l⊥
= PaA

dgap
, (4)

where A is the area of the plate and dgap is the gap spacing
beneath the plate. This expression would be expected to be
valid when the film gas is considered to be ideally contained
between the plates, and ideal gas assumptions hold. Since it
is assumed that the gas is fully contained, energy transferred
from the plate to the gas will not be lost from the system and
the damping in this model is zero.

2.3. Continuous squeeze film model

For a squeeze film in the continuous gas regime, the continuum
behavior of the gas may be considered, as illustrated in figure 3.
A more complete description of the squeeze film behavior,
originally presented by Crandall [1], has been previously
arrived at by solving the linearized compressible Reynolds gas-
film problem [2, 3] represented in the form of the axisymmetric
heat equation [19]. In this treatment, the in-phase and out-of-
phase responses of the radial pressure distribution to sinusoidal
displacement between circular plates is evaluated. This
pressure distribution is then integrated over the plate surface to
find the total resistance due to the squeeze film in terms of the
stiffness (in-phase) and damping (out-of-phase) components.
The solution is given in terms of the non-dimensional squeeze
number σ , given for circular plates as

σ = 12µeffR
2

Pad2
gap

ω, (5)

where ω is the excitation frequency in radian, µeff is the
effective gas viscosity and R is the plate radius.

2.3.1. Dirichlet boundary conditions. The expression for
squeeze film stiffness was solved by Crandall assuming a
homogenous Dirichlet (type one) boundary condition

[p(r) = 0]r=R (6)

at the outer edge of the squeeze film, where p(r) is the
total radial pressure distribution in excess of the ambient
in the squeeze film. This assumes that an ideal pressure
sink at the outer edge of the squeeze film allows the excess
pressure to go to zero, which is referred to by Crandall as
‘free communication with the atmosphere’. Adapted from
the representation presented by Blech [3], the squeeze film
stiffness for a circular plate is given by

ksf,c =
{

1 +

√
2

σ
[Ac(ber1

√
σ + bei1

√
σ)

+ Bc(ber1
√

σ − bei1
√

σ)]

}
PaA

dgap
, (7)

where

Ac = bei
√

σ

ber2
√

σ + bei2
√

σ
, Bc = ber

√
σ

ber2
√

σ + bei2
√

σ
.

The Kelvin functions (berγ , beiγ ) can be calculated by

berγ (x) + ibeiγ (x) = Jγ (x e3πi/4), (8)

where Jγ () is a Bessel function of the first kind. There is a
slight error in the formulation of the equation given by Blech in
[3] corrected in equation (7) here through comparison with the
original work done by Crandall [1]. It is noted by Andrews et al
[9] that in the limit of large squeeze numbers, the squeeze film
stiffness solutions for square plates given by Blech converge
to

ksf,c(σ � 1) = PaA

dgap
, (9)

which is identical to equation (4) obtained previously using
the simple discrete model.

2.3.2. Mixed boundary conditions. A more generally
applicable solution for the squeeze film stiffness is derived in
this work by considering the homogenous mixed (type three)
boundary condition[

κ
∂p(r)

∂n
+ p(r)

]
r=R

= 0, (10)

which introduces a flow constriction across the squeeze film
boundary described by the parameter κ .

Starting from the general solution after applying
symmetry arguments (adapted from equation (7) in [1])

p(r) − Paxo cos(ωt)

dgap

= C[ber
√

σ cos(ωt + �) − bei
√

σ sin(ωt + �)], (11)

where xo cos(ωt) is the plate displacement excitation of a
squeeze film and C and � are now determined by the
boundary condition of (10). Following Crandall’s treatment by
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Figure 4. Variation of the (a) normalized squeeze film parameters and (b) cutoff squeeze number σc with the constriction coefficient κ .

considering only the in-phase component of the solution, pcos,
which is in-phase with the plate displacement, and integrating
the pressure distribution across the film according to

ksf,c = 2π

xocos(ωt)

