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Abstract
Detection of motion with parallel plate capacitors is commonly used
in MEMS; small amplitude of motion is typically assumed. In this
paper, we derive precise and constructive equations for the case of
parallel plate capacitive detection of arbitrary amplitude of motion.
These equations are solved in closed form without using a small
displacement assumption. A precise relation between the amplitude of the
mechanical motion and the amplitude of the electrical sensing signals is
obtained, which allows us to eliminate the nonlinearity error of parallel
plates. To illustrate the theoretical findings, MEMS test structures were
designed and fabricated. Experiments confirm the developed theory. The
formulated algorithms of detection are especially valuable for capacitive
detection of large amplitudes of periodic motion in dynamic MEMS sensors
and actuators.

1. Introduction

Nonlinearity of parallel plates capacitance as a function
of displacement presents a challenge in both electrostatic
actuation and capacitive detection. Issues of large amplitude
parallel plate actuation were extensively studied previously,
for example in [1–3]. The challenges of large amplitude
detection using parallel plates were not sufficiently studied
in the literature. The problem was introduced in [4], and this
paper presents a detailed analytical and experimental analysis
of the problem.

Resonators [5], gyroscopes [6] and chemical sensors
[7] utilize resonant phenomena in their operation. In these
devices, the vibratory motion needs to be initiated, detected
and controlled. Capacitive phenomena are commonly used
for transduction in vibratory MEMS devices due to the ease of
fabrication, low sensitivity to temperature changes and other
practical advantages [8, 9].

Capacitive sensing of vibratory motion is often based
on measuring the current induced by the relative motion
of capacitive electrodes, where a variable sense capacitor is
formed between a movable mass and anchored electrodes. A
predefined dc or ac potential difference is maintained across
the sense capacitor [10–12]; the motion induces change of
the capacitance, which results in a flow of current. Signal

processing, such as amplitude demodulation [13], is used
to extract the motional amplitude from the pick-up signal.
Parallel plates and lateral combs are the two most common
configurations of capacitive structures used to actuate and
detect motion in resonant MEMS devices. Typically, for the
same real estate, parallel plate sense capacitors provide much
higher capacitive gradient and thus sensitivity [14]. However,
unlike lateral combs, parallel plates generate sense signal
that is nonlinear with motional amplitude [13]. Historically,
this limited the use of parallel plate capacitive detection to
small amplitudes of motion, e.g., in sense modes of vibratory
gyroscopes [15].

Electromechanical amplitude modulation (EAM) is an
often used capacitive detection technique. It is based on
amplitude modulation of the motional signal by an ac probing
voltage (carrier) and allows for frequency domain separation
between the useful informational signals and feed-through of
the driving voltages [16, 17]. The conventional linear EAM
can be used for either lateral comb sense capacitors or for
small displacement parallel plate capacitors.

This work is concerned with the application of an EAM
technique to the parallel plate detection of motion in vibratory
devices with arbitrary motional amplitudes. In section 2,
we analytically derive Fourier series for the parallel plate
detection current. Section 3 focuses on the main pair of
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Figure 1. Schematic of a capacitive MEMS resonator.

the informational sidebands. In this section, a relationship
between the amplitudes of the sidebands and the amplitude
of motion is obtained and solved in the closed form. The
theoretical results are experimentally confirmed in section 4.
In section 5, we discuss the application of the obtained results
to the cases of differential EAM and detection with a pure dc
probing voltage. Section 6 concludes the paper.

2. Capacitive detection of periodic motion

2.1. Electromechanical model

Figure 1 shows a general schematic of a capacitive
micro-resonator, a basic element of various micro-devices.
The electro-mechanical diagram includes the mechanical
resonator, the electrostatic drive and capacitive sense
electrodes. The movable mass m of the resonator is suspended
with a spring k and is constrained to move only along the
horizontal x-axis. The variable sense capacitance is defined
as Cs(x), and the drive capacitance as Cd(x), where x is
the displacement. Typically in MEMS devices, drive and
sense terminals are not completely isolated, but are electrically
coupled by stray parasitic capacitors and resistors [10, 12, 17].
In this paper, we assume without loss of generality that the
parasitic circuit consists of a single lumped capacitor Cp,
which couples the drive and sense electrodes.

