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Abstract

Given two points in a plane, each with a prescribed direction of motion in it, the question being asked is to find the
shortest smooth path of bounded curvature that joins them. The classical 1957 result by Dubins gives a sufficient set of paths
(each consisting of circular arcs and straight line segments) which always contains the shortest path. The latter is then found
by explicitly computing all paths on the list and then comparing them. This may become a problem in applications where
computation time is critical, such as in real-time robot motion planning. Instead, the logical classification scheme considered
in this work allows one to extract the shortest path from the Dubins set directly, without explicitly calculating the candidate
paths. The approach is demonstrated on one of two possible cases that appear here — when the distance between the two
points is relatively large (the case with short distances can be treated similarly). Besides computational savings, this result
sheds light on the nature of factors affecting the length of paths in the Dubins problem, and is useful for further extensions,
e.g. for finding the shortest path between a point and a manifold in the corresponding configuration space. © 2001 Published
by Elsevier Science B.V.
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1. Introduction

Consider the problem of finding the shortest smooth path between two points in the plane, theinitial and final
points, Pi andPf . Each point is associated with its ownorientation angle, α andβ, respectively, which defines the
prescribed direction of motion in it (see Fig. 1). The combinations(Pi, α) and(Pf , β), called theinitial and final
configurations, define two points in the correspondingconfiguration space(C-space), and present the problem’s
boundary conditions. Given(Pi, α) and(Pf , β), the task is to find the shortest smooth path fromPi to Pf , such
that it starts and ends with the directions of motionα andβ, respectively, and the path curvature is limited by 1/ρ,
whereρ is the minimal radius of turning.

This kind of tasks appear in various applications, such as when joining pieces of railways [1] or planning two- and
three-dimensional pipe networks. In robotics, this problem plays a central role in most of the work on nonholonomic
motion planning [2–4].
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Fig. 1. The coordinate system, the initial configuration(Pi , α) and the final configuration(Pf , β). Possible orientation angles are divided into
four quadrants.

The complete solution to this problem was first reported in an elegant paper by Dubins [5] in 1957. He showed
that any geodesic (i.e. the shortest path) consists of exactly three path segments and presents a sequenceCCCor
CSC, whereC (for “circle”) is an arc of radiusρ, andS (for “straight”) is a line segment. Each arcC has two
options — turning left or turning right. Denote thoseL andR, respectively, and the line segment byS. The Dubins
set,D, includes sixadmissible paths(or words),D = {LSL, RSR, RSL, LSR, RLR, LRL}. Furthermore, Dubins’
theorem states that in order to be a candidate for the optimal path, each arc must be of the minimal allowed radiusρ.

Using advanced calculus, this result of Dubins was later proved by Reeds and Shepp [6]. Also, Boissonnat et al.
[7] proved this result from the standpoint of optimal control, by making use of the powerful Pontryagin’s optimality
principle [8]. The more difficult case in which the path from(Pi, α) to (Pf , β) can be further shortened by allowing
reversals of motion (and thus introducing cusps) was first considered in the same work by Reeds and Shepp [6].
They showed that the initial and final configurations define a sufficient set of 48 paths which contains the optimal
path. The technique presented in [9] allows one to pick the optimal solution out of this set of 48 by partitioning the
C-space into multiple domains such that a single path type is associated with 150 elements and two path types are
associated with the other 11 elements.

An alternative approach to the problem with reversals was proposed by Soueres and Laumond [10]. They tie the
Pontryagin’s optimality principle with geometric reasoning, and arrive at the optimal solution via partitioning of
C-space into regions with uniform properties of path optimality.

In the context of robotics, the original Dubins problem of constructing a smooth path has a significance of its own.
In many motion planning tasks, such as in the aircraft control, motion reversals are not feasible. Or, if the shortest
time path, rather than the shortest path, is desired, the solution is likely to be a smooth path, because the deceleration,
stop, and acceleration at the reversal cusps add time to the path execution. Unfortunately, Dubins’ problem with
smooth paths is not a subset of the Reeds–Shepp’s problem — the sufficient set of the former is not contained in the
sufficient set of the latter. Also, the techniques proposed in [9,10] are not directly applicable to the smooth path case.