∫ R

0
pcosr dr, (12)

which yields after extensive algebra the stiffness component
of the squeeze film

ksf,c =
{

1 +

√
2

σ
[Aκ(ber1

√
σ + bei1

√
σ) (13)

+ Bκ(ber1
√

σ − bei1
√

σ)]

}
PaA

dgap
,

where

Aκ = bei
√

σ +
√

2
2 κCκ(

ber
√

σ +
√

2
2 κDκ

)2
+

(
bei

√
σ +

√
2

2 κCκ

)2 ,

Bκ = ber
√

σ +
√

2
2 κDk(

ber
√

σ +
√

2
2 κDκ

)2
+

(
bei

√
σ +

√
2

2 κCκ

)2
,

Cκ = bei1
√

σ − ber1
√

σ ,

Dκ = ber1
√

σ + bei1
√

σ .

The base equation of (13) is identical to that obtained for
ideally vented boundary conditions. However, coefficients Aκ

and Bκ now contain the pressure flux constriction constant κ .
It is readily observed that in the limit of κ = 0, the original
solution obtained by Crandall [1], equation (7), is recovered.

Similarly, the effects of flow constriction on the damping
component of the squeeze film may be evaluated by
considering the out-of-phase component yielding

csf =
{
−

√
2

σ
[Aκ(ber1

√
σ − bei1

√
σ)

−Bκ(ber1
√

σ + bei1
√

σ)]

}
PaA

dgapω
, (14)

where the coefficients Aκ,Bκ, Cκ and Dκ remain the same as
in (13).

2.3.3. Squeeze film constriction. Increasing κ models
increasingly restricted flow at the squeeze film boundary. From
figure 4(a), increasing κ is numerically shown to shift the
squeeze film stiffness convergence to lower squeeze numbers
and, accordingly, convergence occurs at lower frequencies.
The same effect has been shown previously due to specific
venting geometries for square plates [12]. In this way, (13) is
general and serves as a bridge allowing the characterization of
squeeze film behavior not sufficiently described by the limiting
cases of equations (4) and (7).

Traditionally, the relative importance of the damping and
stiffness in a squeeze film is characterized by the cutoff squeeze
number σc, which is evaluated where the normalized squeeze
film damping and stiffness are equal as shown in figure 4(a).
Extracted numerically, σc decreases exponentially with κ for
squeeze numbers up to κ ≈ 2.5, as shown in figure 4(b).
Using (5), the cutoff frequency ωc at which the squeeze
film stiffness becomes dominate may be estimated using this
exponential approximation by

ωc ≈ Pad
2
gap

1.93µeffR2
e−κ ≈ ωco e−κ , (15)

where ωco is the same as that derived analytically by Blech [3]
for ideal venting.

The cutoff frequency is rapidly reduced by including the
effects of constriction, as shown in figure 5. For example,
a structure with a gap aspect ratio R/dgap of 60 would have
an ideally vented (κ = 0) cutoff frequency over 150 kHz,
well beyond what may be used in most micromachined
accelerometer applications. However, a strongly restricted
flow (κ = 2) results in reducing the cutoff frequency to 20 kHz.
In well-vented design, a gap aspect ratio over 160 would be
required to achieve such a low cutoff frequency.

2.4. Application to micromachined accelerometers

It has been demonstrated previously that the frequency
response of vibratory structures containing a squeeze
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Figure 6. Lumped parameter model with flexure suspension
stiffness (k), squeeze film stiffness (ksf) and damping (csf) under
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film, such as micromachined accelerometers, are strongly
dependent on the value of the cutoff frequency ωc relative
to the natural frequency ωn of the structure [11]. For
devices of ωc � ωn the squeeze film has little effects on
the overall response, and for devices of ωc � ωn the low
pass sensitivity will degrade significantly due to the increased
stiffness in the range from ωc < ω < ωn. However,
where ωc ≈ ωn, the squeeze film will introduce a response
that extends the vibratory low pass frequency bandwidth
without reducing the mechanical sensitivity. Squeeze film
constriction in micromachined accelerometers will reduce ωc

to be comparable to ωn of devices of lower natural frequencies
and higher acceleration sensitivities.