The ac driving voltage Vd(t) = vd cos (ωdt) is applied
to the drive electrode and a dc bias Vdc is applied to the
moveable mass (all voltage values are referenced with respect
to a common ground). The motion of the resonator is governed
by

ẍ +
ωn

Q
ẋ + ω2

nx = 1

2m

∂Cd(x)

∂x
(Vdc − Vd(t))

2, (1)

where ωn =
√

k
m

is the undamped natural frequency and Q is
the quality factor. Using trigonometric identities, the equation

of motion can be written in the form

ẍ(t) +
ωn

Q
ẋ(t) + ω2

nx = ∂Cd(x)

2m∂x

×
{(

V 2
dc +

1

2
v2

d

)
− 2Vdcvd cos(ωdt) − 1

2
v2

d sin(2ωdt)

}
.

(2)

If we assume a linear drive capacitor, such as a lateral
comb structure, with a constant capacitive gradient, ∂C/∂x =
const, then the motion of the resonator is governed by a
linear time-invariant (LTI) system with three simultaneous
inputs: a static force and two sinusoidal forces at ωd and 2ωd

frequencies, respectively. If we further assume that vd � Vdc,
and ωd is close to the resonant frequency of the device, then
the effect of the 1

2v2
d sin(2ωdt) forcing term is negligible and

the resonator’s displacement x(t) relative to the steady-state
static displacement can be expressed as

x(t) = ‖x‖ sin(ωdt + φ), (3)

where φ = φ(ωd) represents a phase lag in the transfer
function of the resonator. The results developed in this paper
are valid for all vibratory structures with quasi-sinusoidal
motion, independent of type of forcing, such as electrostatic
in the case of gyroscope drive mode or inertial in the case of
gyroscope sense mode.

The sense capacitor Cs is formed between the movable
mass and the fixed sense electrode. The sense electrode is
connected to the inverting input of an operational amplifier,
which is configured as a trans-impedance amplifier [18].
During the motion, the sense capacitance Cs(x) changes,
causing a flow of motional current Is = d(CsVs)/dt , where
Vs is the sensing voltage across the sense capacitor. The
total pick-up current I (t) = Is(t) + Ip(t) consists of both
the motional and the parasitic currents and is converted to
the final output voltage V (t) with trans-impedance gain −R.
The parasitic current is induced by the drive voltage Vd and
therefore has the same frequency ωd . In this work, we
assume that the total sensing voltage Vs(t) = Vdc + Vc(t)

is composed of a dc component Vdc and an ac component
Vc = vc sin(ωct), called carrier. Particular cases when either
dc or ac component of the sense voltage is zero are discussed
in section 5. Utilization of an ac carrier voltage results in
an amplitude modulation of the motional signal, known as
electromechanical amplitude modulation (EAM).

According to the laws of electrostatics, the total pick-up
current that flows through the feed-back resistor of the trans-
impedance amplifier is

I (t) = d

dt
[Vd(t)Cp + (Vc(t) + Vdc)Cs(t)]. (4)

The sense capacitance Cs(x(t)) = Cs(t) is a function of time
when the resonator is vibrating according to equation (3).
Depending on the particular form of the sense capacitance
Cs(x), equation (4) can be expanded to describe specific
properties of the pick-up signal. Analysis of the pick-up signal
and its spectral properties is the focus of our discussion. First,
we carry out the derivations for a classical linear case of lateral
combs. We then derive the properties of the output current for
the case of parallel plates and analyze the nonlinear effects.
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2.2. Motion detection with lateral combs

In this section, we review widely known properties of linear
EAM [10, 17]. The results will be used later in the paper for
comparative study of the nonlinear case. In the conventional
linear case, the sense capacitor Cs(t) is formed by a pair
of lateral fingers [19]. We denote media permittivity by ε,
the initial comb fingers penetration at rest by d, comb height
(i.e., thickness of device layer) by y, gap between inter-digited
fingers by g and the total number of finger overlap pairs by N.
For this type of electrodes, the sense capacitance is linear with
respect to displacement x:

Cs(t) = ε(d + x(t))yN

g
= εdyN

g

(
1 +

x(t)

d

)
. (5)

We introduce the dimensionless amplitude of oscillation
x0 = ‖x‖/d and the nominal sense capacitance Csn = εdyN/

g. The time-varying sense capacitance can be now expressed
as

Cs(t) = Csn(1 + x0 sin(ωdt + φ)). (6)

The sense capacitance varies sinusoidally; the amplitude of
its variation, ‖Cs‖ = Csnx0, is proportional to the amplitude
of motion, ‖x‖. The total EAM-modulated pick-up current is
calculated by substituting equation (6) into equation (4):

I (t) = −Cpvdωd sin(ωdt)

+ CsnVdcx0ωd cos(ωdt + φ(ωd)) + Csnvcωc cos(ωct)

