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Abstract— Snap-action bistable mechanisms have a practical
use in applications when very few but well defined states of a
micro-mechanism are required. Conventionally, the switching be-
tween bistable states is done statically, utilizing either electrostatic
or thermal actuation. This paper explores a paradigm utilizing
structural resonance phenomena to switch dynamically between
states. We reports a detailed mathematical model governing
the non-linear response of the buckled beams in their bistable
equilibrium; analytical and FEA results describing non-linear
dynamics of the mechanism near its equilibrium state and
transient dynamics of switching between bistable states; and
design, fabrication, and initial characterization results of a micro-
machined double-beam test structure.

I. INTRODUCTION

Snap-action bistable mechanisms have a practical use in
applications when very few but well defined states of a micro-
mechanism are required. Some obvious applications include
micro-switches, addressable MEMS-based pixel arrays, and
tunable optical MEMS filters. An advantage of snap-action
mechanisms is that no power is needed to keep the mechanism
in either of its bistable states. Conventionally, the switching
between bistable states is static, utilizing either static or
thermal actuation. For a typical size micro-device, 100s volts
are needed to switch statically from state to state. This paper
explores a paradigm utilizing structural resonance phenomena
to switch dynamically between states. If a linear structure is
driven into resonance, the structure can achieve a relatively
large amplitude of oscillation using a relatively small am-
plitude actuation force. In context of a bistable mechanism,
under certain conditions, the structure driven into resonance-
like vibration may achieve a large enough deviation from
its equilibrium, sufficient to switch between states. We have
explored the dynamic switching phenomena analytically and
demonstrated experimentally the predicted dynamic behavior
of structures near the bi-stable equilibrium state. This paper
reports on (i) a detailed mathematical model governing the
non-linear response of the buckled beams in their bistable
equilibrium, (ii) analytical and FEA results describing non-
linear dynamics of the mechanism near its equilibrium state
and transient dynamics of switching between bistable states,
and (iii) design, fabrication, and characterization results of
a double-beam test structure in the neighborhood of the
equilibrium state.
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Fig. 1. SEM pictures of the fabricated devices using SOI -based process

The study of dynamic behavior of bistable micro-
mechanism is a new class of problems in the MEMS field.
Though in the civil engineering community researchers have
been studying the dynamics of nonlinear structures, such
as shallow sinusoidal arches, for many years. Of the spe-
cial interest were geometry of civil structures that could
be subjected to dynamic loads, such as wind. For example,
Tseng and Dugundji (1971) [1], noticed the complexity of the
buckled beam’s behavior when put under forced oscillations.
They reported the presence of snap-through phenomenon. In
1980, Yamaki and Mori,[2], noticed the presence of internal
resonance and combination of resonance in buckled beams
made of commercial duralumin sheet of 0.5 mm thickness.

This type of bistable structures are very useful design
elements, but still rarely found in MEMS. In [7], we have
already analyzed the use of dynamic switching and its power
consumption advantages for a special class of bistable struc-
tures. In this paper, we expand the class of structures and
analyze the same phenomena but for clamped-clamped double-
coupled in plane buckled beam. This type of design offers the
same actuation possibility as in [7], but is more symmetric and
can be actuated at lower voltages for the same device footprint.
The devices analyzed in this paper have been fabricated using
an SOI-based process, figure 1.
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Fig. 2. Static and dynamic switching strategies

On a micro-scale this type of structural elements is well-
suitable for relays and switches, addressable MEMS-based
pixel arrays, and tunable optical MEMS filters. In [4], Jin Qiu
proposed the use of bi-stable mechanisms in the microworld as
a microswitch and gave a detailed analytical comprehension to
the properties and behavior of this type of structures, though
only considering the static behavior.

In this paper, we analyze the design approach of utilizing
an electrostatic actuation of bi-stable system which allows
dynamic switching between the discrete bi-stable states. The
advantage of using dynamic forces is to reduce power con-
sumption by driving the device to instability (an equivalent
to resonance type behavior for linear systems at its natural
frequency), so that the amplitude of motion is maximized
when injected in the system under well specified conditions. In
figure 2, we model the response illustrating that the switching
is achieved at lower voltage than when actuated statically.
In the dynamic case, we are specifically interested when the
switching occurs when the device is actuated at the resonance
frequency.

The dynamics of this type of structures have been analyzed
carefully by Nayfeh et al., [3]. They obtained an exact solution
of the buckling mode shapes and later, in [5], Lacarbonara
compared the Galerkin discretization and the direct application
of a reduction method to the original governing equations of
a buckled beam with experimental results. Samir A. Emam
[6] investigated theoretically and experimentally the nonlinear
responses of a clamped-clamped buckled beam to a variety
of external harmonic excitations and internal resonances. This
paper expands the dynamic actuation results to micromachined
structures.