2.4.1. Micromachined accelerometer model. A lumped
mechanical model may be used to describe the single degree
of freedom vibration mode along the sensitive axis, as shown
in figure 6. Under base acceleration excitation, the response
is given in the Laplace domain as

Z(s)

AY (s)
= −m

ms2 + csfs + k + ksf

= −1

s2 + 2(ωn + ωsf)ζ s + ω2
n + ω2

sf

, (16)

where m is the proof mass, csf is the damping attributed to the
squeeze film and ktotal is the total structural stiffness composed
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Figure 7. Normalized amplitude frequency response of an
accelerometer with constricted squeeze film, where
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of the components due to the squeeze film ksf and the flexure
suspension k. Normalized by mass, the natural frequency ωn =√

k/m, contribution to the natural frequency due to the squeeze
film ωsf = √

ksf/m and damping ratio ζ = csf/2m(ωn + ωsf)

are defined. Assuming small displacements, this linear model
with frequency-dependent mechanical parameters may be used
to describe the mechanical response of each decoupled mode of
a structure with a significant squeeze film, as shown previously
by Yang et al [7, 8], where the squeeze film parameters csf and
ksf are evaluated at each frequency of interest.

2.4.2. Squeeze film constriction and accelerometer bandwidth.
The bandwidth of an accelerometer is defined by the
region under which response proportional to acceleration is
experienced, which is constrained to the low pass frequency
range below resonance and is a fraction of the natural
frequency [20].

The response of an accelerometer under varying squeeze
film conditions is considered in figure 7. Under ideal venting
(κ = 0), ωc is defined to be one order of magnitude larger
then ωn. As the constriction is increased, ωc is reduced
such that ωc approaches ωn until ωc ≈ ωn. This shifts the
observed resonant peak at ωn + ωsf to higher frequencies due
to the increase in ksf . Since ksf is only appreciable at higher
frequencies where the gain has increased due to the resonant
response, the bandwidth is increased without a significant
decrease in the low frequency gain. The low pass bandwidth
for ±3 dB of magnitude linearity is observed to nearly double
to almost equal the natural frequency for a strongly constricted
squeeze film (κ = 2).

2.4.3. Squeeze film constriction and accelerometer sensitivity.
The mechanical sensitivity over the low frequency bandwidth
is defined as s → 0 in (16) by |z/ay | = 1

/(
ω2

n + ω2
sf

)
.

However, it may be assumed that for frequencies below the
cutoff frequency, ωsf is negligible. For cutoff frequencies at
or above ωn, the sensitivity is simply |z/ay | = (

1
/
ω2

n

)
for
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Figure 8. (a) A micro-assembled FPI-based inertial sensor (on a US quarter for scale) and (b) an array of pairs of micromachined FPI-based
inertial sensor components.

ω < ωc ≈ ωn and the extended bandwidth from the squeeze
film is experienced without any loss in sensitivity.

Since increased constriction reduces the cutoff frequency
rapidly according to (15), the condition ωc ≈ ωn becomes
valid for accelerometers of lower natural frequencies. For
moderately constricted geometries (κ = 1), the 60% reduction
under the ωc ≈ ωn condition will result in the bandwidth
benefits due to a squeeze film to be present in an accelerometer
with five times better sensitivity than an otherwise identical
accelerometer with ideal venting (κ = 0). For more highly
constricted geometries (κ = 2), the reduction in ωc is better
than 85% and better than 40 times increase in sensitivity would
be possible over an unconstricted geometry.