+ 1
2‖Cs‖vc(ωc + ωd) sin((ωc + ωd)t + φ)

− 1
2‖Cs‖vc(ωc − ωd) sin((ωc − ωd)t − φ). (7)

Figure 2(a) shows a simulated power spectral density
(PSD) plot of a typical linear EAM pick-up signal and
illustrates its important features. In this particular example, the
device was driven into resonance at fd = ωd/(2π) = 550 Hz
frequency, and the carrier frequency was fc = ωc/(2π) =
20 kHz. The pick-up current has four discrete frequency
components. Amplitudes of the EAM sidebands at frequencies
ωc ± ωd are proportional to the sense capacitance amplitude
and thus to the motional amplitude. The two signals at ωd and
ωc frequencies are parasitic feed-through of the drive voltage,
Vd(t), and the carrier signal, Vc(t). By demodulating the
EAM signal, the amplitudes and phases of the sidebands are
extracted. Amplitudes of the sidebands are proportional to
the amplitude of motion.

2.3. Motion detection with parallel plates

This section studies application of an EAM detection scheme
to the case of parallel plate sense capacitors with arbitrary
amplitude of motion. Let us consider a variable sense
capacitor, Cs(t), formed by a pair of movable and anchored
parallel plate electrodes. Let us denote the initial gap between
plates at rest by g, overlap length of individual parallel plate
pairs by L and plate height (i.e., structural layer thickness)
by y. The total overlap area in the sense capacitor is given
by A = NLy, where N is the number of parallel plate pairs
in the capacitor. The total variable sense capacitance for the
sinusoidal mode of motion equation (3) is

Cs(t) = εA

g − x(t)
= εA

g

1

1 − ‖x‖
g

sin(ωdt)
, (8)
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Figure 2. Typical spectra of EAM pick-up signals: (a) using lateral
comb capacitors (linear case) and (b) using parallel plate capacitors
(nonlinear case).

where the phase of motion, φ, is omitted without any loss of
generality.

We introduce the nominal sense capacitance Csn = εA/g

and the dimensionless amplitude of motion x0 = ‖x‖/g < 1
(normalized with respect to the initial gap between parallel
plates). From equation (8), the sense capacitance is

Cs(t) = Csn
1

1 − x0 sin(ωdt)
. (9)

Since physically x0 < 1, we use Taylor series expansion
method to obtain a precise infinite series expansion for the
nonlinear parallel plate capacitance:

Cs(t) = Csn

∞∑
n=0

(x0 sin(ωdt))
n . (10)

Next, in order to obtain Fourier series of Cs(t) we use Euler’s
formula to convert from powers of harmonics to harmonics of
multiple frequencies:

sin(ωdt) = eiωd t − e−iωd t

2i
, (11)
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and Newton’s binomial theorem to expand these terms:

(a + b)n =
n∑

k=0

C(n,k)a
n−kbn, (12)

where Newton’s binomial coefficients are defined as C(n,k) =
n!

k!(n−k)! . We substitute harmonic terms into equation (10) with
complex exponents using equation (11). Then, each term
in the sum can be expanded according to equation (12).
Terms of odd and even orders are arranged in two distinct
groups. Finally, the inverse equation (11) is used to convert
terms back from complex exponents to the regular sine and
cosine functions. The normalized sense capacitance can be
derived as

Cs(t)

Csn
=

∞∑
n=0

x0
2n (−1)n

22n−1

n∑
k=0

(−1)n−kC(2n,n−k) cos(2kωdt)

+
∞∑

n=0

x0
2n+1 (−1)n

22n

n∑
k=0

(−1)n−k

×C(2n+1,n−k) sin((2k + 1)ωdt). (13)

Equation (13) gives a power series expansion of the sense
capacitance Cs(t) with respect to the normalized motional
amplitude x0. The coefficients of each x0 power term are
formed by the finite sums of drive frequency harmonics,
(nωd), with binomial coefficient weights. We then swap the
order of the summations by algebraically regrouping terms in
equation (13) to obtain the Fourier series of the variable sense
capacitance:

Cs(t)

Csn
=

∞∑
k=0

cos(2kωdt)

∞∑
n=k

{
(−1)2n−k

22n−1
C(2n,n−k)x

2n
0

}

+
∞∑

k=0

sin((2k + 1)ωdt)

∞∑
n=k

{
(−1)2n−k

22n
C(2n+1,n−k)x

2n+1
0

}
.