II. DESIGN ANALYSIS

The system presented in figure 3 (a) does not use latches,
or hinges, or residual stresses to achieve its bistability. This
mechanism can be built already buckled without prestress
with one mask DRIE process and used as a MEMS relay
directly [4]. Although the system may buckle and snap with
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Fig. 3. Illustration of the clamped-clamped curved beam
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Fig. 4. Schematics of the deformed shape of a single beam after applying a
buckling load

and external force F(V) applied at the center point, it will
not stay in the snapped shape when the force is released, due
to a twisting buckle first mode. However, this mode in two
single curved beams is mutually canceled yielding to a bistable
double-beam without prestress, see figure 3 (b). The restoring
force of a bistable double-beam is exactly twice larger than
for a single beam, though the mechanical behavior is the same
with the odd modes restricted.

In order to obtain an analytical model we studied the single
beam, such that the one in figure 4, with area A, moment of
inertia I, modulus of elasticity E, and beam length L.

The beam is modeled according to the Euler-Bernoulli
theory, assuming that the cross-section is considered uniform
and its material is homogenous. This gives the differential
equation of motion governing the transverse vibrations of
the beam when the system is subjected to an electrostatic
excitation due to the electrostatic comb drive actuation with
the frequency Ω. The transverse equation of motion becomes

m
∂2ω

∂t
2 + EI

∂4ω

∂x4 + P
∂2ω

∂x2 + c
∂ω

∂t

−EA

2L

∂2ω

∂x2

∫ L

0

(
∂ω

∂x
)2dx = F cos2 Ωt (1)

subject to the boundary conditions w = 0 and ∂ω
∂x = 0

at x = 0 and x = L. Here the overline means dimensional
quantities and F is the electrostatic force due to the comb
drives (F = 1

2Nε0
t
g V 2), where V is the potential difference

(voltage) applied between combs, N the number of gaps, g
the gap between combs, t the thickness of the structure, and
ε0 = 8.854x10−12F/m. In this expression, c is the damping
coefficient which is mainly due to the viscous effects of the
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air between the mass and the substrate and between the comb-
drive capacitor fingers.

To simplify the equation, the following non-dimensional
variables are used:

x = x
L , ω = ω

L , t = t
√

EI
mL4 , and Ω = Ω

√
mL4

EI , where

r =
√

I
A is the radius of gyration of the cross-section. As a

result, the equation can be simplified as follows

ω̈ + ωiv + Pω′′ + cω̇ − 1
2
ω′′

∫ 1

0

ω′2dx = Fcos2(Ωt), (2)

where w = 0 and ω′ = 0 at x = 0 and x = 1. In this
equation, the overdot indicates the derivative with respect to
time t, the prime indicates the derivative with respect to the
spatial coordinate x, and P = PL2

EI , c = cL2√
mEI

and F = FL4

rEI

are non-dimensional quantities.
From [6], Galerkin method is suitable to model microsized

devices. In this study, multi-mode Galerkin discretization is
utilized and linear vibration mode shapes of the buckled beam
are used as a trial function. Since MEMS devices usually
have the two first modes very close and due to the internal
resonances that a curved beam presents, it is reasonable
keeping the two modes in the discretization. The behavior
around the buckled state is described by a summation of the
product of the linear vibration mode shapes of the buckled
beam φn(x), by the generalized coordinates qn(t) :

ωb(x, t) = φ1(x)q1 + φ2(x)q2, (3)

where for an initially buckled beam φ1 = b/2(1− cos2πx)
and φ2 = b(2x − 2

2.86π sin(2.86πx) + cos(2.86πx) − 1). If b
is the initial buckling height, then the vertical motion of the
beam is described by

ω(x, t) = b/2(1 − cos2πx) + φ1(x)q1 + φ2(x)q2 (4)

In this expression q1 and q2 are derived from solving the set
of equations obtained from substituting 4 into 2 and applying
the Galerkin method:

q̈m + ω2
mqm = −c ˙qm + b

N∑
i,j

Amijqiqj +
N∑

i,j,k

Bmijkqiqjqj

+fmcos2Ωt (5)

m = 1, 2
where all the coefficients are referenced in table I, and f1

and f2 are calculated as:

f1 =
∫ 1

0

Fφ1dx =
εNtbV 2

4g
(6)

f2 =
∫ 1

0

Fφ2dx =
4.34 × 10−5εNtbV 2

g
(7)

These equations model the dynamic behavior around the
buckled position of a single buckled beam. The dynamic
restoring force response of the double buckled beam is exactly
twice larger than those of a single buckled beam.

TABLE I

COEFFICIENTS.