3. Characterization

The squeeze film stiffness characteristics of a passive,
seismic proof-mass micromachined sensor based on parallel
plate Fabry–Pérot interferometers (FPI) are characterized
(figure 8(a)). The optical characteristics of these devices
require geometries that present substantial squeeze film
effects, such as large gap aspect ratios and smooth surfaces
with no perforations. The devices are formed from pairs of
micromachined substrates (figure 8(b)) with reflective surfaces
micro-assembled to form a gap of parallel faces which are
then spaced and fixed. The proof-mass mirror substrate is
composed of a ‘thinned-wafer’ flexure connecting the proof
mass to a frame fabricated using a simple timed DRIE process.
The reference mirror substrate contains a similar structure
where the flexure has been replaced by fixed supports to
minimize compliance. An anti-reflection surface consisting
of a single thin film layer silicon nitride is added to the outer
surfaces to increase optical transmission through the device.
The surfaces of the inner faces of the gap remain polished
silicon. Fabrication of the device and a detailed description
of the optical and mechanical operation have been presented
previously [21, 22].

3.1. Experimental stage

In order to provide swept frequency excitation to the passive
FPI-based sensor, a cylindrical piezoelectric stack was inserted

into a vacuum chamber with two collinear optical windows
under which the pressure could be varied from below 1 kPa
to atmospheric pressure, as shown in figure 9. Two collinear,
pigtailed collimated fibers were used as the optical emitter and
collectors with laser and broadband sources to allow both static
optical and dynamic characterization of the device. When the
tunable laser source (HP 8168E) was used, the optical collector
was coupled to a photo-collector (Thorlabs PDA255), which
provided a voltage signal proportional to the change in optical
power δT of the transmitted signal to a dynamic signal analyzer
(HP 35665A). The piezoelectric stack excitation voltage was
controlled by the dynamic signal analyzer such that during
swept sign analysis, the sample response voltage modulation
was kept constant to within 1 dB of variation. This ensures
that under excitation both (a) the fringe shift δλ is small in
comparison to the fringe width (full-width at half-maximum
or FWHM) and the optical properties of [δT /δλ]λ0 can be
considered as constant and (b) the proof-mass deflection has a
constant amplitude of excitation throughout the test. Since the
voltage applied to the piezo-stack stage (Vstage) is proportional
to the base displacement y and the voltage from the photo-
collector (VFPI) is proportional to the FPI response due to the
proof-mass displacement z, the frequency response can be
evaluated by

[
Z(s)

Y (s)

] ∝ VFPI
VStage

.

3.2. Optical characterization

The gap spacing in the device and the optical transmission
spectrum are directly related. This provides the device
with both its sensing mechanism and high precision gap
characterization not readily available in other micromachined
structures. Figure 10 shows the static optical characteristics of
the tested sample. From the well-established characteristics
of the parallel plate Fabry–Pérot interferometer, the order n =
λc/FSR = 21, the FPI resolution or finesse N = FSR

FWHM � 3,
and in air the cavity gap dgap = nλc/2 = 16.5 µm [23]. Thus,
the squeeze film gap aspect ratio is r/dgap = 60.

The fringe slope at λo at the half-maximum can be
characterized directly as from figure 10 and is [δT /δλ]λ0 =
0.05 nm−1. The fringe was limited to shifts of �0.2 nm. From
the optical sensitivity of the device and the control voltage, a
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Figure 10. Optical transmission characterization of the sample
indicating half the free spectral range (FSR) and full-width at
half-maximum (FWHM).

maximum excitation amplitude of ±22 pm (±22 × 10−12 m)

was determined. From the nominal gap spacing at rest, a total
deflection of �± 0.1% of the gap was maintained throughout
the excitation tests.

3.3. Mechanical characterization

In order to evaluate the mechanical characteristics of the
inertial sensor, the frequency response was obtained. Figure 11
shows the frequency response of a device under base-
displacement excitation

[
Z(s)

Y (s)

]
, resolving both the fundamental

first mode and higher second mode. It was shown previously
that the fundamental mode is associated with parallel plate
normal deflection and may be described by the reduced order
model of figure 6(b) and (16), while the higher mode is
associated with an out-of-plane angular deflection mode [22].