To use Dubins’s result for the shortest path calculation, one would need to explicitly calculate the lengths of
all arcs and straight line segments in the Dubins set, and then choose the shortest of the computed paths. The
time necessary for this calculation may become a bottleneck in time-constrained applications, as e.g. in real-time
robot motion planning — which is one motivation for this work. Another motivation comes from problems where
one looks for the shortest path from a point to a manifold in theC-space. For example, in sensor-based obstacle
avoidance, when planning an arrival to some intermediate pointP on the obstacle boundary, the current sensing
data may suggest that in order not to collide with the obstacle, the orientation angleβ at P must be within some
sector of angles (which may include, e.g. the tangent to the obstacle atP ). Finding the shortest path toP under this
constraint corresponds to finding the shortest path to a line inC-space.

In this work, we propose a scheme which allows one to select the shortest path from the Dubins setD directly,
without the usual exhaustive calculation of its elements. The scheme is based on a rather suggestive fact, developed
in Section 5, that the elements of the Dubins set can be classified into a small number of the so-calledequivalency
groups, based on the angle quadrants of the corresponding pairs of the initial and final orientation angles. Each
equivalency group consists of a fewclassesof paths, such that any path in a group is equivalent, up to an orthogonal
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transformation, to any other path in the same group. This means that the optimal path analysis can be reduced to
fewer terms. Further, a simple logical classification of the equivalency groups can be built which points directly to
the optimal path.

Below, d is the Euclidean distance between the initial and final pointsPi andPf . A rectangular coordinate
system(x, y) is chosen such that its origin isPi = (0, 0) and the positive direction ofx-axis is towardPf = (d, 0)

(Fig. 1). The initial and final orientation angles,α andβ, are measured counter-clockwise, with respect to the
positive direction ofx-axis. Without loss of generality, assume a unit radius of the minimum turning circle,ρ = 1
(any otherρ can be reduced to 1 by the scalingd = D/ρ, whereD is the actual distance betweenPi andPf ). The
initial and final arc segments (of radiusρ) in the Dubins set are denotedCil , Cir , Cfl, Cfr (wherei andf stand for
“initial” and “final”, and r andl — for “right” and “left”).

The analysis necessary for solving our classification problem turns out to become simpler if it is divided into two
cases, which can be called thelong path caseand theshort path case. Our approach is equally applicable to both
cases, with minor differences between the resulting computational schemes. For the sake of example, we consider
here only one case, thelong path case, which seems to be of more interest from the standpoint of applications and
the computational savings. More precisely, the “long paths” are those where the distanced between the pointsPi

andPf satisfies the condition of non-intersection of the four circles above,{Cil ∪Cir }∩ {Cfl ∪Cfr} = ∅. This covers
all cases whend > 4ρ and some cases whend < 4ρ (see Fig. 4 and Proposition 5).

We first develop, in Section 2, a proper specification scheme for admissible paths. The notion of an equivalency
group is then introduced in Section 3, and the scheme for classifying the Dubins set is fully developed in Section
4. This work’s main result which makes this classification possible and becomes the logical scheme for finding the
shortest path is summarized in Section 4.

2. Admissible paths and their specification

Given a path from the initial to the final configuration, the position of a point on the path is fully specified by
its Cartesian locationx(τ), y(τ ), where the parameterization variableτ can be interpreted as time or the length of
path traversed fromPi with unit velocity. Assume

τi = 0, i.e.Pi = P(τi) = P(0);
the point on the path can move only “forward”, fromPi towardPf ;
it moves with the unit speed;
the orientation angle (direction of motion) cannot change faster than 1/ρ radian per time unit,

whereρ = 1 is the minimal turning radius.

Following [5], anadmissible pathis defined as a continuously differentiable curve which is either (i) an arc of a
circle of radius 1, followed by a line segment, followed by an arc of a circle of radius 1, or (ii) a sequence of three
arcs of circles of radius 1, or (iii) a subpath of a path of type (i) or (ii). A list of admissible paths forms a sufficient
set of optimal paths.

To specify admissible paths, we introduce three elementary motions: turning to the left, turning to the right
(both along a circleC of radius 1), and straight line motionS. Also needed will be three corresponding operators,
Lv (for left turn), Rv (for right turn),Sv (for straight), which transform an arbitrary point(x, y, φ) ∈ R3 into its
corresponding image point inR3,

Lv(x, y, φ) = (x + sin(φ + v) − sinφ, y − cos(φ + v) + cosφ, φ + v),

Rv(x, y, φ) = (x − sin(φ − v) + sinφ, y + cos(φ − v) − cosφ, φ − v),

Sv(x, y, φ) = (x + v cosφ, y + v sinφ, φ),

(1)

where indexv indicates that the motion has been along the (C or S) segment of lengthv. With these elementary
transformations, any path in the Dubins setD = {LSL, RSR, RSL, LSR, RLR, LRL} can be expressed in terms of
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the corresponding equations. In the coordinate system chosen, the initial configuration of each path is at(0, 0, α)

and the final configuration at(d, 0, β). For example, a path made of segmentsL, R andL, of the lengthst, p, q,
respectively, which starts at point(0, 0, α), must end atLq(Rp(Lt (0, 0, α))) = (d, 0, β). The lengthL of the path
can be defined as the sum of lengthst, p andq of its constituent segments,