Coeff. Value Coeff. Value Coeff. Value
A111 −36.528b3 B1111 −12.17b4 B2111 0.0083b4

A121 0.025b3 B1211 0.0083b4 B2211 −99.63b4

A112 0.025b3 B1121 0.0083b4 B2121 −5.6e − 6b4

A122 −99.63b3 B1221 −5.6e − 6b4 B2221 0.0677b4

A211 0.025b3 B1112 0.0083b4 B2112 −5.6e − 6b4

A221 −199.26b3 B1212 −5.6e − 6b4 B2212 0.0677b4

A212 −1.7e − 5b3 B1122 −99.63b4 B2122 0.0677b4

A222 0.2031b3 B1222 0.0677b4 B2222 −815.2b4

TABLE II

DIMENSIONS OF THE BISTABLE MICROMECHANISM.

Dimensions Description Value
L Length 3500µm
t thickness 70µm
w In-plane width 5 µm
b Initial height 13 µm

III. RESULTS

A. Statics

The devices studied in this paper were fabricated using an
SOI-based micromaching process. The parameters chosen to
implement the device are in Table II.

The static behavior has been analyzed using ANSYS FEA
analysis. The geometry of the device was parameterized and
meshed using a planar 2D BEAM3 elements. A very careful
mesh density was selected, as the design is geometrically
nonlinear and the system has two stable states in the range of
displacements analyzed, figure 5. In order to obtain accurate
results, the arc-length method is used to obtain the force re-
sponse. This method is suitable for nonlinear static equilibrium
solutions of unstable problems.

The modeling results were used as a guide for synthesizing
a design suitable for low actuation force operation. The critical
parameters in the design are the geometry of the mechanisms,
placement and geometry of actuation electrodes, and apex
between bi-stable states of the structure. In our implementation
of the mechanism, figure 5, we see that the maximum force
needed to statically switch from the initial state to the final
state is about 15 µN, or 20 V applied statically, and the motion
range is 26 microns.

Force Response
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Fig. 5. Force response of the clamped-clamped curved beam when a static
force is applied at the central point
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Fig. 6. Chaotic behavior of the buckled beam in vacuum 150 mmTor
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Fig. 7. Snap-through behavior of the buckled beam at 10 mmTor

B. Dynamics

The same micromechanism was now driven by an elec-
trostatic force with an alternating harmonic voltage applied
at the resonance frequencies. The force is applied through
an electrostatic comb drive structure. When the frequency of
the external force was equal to the resonance frequency of
the device, the system accumulated enough energy to switch
between states at a voltage lower than the static snapping
voltage. In figures 6 and 7 the system is driven by a sinusoidal
voltage with 4 V peak-to-peak amplitude. Depending on the
damping, the behavior of the system can become chaotic, see
figure 6, where the device oscillates between the two stable
states without becoming stable due to low energy losses. At
higher damping values, see figure 7, the system presents snap-
through behavior and the actuation pick-to-pick voltage is
much lower (4V) than the voltage needed to switch between
states statically (20V).

C. Experiment

We designed, fabricated, and characterized bistable test
structures. The devices are fabricated using an SOI-based
process developed by the group. In figure 1, an SEM of the
device is shown. In the fabricated designs, the length of the
beams varies from 2000 µm to 3500 µm, the beams are 70 µm
thick and 5 µm wide, and the initial apex of the buckled beam
changes from 10 µm to 15 µm. The bistable test structures
are actuated electrostatically using comb drive microactuators

to avoid snapping. A technique for enhancement of electrode
spacing was used in the designs.

The structures were characterized in a vacuum chamber
under 200mTorr pressure. To demonstrate the dynamically
triggered switching between bi-stable states, the structures
were driven by a sinusoidal voltage VAC = 3.53V .

The response of devices was detected both electrostatically
and optically. The experimental measurements demonstrated
the non-linear behavior of the resonators with the central
frequency near 6.8kHz, closely matching analytical and FEA
results.

IV. CONCLUSION

In this paper we explored the use of nonlinear structural
resonance phenomena to switch between states of a bistable
structure. It was demonstrated that this type of switching
results in at least 40 % savings in power consumption as
compared to the static switching. In order to test this switching
strategy, an initially built buckled beam without pre-stress
was implemented. Multi-mode Galerkin method was used to
describe the analytical response of the device. The feasibility
of driving the micromechanism into resonance and achieving
dynamical switching has been modeled. It was illustrated,
that dynamic switching strategy reduces the power consump-
tion for a micromechanism of the dimensions specified. The
conclusion is supported by analytical models confirming that
when the system is driven dynamically (with a sinusoidal
voltage using a comb drive actuator only), the pick-to-pick
voltage of only VAC = 4V is needed to switch between the
states, whereas when driven statically (thermal or electrostatic
actuation) higher voltages in the order of 20V is required. The
parameters of analytical models and bi-stable behavior have
been verified using FEA modeling. Several tests structures of
the mechanism were fabricated using an SOI-based process,
and the behavior near the equilibrium was tested and agree
with the analytically predicted behavior.
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