The phase response of the first mode yields a measure of
the total undamped resonate frequency fn+fsf = (ωn+ωsf)/2π

of the device by calculating the π/2 phase shift cross-over
according to fn + fsf =

√
fπ

4
f 3π

4
, where fπ

4
and f 3π

4
are

the frequencies of π
4 and 3π

4 phase shift points, respectively
[24]. Similarly, the damping ratio is calculated from the
phase response according to ζ = (

f 3π
4

− fπ
4

)/(
2
√

fπ
4
f 3π

4

)
applicable for systems of higher damping ratios. The results
are tabulated in table 1 for the low and ambient pressure
response. The general shift to higher resonant frequencies as
the pressure is increased is indicative of the increasing stiffness
due to the squeeze film. Increased damping associated with
the squeeze film is noted in response peak broadening with
pressure.

The mass-normalized squeeze film stiffness
(
ω2

sf =
ksf/m

)
is calculated from the fundamental resonate response

according to

ksf

m
= ω2

n − k

m
, (17)

where the proof mass m may be readily estimated from
the sensor geometry. The normalized flexure stiffness is
determined experimentally via k/m = (2πfn)

2 from the
resonant response under the lowest available pressure. The
variation in the normalized squeeze film stiffness is shown in
figure 12 versus that predicted analytically by (4), (9) and (13).
The squeeze numbers σ are calculated via (5) at the resonance
point for each of the frequency sweeps. The pressures during
the experiments were selected to provide Kn < 1. The
expression derived for mixed boundary conditions and non-
ideal venting was used to model the response of the device
for varying constrictions. A simple graphical analysis allows
the parameter κ to be estimated. In this case, the non-ideal
venting behavior is reasonably modeled by selecting κ = 1.6.
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Table 1. Properties of the characterized Fabry–Pérot accelerometer.

Resonant characteristics (figure 11)
Geometry

See figure 1 Reduced pressure (2.7 kPa) Ambient pressure (100 kPa)

R Ro dgap fn ζ fn + fsf ζ
1.0 mm 1.8 mm 16.5 µm 12.9 kHz 0.006 14.5 kHz 0.15

Figure 11. Experimental frequency response of an FPI-based sensor under pressure variation showing the resonant response due to the first
and second modes. Inset: detail of the first mode response.
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Figure 12. Mass-normalized squeeze film stiffness (ksf/m)
extracted through the resonate characterization at the squeeze
number σ from figure 11 relative to the Knudsen number Kn and
ambient pressure.

One can identify two regions of interest in the response:
at lower pressures and higher squeeze numbers, the behavior
can be predicted sufficiently by the simplified theory of the
compression spring response of (4). At pressures approaching

ambient and at lower squeeze numbers, the behavior is more
complex. In the ideally vented case (κ = 0), increasing
pressure toward ambient conditions does not necessarily result
in an increase in squeeze film stiffness and, at the higher
pressures, a large divergence between ideally vented and
constricted squeeze film stiffness is observed.

This behavior may be understood by considering the
relationship between the cutoff frequency ωc, vibration
frequency ω and squeeze number σ shown in figure 13.
At lower pressures the cutoff frequency is well below the
structural natural frequency ωn and the squeeze film stiffness is
well described by the simple compression spring. At pressures
approaching atmospheric, ωc becomes greater than ωn. In
this regime, at resonance the stiffness due to the squeeze film
is less than the compression spring governed by (7).

It should be noted that at ambient pressures, it is the
constriction of the squeeze film that makes this additional
stiffness considerable. For ideally venting and κ = 0,

ωc/ωn = 11 and the squeeze film stiffness is negligible. For
the experimentally extracted constriction of κ = 1.6, the cutoff
conditions are relaxed and ωc approaches the natural frequency
at atmospheric pressures such that ωc/ωn = 2.3.