(14)

The Fourier coefficients, functions pk(x0), are given by the
following infinite Taylor series:

p0(x0) =
∞∑

n=0

C(2n, n)

22n
x2n

0 = 1√
1 − x2

0

,

and for k = 0, 1, 2, . . . ∞

p2k+1(x0) = (−1)k
∞∑

n=k

{
C(2n + 1, n − k)x2n+1

0

22n

}
,

p2k(x0) = (−1)k
∞∑

n=k

{
C(2n, n − k)x2n

0

22n−1

}
.

(15)

Then, the Fourier series expansion of the sense capacitance is
obtained from equations (14) and (15) as

Cs(t) = Csn

∞∑
k=0

p2k(x0) cos(2kωdt)

+ Csn

∞∑
k=0

p2k+1(x0) sin((2k + 1)ωdt). (16)

Finite-order Taylor polynomial approximations for the Fourier
coefficients, pk(x0), can be obtained from equation (15) as

p0(x0) = 1 + 1
2x2

0 + 3
8x4

0 + 5
16x6

0 + O
(
x8

0

)
p1(x0) = x0 + 3

4x3
0 + 10

16x5
0 + 35

64x7
0 + O

(
x9

0

)
p2(x0) = − 1

2x2
0 − 1

2x4
0 − 15

35x6
0 − O

(
x8

0

)
p3(x0) = − 1

4x3
0 − 5

16x5
0 − 1

4x7
0 − O

(
x9

0

)
p4(x0) = 1

8x4
0 + 3

16x6
0 + O

(
x8

0

)
.

(17)

Equation (16) shows that when parallel plates are used to sense
sinusoidal motion, the time-varying sense capacitance contains
an infinite number of drive frequency harmonics; functions
pk(x0) define the amplitudes of these harmonics. Specifically,
p1(x0) defines the amplitude of the main, first-order, harmonic
Csn sin(ωdt). Analysis of p1(x0) is essential for the study of
the parallel plate sensing nonlinearities and is presented in
section 3.

In order to calculate the total output signal, we consider
modulation of each harmonic individually. The total EAM-
modulated pick-up current is calculated by substituting
equation (16) into equation (4):

I (t) = −Cpvdωd sin(ωdt) + Csnvcωcp0(x0) cos(ωct)

+ CsnVdcωd

{∑∞
k=0(2k + 1)p2k+1(x0) cos((2k + 1)ωdt)

−∑∞
k=1 2kp2k(x0) cos(2kωdt)

}

+
1

2
Csnvc

∞∑
k=0

p2k+1(x0)

[
ω(2k+1) sin(ω(2k+1)t)

−ω−(2k+1) sin(ω−(2k+1)t)

]

+
1

2
Csnvc

∞∑
k=1

p2k(x0)

[
ω(2k) cos(ω(2k))t)

+ ω(−2k) cos(ω(−2k))t)

]
, (18)

where ωk = ωc + kωd is the frequency of a sideband of order
k. The equation gives the Fourier series for the total pick-
up signal for the case of parallel plate capacitive detection
of sinusoidal motion. The result completes the analytical
derivations. In order to verify correctness of the derived Fourier
series for the parallel plate capacitance, Cs(t), and sense
current, I (t), detailed computer simulations were performed.
Equations (8) and (4) were used to directly compute C(t)

and I (t), respectively; the finite-order Fourier approximations
were computed according to (16) and (18). Figures 3(a) and (b)
show typical results of such numerical experiments confirming
correctness of the derived mathematical model of parallel plate
detection.

Figure 2(b) shows the frequency domain representation
of the parallel plate EAM pick-up signal and illustrates
its important features. There exists an infinite number of
informational sidebands. The frequencies of these sidebands
are given by ωk = ωc ± kωd , where k = 1, 2, 3, . . . ∞ is
the sideband order. The amplitudes of the sidebands are given
by the nonlinear functions of the motional amplitude, pk(x0),
equation (15). The parallel plate EAM signal also contains
power at multiples of the drive frequency kωd if there is a dc
voltage component across the sensing capacitor. The spectral
content of the parallel-plate-modulated signal is important for
correct implementation of the EAM scheme; it affects the
choice of the carrier frequency, design of demodulators and
specifications of pass-band filters.
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Figure 3. Numerical verification of the derived Fourier series:
(a) parallel plate capacitance and (b) parallel plate current.