L = t + p + q. (2)

Our goal is to classify the elements of setD based on the boundary conditions, with the purpose of replacing the
explicit computation of all candidates for the shortest path with a simple logical procedure that would directly
produce the shortest path. To this end, we will now consider elements ofD one-by-one and derive the operator
equations for the length of each path.

1. Lq(Sp(Lt (0, 0, α))) = (d, 0, β). By applying the corresponding operators (1), this first path inD can be
represented by a system of three scalar equations:

p cos(α + t) − sinα + sinβ = d,

p sin(α + t) + cosα − cosβ = 0,

α + t + q = β {mod 2π}.
The solution of this system with respect to the segmentst, p andq is found as

tlsl = −α + arctan
cosβ − cosα

d + sinα − sinβ
{mod 2π},

plsl =
√

2 + d2 − 2 cos(α − β) + 2d(sinα − sinβ),

qlsl = β − arctan
cosβ − cosα

d + sinα − sinβ
{mod 2π}.

(3)

Using definition (2), the length of the pathLSLas a function of the boundary conditions can be now written as

Llsl = tlsl + plsl + qlsl = −α + β + plsl. (4)

2. Rq(Sp(Rt (0, 0, α))) = (d, 0, β). Using (1), we obtain the corresponding scalar equations:

p cos(α − t) + sinα − sinβ = d,

p sin(α − t) − cosα + cosβ = 0,

α − t − q = β {mod 2π}.
The solution of this system, i.e. the lengths of the corresponding segments, is

trsr = α − arctan
cosα − cosβ

d − sinα + sinβ
{mod 2π},

prsr =
√

2 + d2 − 2 cos(α − β) + 2d(sinβ − sinα),

qrsr = −β(mod 2π) + arctan
cosα − cosβ

d − sinα + sinβ
{mod 2π},

(5)

and the path length is given by

Lrsr = trsr + prsr + qrsr = α − β + prsr. (6)
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3. Rq(Sp(Lt (0, 0, α))) = (d, 0, β). Using (1), we obtain the corresponding scalar equations:

p cos(α + t) + 2 sin(α + t) − sinα − sinβ = d,

p sin(α + t) − 2 cos(α + t) + cosα + cosβ = 0,

α + t − q = β {mod 2π}.
The solution of this system is

tlsr =
(

−α + arctan

( − cosα − cosβ

d + sinα + sinβ

)
− arctan

( −2

plsr

))
{mod 2π},

plsr =
√

−2 + d2 + 2 cos(α − β) + 2d(sinα + sinβ),

qlsr = −β(mod 2π) + arctan

( − cosα − cosβ

d + sinα + sinβ

)
− arctan

( −2

plsr

)
{mod 2π},

(7)

and the path length is given by

Llsr = tlsr + plsr + qlsr = α − β + 2tlsr + plsr. (8)

4. Lq(Sp(Rt (0, 0, α))) = (d, 0, β). Using (1), we obtain the corresponding scalar equations:

p cos(α − t) − 2 sin(α − t) + sinα + sinβ = d,

p sin(α − t) + 2 cos(α − t) − cosα − cosβ = 0,

α − t + q = β {mod 2π}.
The corresponding solution is

trsl = α − arctan

(
cosα + cosβ

d − sinα − sinβ

)
+ arctan

(
2

prsl

)
{mod 2π},

prsl =
√

d2 − 2 + 2 cos(α − β) − 2d(sinα + sinβ),

qrsl = β(mod 2π) − arctan

(
cosα + cosβ

d − sinα − sinβ

)
+ arctan

(
2

prsl

)
{mod 2π},

(9)

and the path length is given by

Lrsl = trsl + prsl + qrsl = −α + β + 2trsl + prsl. (10)