4. Performance

The performance of the sensor characterized in section 3 is
now evaluated using the models derived in section 2. Figure 14

8
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Figure 14. Calculated shift in the components and total proof-mass
suspension stiffness due to frequency dependence of squeeze films
for the experimental characterization shown in figures 11 and 12.

shows the characteristic increase of the proof-mass stiffness
with frequency for the experimentally evaluated system with
parameters extracted from figure 11 and table 1. The frequency
dependence of ksf(ω) causes the total proof-mass stiffness
ktotal(ω) = k + ksf(ω) to rise significantly at frequencies at
and above the cutoff frequency ωc. However, in order to
impact the performance of the accelerometer, the increase
in total stiffness must be significant when compared to the
suspension stiffness k at or below the natural frequency ωn.
By reducing the cutoff frequency, squeeze films of greater
constriction cause the stiffness gains from the squeeze film to
shift to frequencies falling below the natural frequency ωn. In
this case, constriction as low as κ = 0.5 is significant enough to
elevate the total stiffness observed below the natural frequency.

Figure 15 shows the dynamic response of the evaluated
system using the model of (16) with frequency-dependent
squeeze film parameters. In addition, the model is evaluated
using frequency-invariant parameters extracted experimentally
assuming no squeeze film (ktotal = k) and a time-invariant
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Figure 15. Analytically estimated mechanical response of the
accelerometer under the properties calculated from the experimental
characterization from figures 11 and 12.
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Figure 16. Experimental bandwidth characterization under vacuum
(ksf ≈ 0) and ambient pressures.

equivalent squeeze film stiffness (ktotal = k + ksf,effective)

according to table 1. As expected, the increased stiffness
due to the squeeze film causes the 3 dB bandwidth to increase
significantly, by as much as 3.3 kHz over a system without
a squeeze film. It is the venting restriction of κ = 1.6 that
allows these effects to be present. An identical ideally vented
squeeze film (κ = 0) would have negligible effect on the
dynamic response of the accelerometer because the stiffness
gain is outside the frequencies which define the response of
the accelerometer.

Similar bandwidth gains could be achieved through the
use of a proof-mass flexure suspension of increased stiffness
equivalent to ksf,effective. However, such gain would be at the
cost of −2.3 dB loss in mechanical sensitivity due to the
reduced low frequency gain. Due to the frequency dependence
of the stiffness from the squeeze film, the bandwidth gains
come without this loss in sensitivity.

Figure 16 shows the experiential bandwidth characteriza-
tion under both vacuum and ambient conditions over the low
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frequency range. The expected bandwidth gain due to the
squeeze film is observed from a bandwidth of 7.9 kHz under
negligible squeeze film conditions to a bandwidth of 11.7 kHz
for the constricted squeeze film, for a total 3.8 kHz gain in
bandwidth.

The performance gains from the resonate shift due to
a squeeze film may be obtained experimentally from the
frequency of the resonant response under the ambient and
vacuum conditions, such as the phase crossover frequency
shown in figure 16. Since the bandwidth is proportional to ωn,
the fractional bandwidth increase is |ωn,ambient/ωn,vacuum|. This
simple analysis yields an estimated 12% gain in bandwidth due
to the constricted squeeze film. However, the squeeze film
constriction also results in increased damping, which further
increases the bandwidth performance. A 48% bandwidth gain
is observed both analytically in figure 15 and experimentally in
figure 16. Experimentally, up to 91% of the structural natural
frequency ωn may be used with 3 dB of response linearity.

5. Conclusions

This paper characterized the effects of squeeze film
constriction on the performance of an optical MEMS
accelerometer with a circular proof mass. The constriction
of the venting conditions was experimentally shown to result
in a shift in the onset of significant stiffness due to the squeeze
film. This shift is analytically predicted to occur at lower
resonant frequencies under constricted conditions than would
otherwise be expected in an accelerometer of an ideally vented
geometry. This results in a shift in the resonate response
resulting in a gain in sensor bandwidth. A bandwidth gain of
over 3 kHz may be attributed to the constriction of the squeeze
film in a device with a 12.9 kHz natural frequency resulting
in a bandwidth performance gain of 48% achieved without the
loss in sensitivity that would be required in a design achieving
the same bandwidth without a constricted squeeze film.
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