3. Nonlinearity of main sidebands

3.1. Demodulation

The final step of the EAM detection scheme is demodulation
[10, 17]. Demodulation consists of mixing and pass-band
filtering of the signals in order to generate a dc signal
proportional to the amplitude of one or both main (first-order)
sidebands. In the linear case, the sidebands are proportional
to the amplitude of motion, and the demodulated dc signal
provides a linear measurement of this motional amplitude.
In the case of parallel plate sense capacitors, however, the
relationship between the motional amplitude and the amplitude
of the sidebands is not linear. According to equation (18),
the amplitudes of the left and right main EAM sidebands are
given by 1

2Csnvc(ωc ∓ ωd)p1(x0). The amplitude-dependent
nonlinearity of the sidebands is given by p1(x0), while the
term 1

2Csnvc(ωc ∓ ωd) defines the proportionality coefficient.
Therefore, we call p1(x0) the normalized amplitude of the
sideband.

Depending on the amplitude of motion, there are two
considerations when parallel plates are used for capacitive
detection. First, when the amplitude of motion is small, linear

approximation can be assumed by neglecting all nonlinearities
of the pick-up signal. It is important to estimate the systematic
error of the linearization approach. Second, when the
amplitude of motion is large, the complete nonlinear model
should be used to correctly extract value of the motional
amplitude from the nonlinear pick-up signal. Both the
linearization error and complete nonlinear model are studied
in the following subsections.

3.2. Closed-form solution

It is possible to derive a closed-form solution for the
main sideband normalized amplitude, p1(x0). From
equation (15), p1(x0) was found to satisfy the following
differential equation:

[x0p1(x0)]
′
x0

= 2x0 + x0
[
x2

0p1(x0)
]′
x0

⇔(
x3

0 − x0
)
p′

1(x0) +
(
2x2

0 − 1
)
p1(x0) + 2x0 = 0. (19)

The solution of this equation can be found as

p1(x0) = 2
1 −

√
1 − x2

0

x0

√
1 − x2

0

. (20)

The obtained closed-form solution provides a convenient way
to analyze p1(x0) numerically and analytically. Solving
equation (20) for x0(p1) yields three solutions. Since p1(x0)

is a monotonically increasing function on [0,1), only one of
the solutions is real, while the other two are complex. The
unique real solutions is

x0(p1) =
(
w2 − 12 + p2

1 − p1w
)(

w2 − 12 + p2
1 + 2pw

)
18p1w2

,

where w = (
72p1 − p3

1 + 6
(
48 + 132p2

1 − 3p4
1

)) 1
6 .

(21)

This closed-form solution can be used to compensate for the
nonlinearity of the main, first-order, informational sidebands
of the parallel plate EAM signal. It was found that a very
precise and relatively simple approximation of x0(p1) is given
by

x0(p1) ≈ kp1(p1 − a)

p2
1 + bp1 + c

, where a = −1.222,

b = 0.7812, c = 1.007, k = 0.822. (22)

The relative error between the true x0(p1) and the rational
approximation equation (22) is smaller than 1% in a wide
range (p1 ∈ [0, 4.5] ⇐⇒ x0 ∈ [0, 0.95]).

3.3. Linearization error

Figure 4(a) shows the normalized amplitude p1(x0) of the main
(first-order) sidebands as a function of the gap-normalized
amplitude of motion x0; the linearization of p1(x0) is also
shown in the plot. The nonlinearity of the parallel plate
sense capacitor causes the actual sidebands to be larger than
predicted by linear theory of operation. The discrepancy
increases for larger amplitudes of motion. The relative error
between the nonlinear amplitude of the main sidebands p1(x0)
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Figure 4. Nonlinearity of the main (first-order) sidebands in parallel
plate EAM: (a) p1(x0) and its linearization and (b) linearization
errors.

and its linearization are shown in figure 4(b). According to
equation (20), this linearization error is computed as

ep1(x0) = |p1(x0) − x0|
p1(x0)

= 1 − x0
2
√

1 − x0
2

2 − 2
√

1 − x0
2
. (23)

The linear approximation shows a 3% error for normalized
amplitude of motion x0 = 0.2; the error is 7% for x0 = 0.3,
more than 12% for x0 = 0.4 and the error is almost 20% for
x0 = 0.5.

Let us consider a resonating MEMS device with parallel
plate EAM sensing of the motion. The amplitudes of the
main informational sidebands are used to measure the motional
amplitudes. Assuming this to be a linear measurement, which
is a good approximation for the lateral comb case but not for
the parallel plate case, leads to a significant overestimation
of the actual motional amplitude value. The error of this
overestimation is caused by the nonlinearity of the inverse
function x0(p1) and is shown in figure 4(b). Using Taylor
series expansion it can be shown that x0 ≈ p1(x0) is the linear
approximation for any given x0. Accordingly, the error of the
linearization is given by

ex0(p1) = |x0 − p1(x0)|
x0

= 2

x0
2
√

1 − x0
2

− 2x0
−2 − 1, (24)
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and is even more drastic than ep1(x0). For instance, the linear
measurement error is approximately 24% for x0 = 0.5.