5. Rq(Lp(Rt (0, 0, α))) = (d, 0, β). Using (1), we obtain the corresponding scalar equations:

2 sin(α − t + p) − 2 sin(α − t) = d − sinα + sinβ,

−2 cos(α − t + p) + 2 cos(α − t) = cosα − cosβ,

α − t + p − q = β {mod 2π}.
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The solution of this system is

trlr = α − arctan

(
cosα − cosβ

d − sinα + sinβ

)
+ prlr

2
{mod 2π},

prlr = arccos1
8(6 − d2 + 2 cos(α − β) + 2d(sinα − sinβ)),

qrlr = α − β − trlr + prlr {mod 2π},

(11)

and the path length is obtained by substituting (11) into (2),

Lrlr = trlr + prlr + qrlr = α − β + 2prlr . (12)

6. Lq(Rp(Lt (0, 0, α))) = (d, 0, β). Using (1), we obtain the corresponding scalar equations:

−2 sin(α + t − p) + 2 sin(α + t) = d + sinα − sinβ,

2 cos(α + t − p) − 2 cos(α + t) = − cosα + cosβ,

α + t − p + q = β {mod 2π}.
The corresponding solution is

tlrl =
(

−α + arctan

( − cosα + cosα

d + sinα − sinβ

)
+ plrl

2

)
{mod 2π},

plrl = arccos1
8(6 − d2 + 2 cos(α − β) + 2d(sinα − sinβ)){mod 2π},

qlrl = β(mod 2π) − α + 2plrl {mod 2π},

(13)

and the path length is given by

Llrl = tlrl + plrl + qlrl = −α + β + 2plrl . (14)

3. Equivalency groups

We are now prepared to turn to the classification of the Dubins setD. Divide the range of possible orientation
angles(α, β) into four quadrants; Fig. 1: quadrant 1 corresponds to the range [0, π/2], quadrant 2 to [π/2, π ],
quadrant 3 to [π, 3π/2], and quadrant 4 to the range [3π/2, 2π ]. Since each ofα or β can be in any of the four
quadrants, together this produces 16 different combinations of possible quadrants. We represent those 16 by a 4× 4
matrix,{aij }, where indexi corresponds to the quadrant number of the initial, and indexj that of the final orientation.
Elementaij therefore describes theclassof all paths whose initial and final orientation angles(α, β) belong to the
quadrantsi andj , respectively. For example, the caseα ∈ [0, π/2], β ∈ [π/2, π ] corresponds to the elementa12
and covers all those paths whose orientation angles belong to the first and second quadrants, respectively.

It will be shown below that these 16 classes can be reduced to six independent clusters, calledequivalency groups,
such that an orthogonal transformation of any path in a given group changes it into a path in the same or a different
class of the same group.

Dubins’ main theorem [5] says that each (non-degenerate) candidate for the optimal path in setDmust start with
a piece of circle and end with a piece of circle (of radiusρ = 1, see above). Depending on the path inD, the initial
and the final circle can turn either left or right; we denote thoseCil , Cir andCfl, Cfr , respectively. To proceed, we
will need the following definition.

Definition. Two paths are topologically equivalent (denoted by “'”) if there exists an orthogonal transformation
that maps one path into the other, with both paths sharing their respective initial and final points.
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Fig. 2. ArcsPiP2 andP3Pf are obtained by orthogonal transformations of the arcPiP1: the first is a mirror reflection ofPiP1 with respect to
line (PiPf ), the second — the central symmetry reflection ofPiP1 with respect to pointO. Arc P4Pf is obtained by applying a composition of
both transformations.

Note that two equivalent paths are of the same length and allow equivalent parameterization. The following
proposition relates the topological equivalency of paths and their initial/final configurations.

Proposition 1. For any path connecting two points, P(ti, α), P (tf , β), where (α, β) are the initial and final
orientation angles, there exist another three paths which are topologically equivalent to it. Their corresponding
orientation angles are(−α, −β), (β, α), and(−β, −α).

To see this, consider a path that starts at an initial configuration(Pi, α) and is of the formPiP1 · · · [−α, −β];
here the ellipsis “· · · ” reflect our emphasis on the segmentPiP1 (Fig. 2). By applying a mirror reflectionG(PiPf )

with respect to the line(PiPf ), this path is transformed into the pathPiP2 · · · [−α, −β]. Similarly, by applying the
central symmetry reflectionG(O) with respect to the midpointO of segment [Pi, Pf ], the same path is transformed
into · · · P3Pf [β, α]. The composition of both transformations leads to

G(O)(G(PiPf )(PiP1 · · · [α, β])) = G(PiPf )(G(O)(PiP1 · · · [α, β])) = · · · P4Pf [−β, −α]. (15)

This general fact will be used below in the analysis of paths defined by setD. Recall that those paths take a form
eitherCCCor CSC, whereC is an arc of a circle of radiusρ with optionsL andR (left and right), andS is a straight
line segment. To distinguish between the first and the second arc segments in the pathCSC, subscripts will be used,
C1SC2.