3.4. Nonlinear measurement

The linearization error, ex0(p1), is always present in the
estimation of motional amplitude if the linearization is used.
Compensation for this nonlinearity error is essential for
accurate operation of the parallel plate detection schemes.
A nonlinear calculation for the motional amplitude should
be used to compensate for the overestimations and provide
an accurate measurement of the actual amplitude of motion.
There are several approaches to accurate calculation of
motional amplitude x0(p1) based on measured sideband
amplitude p1. First, equation (20) can be used to pre-compute
a look-up table of x0 and p1 pairs. Alternatively, a closed
form equation (21) can be used to perform direct calculation
of x0(p1). Additionally, a simple rational approximation
equation (22) can be used to estimate x0(p1) with less than
1% error.

3.5. Sinusoidal and periodic motion

The presented results on parallel plate nonlinear detection
were derived using the assumption of sinusoidal motion.
However, the main results on compensation of the first-order
sidebands nonlinearity are more general. Let us consider
an arbitrary periodic motion of the structure. Depending
on a particular waveform, the motion can be decomposed
into a sum of harmonics using Fourier series. However, the
amplitudes of the main EAM sidebands depend only on the
first harmonic component of the motion. Thus, equation (21)
and its variations can be directly applied to measure amplitude
of main motional harmonic in devices with arbitrary periodic
motion.

Higher order sidebands (k = 2, 3, . . .), see figure 2(b),
also carry useful information and can be potentially utilized in
parallel plate detection schemes. However, this approach will
be limited to the case of quasi-sinusoidal motion. Amplitudes
of the first three order sidebands as functions of the motional
amplitude are shown in figure 5 and are later compared to the
experimentally measured values.
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Figure 6. Fabricated and packaged test resonator: (a) SEM
micrograph of a quarter of the fabricated device and (b) photograph
of the packaged and wirebonded device.

4. Experimental demonstration

4.1. Fabrication of test structures

In order to verify the theoretical findings of this paper several
test structures were designed, fabricated and characterized.
The devices were capacitive MEMS resonators with lateral
comb drive capacitors, and lateral comb and parallel plate
sense capacitors. The fabrication was done using an in-house
wafer-level SOI process. SOI wafers with a highly conductive
50 µm thick device layer were used. AZ-4620 photoresist
was spin-coated onto the wafers and patterned using a
chrome-on-glass mask and a Karl Suss MA-6 exposure system.
The exposed wafers were developed using water-diluted AZ-
400K developer. Then, the wafers with the photoresist mask
were subjected to a deep reactive ion etching (DRIE) using a
Surface Technology Systems (STS) tool. The minimum gap
feature of the process was 5 µm and minimum structural
feature was 8 µm. The nominal capacitive gap in the parallel
plate sense structure was 25 µm; the relatively large gaps were
chosen purely for easier optical tracking of motion during the
experiments. An SEM image of a fabricated test resonator
is shown in figure 6(a). After the fabrication, the individual
devices were packaged in C-DIP24 packages and wirebonded
(figure 6(b)). Table 1 summarizes the main properties of the
fabricated test structures.

4.2. Structural characterization

Device characterization was performed in air using lateral
comb capacitors for drive and sense. The biasing scheme
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Figure 7. Characterization of the test structure in air.

Table 1. Parameters of the test device.

Parameter (units) Value

Device thickness (µm) 50
Device resistivity (� cm) 0.01–0.03
Device layer type P/B, (1-0-0)
Resonant frequency (Hz) 555
Mass (kg) 9.664 × 10−7

Stiffness (N m−1) 11.75
Total plate capacitance (pF) 2 × 0.7
Parallel plate gap (µm) 25
Lateral comb capacitance (pF) 4 × 0.7
Lateral comb gap (µm) 5

similar to that shown in figure 1 was used. A sum of the
driving 60 V dc and 0.5–3.5 Vrms ac voltages was applied to
the fixed comb electrode. The ac component was generated by
an HP 35 665A dynamic signal analyzer, which was running
in a swept-sine mode. The carrier voltage of 5 Vrms ac at
20 kHz was applied to the moving mass. The carrier ac
voltage was generated by a digital lock-in amplifier, AMETEK
Advanced Measurement Technology Signal Recovery Model
7265. The pick-up current from the sensing capacitor was
pre-amplified by a trans-impedance amplifier with a 0.5 M�

gain. The demodulation at the carrier frequency was performed
by the lock-in amplifier. Then, the signal was fed back into
the signal analyzer to acquire frequency response data. This
characterization method was described in detail, for example,
in [10].

Figure 7 (top) shows frequency responses (defined as a
ratio of the output signal to the driving voltage) obtained at
different levels of the driving ac voltage and thus motional
amplitudes. The resonant frequency was approximately
555 Hz. The effective quality factor Q in air was observed
to depend on the amplitude of motion and ranged from 15 to
12.5 (figure 7 (bottom)). This amplitude-dependent change of
the frequency response is attributed to amplitude-dependent
damping; however, the discussion about the exact physical
mechanism is outside the scope of this paper.
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4.3. Characterization of parallel plate detection
nonlinearities

Figure 8(a) shows a comparison of experimentally measured
spectra for linear lateral comb and nonlinear parallel plate
sense signals for the same mechanical motion. In accordance
with equation (18), the parallel plate sense signal contains
multiple order sidebands (however, only a limited number of
them are large enough to be measured by the equipment).
Figure 8(b) illustrates this further by comparing spectra of
nonlinear sensing at three different amplitudes of motion.
Amplitude of any given sideband is an increasing function of
the amplitude of motion x0. For a given amplitude of motion,
the amplitudes of multiple sidebands decrease in geometric
progression, seen as a linear decay on a logarithmic scale.

A separate set of experiments was performed in order to
directly measure the amplitudes of first- (main) and second-
order sidebands at different amplitudes of motion. The
experiments were similar to the previously described; however,
the signal processing was different, see figure 9. The carrier
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Figure 9. Signal processing diagram for the experimental
measurement of nonlinear sidebands.

voltage, generated by the first lock-in amplifier, was applied to
the movable mass of the test resonator. The drive voltage was
composed of an ac component, generated by the second lock-
in amplifier, and a dc component, generated by a separated dc
voltage supply. This driving voltage was applied to the fixed
lateral comb driving electrode. The anchored parallel plate
sense electrode was connected to a trans-impedance amplifier.

The total pick-up current was amplified and converted to
a voltage. The first lock-in amplifier demodulated the signal
at the carrier frequency with a 90◦ phase shift of the reference
waveform. The obtained voltage was fed into the second
lock-in amplifier, which was set up to demodulate at the
drive frequency (for the first-order sidebands) or its multiple
(for the second-order sidebands). As a result, a dc measurement
of the first- and second-order parallel plate EAM sidebands
was obtained. This procedure was repeated for different
values of the motional amplitude in order to experimentally
map p1,2(x0) and confirm their analytical expressions, see
figure 10.

5. Discussions

In this section, we discuss several practical aspects of using the
main sidebands of the parallel plate EAM signal for detection
of motion in resonant devices.

5.1. Nonlinearity of sensing with pure dc voltage

The nonlinearity of parallel plate sense capacitors also
manifests itself in the pick-up signal in the case of pure dc
sensing voltage Vdc. This approach is often used for sine-
sweep characterization of resonant modes (in this case, post-
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processing is typically required to eliminate the contribution
of parasitics [12]). Even though the described configuration
does not involve any carrier, it can be conveniently considered
a particular case of EAM method with vc = 0. From
equation (18), the pick-up signal component caused by the
dc sensing voltage is given by

IVdc(t) = CsnVdcωd

×
{∑∞

k=0(2k + 1)p2k+1(x0) cos((2k + 1)ωdt)

−∑∞
k=1 2kp2k(x0) cos(2kωdt)

}
. (25)

Unlike the linear case, the detection of sinusoidal
motion with dc-biased parallel plate sense capacitor results
in a signal with power at an infinite number of multiple
frequencies. The amplitudes of these multiple frequency
harmonic signals are proportional to kpk(x0). The most power
is concentrated at the ωd frequency; this component is given by
VdcCsnωdp1(x0) cos(ωdt) equation (25). Similarly to the main
pair of EAM sidebands, the amplitude of the ωd frequency
component is a nonlinear function of motional amplitude. The
nonlinear dependency is given by the same p1(x0). Thus, the
presented study of p1(x0) and all relevant conclusions are also
applicable to the simple detection scheme with a dc bias across
the parallel plate sensing capacitor.

5.2. Differential EAM using parallel plates

Differential detection schemes are often used in capacitive
devices [8, 19, 20]. The total output is formed by the
subtraction of two output signals from two identical but
oppositely oriented sense capacitors. Ideally, this setup results
in the cancellation of common mode parasitic feed-through
signals. Next, we analytically investigate the application
of a differential EAM sensing configuration to the nonlinear
parallel plate detection. We assume a configuration with two
identical sense capacitors, Cs1(t) and Cs2(t). They are placed
symmetrically, so that both electrodes receive the same amount
of the drive and the carrier ac voltages feed-through. These
capacitors are also oriented opposite to each other, such that
the capacitive gaps change with a 180◦ phase difference during
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the motion. The total differential output current I (t) is given
by I1(t) − I2(t).

The analysis is based on equations (18) and (15). In the
case of sinusoidal motion, the two sense capacitances are

Cs1(t) = Csn

1 − x0 sin(ωdt)
, Cs2(t) = Csn

1 + x0 sin(ωdt)
, (26)

where the only difference is the sign in the denominators.
Since p2k+1(x0) are odd functions and p2k(x0) are even
functions, the differential output of nonlinear EAM is thus
given by

I (t) = 2CsnVdcωd

∞∑
k=0

(2k + 1)p2k+1(x0) cos((2k + 1)ωdt)

+ Csnvc

∞∑
k=1

p2k(x0)

[
ω(2k+1) sin(ω(2k+1)t)

−ω−(2k+1) sin(ω−(2k+1)t)

]
. (27)

Figure 11 illustrates the comparison between parallel plates
single-sided and differential EAM sensing schemes. The
ideal differential setup cancels out the carrier and the drive
feed-through, as well as a half of the multiple frequency
harmonics in the spectrum. The odd order drive harmonics
and the multiple informational sidebands become doubled in
magnitude. Similar to the single-sided sensing case, the first-
order informational sidebands are proportional to the nonlinear
function p1(x0). Thus, both the error analysis, equation (24)
and figure 4(b), and the proposed methods of the motional
amplitude extraction, equation (20) and equation (21), are also
applicable to the parallel plate differential EAM scheme.

5.3. Choice of drive dc-bias application terminal

Some devices may need a large dc driving voltage component
to produce the desired amplitude of motion, see equation (1).
This dc bias can be either applied to the resonator’s movable
mass or to the anchored drive electrode. In the first case,
an infinite number of drive harmonics is introduced into the
EAM output current due to nonlinearity of the parallel plate
capacitors. If the carrier frequency is not chosen properly, one
of these drive harmonics can overlap with an informational
sideband and corrupt the measurement. This problem can
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be avoided by applying the large dc bias to the fixed drive
electrode. However, in this case more asymmetry is created in
the device, since the movable mass will be pulled toward the
anchored drive electrode. To minimize the effect, double-sided
actuation, or push–pull architecture, is typically utilized.

6. Conclusions

We presented the complete analytical model for parallel
plate capacitive detection of sinusoidal motion with arbitrary
amplitudes; the derived model is supported by experimental
results. Unlike lateral comb configuration, parallel plate sense
capacitors produce a nonlinear detection signal. Fourier series
for the parallel plate output signal were analytically derived
and studied for the cases of a pure dc sensing voltage, as
well as an ac sensing voltage (electromechanical amplitude
modulation (EAM)). The nonlinearities of parallel plate EAM
were investigated in comparison to the linear case.

Parallel plate capacitor output signal has infinite number
of frequencies components, corresponding to multiple order
sidebands. Amplitudes of the main informational sidebands
(first-order sidebands) are not linear with respect to the
amplitude of periodic motion. The degree of sideband
nonlinearity increases with the motional amplitude and results
in a significant overestimation of the motional amplitude
when a linear approximation is used. The nonlinearity of
the main pair of the modulated sidebands was investigated in
detail. A precise relation between the amplitude of periodic
mechanical motion and the amplitude of the sidebands was
obtained. Knowledge of this precise relationship allows for
elimination of the nonlinearity error in amplitude measurement
with parallel plates.

MEMS test structures were designed and fabricated
using an in-house SOI process. Experiments confirmed the
developed theory of nonlinear detection of motion using
parallel plate sense capacitors. Effect of biasing scheme on
the output signal was discussed and alternative approaches
were compared. Parallel plate sense capacitors are known to
provide high capacitive gradient and sensitivity at the cost of
nonlinearity error. The proposed algorithms for compensation
of the measurement nonlinearity can be used to implement
accurate and highly sensitive parallel plate capacitive detection
schemes for resonators, gyroscopes and other vibratory MEMS
with large amplitude of motion.
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