Define theconjugateof C1, denotedC̄1, as the complement ofC, i.e. if C1 = R then its conjugate is̄C1 = L,
and vice versa. The application of the orthogonal transformationsG(PiPf ) andG(O) leads to

G(PiPf )(C1SC2[α, β]) = C̄1S̄C̄2[−α, −β], GO(C1SC2[α, β]) = C̄2S̄C̄1[β, α].

Notice that the mirror reflectionG(PiPf ) reverses the signs of anglesα, β and changes the arc segments to their
conjugates. The central symmetry reflectionG(O) has a triple effect: it switches orientationsα andβ, switches seg-
mentsC1 andC2, and switches each segment to its conjugate. This relation can be proven rigorously by formalizing
the operatorsG(PiPf ) andG(O) and then applying them to the path presented in the general operator form, as e.g.
Lq(Sp(Lt (0, 0, α))) = (d, 0, β).

Independent of the order of transformations, the composition ofG(PiPf ) andG(O) leads to

G(O)(G(PiPf )(C1SC2[α, β])) = G(PiPf )(G(O)(C1SC2[α, β])) = C2SC1[−β, −α].

Using the above definition of topological equivalence, the following proposition defines the set of topologically
equivalent paths.
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Fig. 3. An illustration for Proposition 2.

Proposition 2. Given the pathC1SC1[α, β], the composition of orthogonal transformationsG(PiPf ) andG(O) leads
to the topologically equivalent paths

C1SC2[α, β] ' C̄1S̄C̄2[−α, −β] ' C̄2S̄C̄1[β, α] ' C2SC1[−β, −α],

whereα, β are the initial and final orientations, G(PiPf ) the mirror reflection with respect to line(PiPf ), G(O) the
central symmetry reflection with respect to the midpoint O of segment[Pi, Pf ], and“'” the sign of equivalency.

Example. Consider the paths shown in Fig. 3. Initially there are two paths,RSR[α, β] andRSL[α, β] (Fig. 3(a)),
whereα ∈ [0, π/2], β ∈ [π/2, π ].

1. Consider first the pathRSR[α, β]. With the notation of Proposition 2, we haveC1 = R andC2 = R. The
proposition gives the following set of topologically equivalent paths (see Fig. 3(a)–(d)):

RSR[α ∈ [0, π/2], β ∈ [π/2, π ]] ' LSL[α ∈ [3π/2, 2π ], β ∈ [π, 3π/2]]

' LSL[α ∈ [π/2, π ], β ∈ [0, π/2]]

' RSR[α ∈ [π, 3π/2], β ∈ [3π/2, 2π ]] .

2. Consider now an exampleC1 = R, C2 = L. By applying Proposition 2 to the pathRSL[α, β] with α ∈
[0, π/2], β ∈ [π/2, π ] (Fig. 3(a)), we obtain three other paths (Fig. 3(b)–(d)):
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RSL[α ∈ [0, π/2], β ∈ [π/2, π ]] ' LSR[α ∈ [3π/2, 2π ], β ∈ [π, 3π/2]]

' RSL[α ∈ [π/2, π ], β ∈ [0, π/2]]

' LSR[α ∈ [π, 3π/2], β ∈ [3π/2, 2π ]] .

Proposition 3. Given the pathC1SC1[α, β], the individual orthogonal transformationsG(PiPf ), G(O) and
their composition lead to the topologically equivalent pathsC1SC2[α, β], C̄1S̄C̄2[−α, −β], C̄2S̄C̄1[β, α], and
C2SC1[−β, −α], for which the following holds:

Lc1sc2 = tc1sc2 + pc1sc2 + qc1sc2, Lc̄1s̄c̄2 = tc̄1s̄c̄2 + pc̄1s̄c̄2 + qc̄1s̄c̄2,

Lc̄2s̄c̄1 = tc̄2s̄c̄1 + pc̄2s̄c̄1 + qc̄2s̄c̄1, Lc2sc1 = tc2sc1 + pc2sc1 + qc2sc1,

and

tc1sc2 = tc̄1s̄c̄2 = qc̄2s̄c̄1 = qc2sc1, pc1sc2 = pc̄1s̄c̄2 = pc̄2s̄c̄1 = pc2sc1, qc1sc2 = qc̄1s̄c̄2 = tc̄2s̄c̄1 = tc2sc1.

It is convenient to combine Propositions 2 and 3 into one theorem.

Theorem 1 (Transformation Theorem).Given the pathC1SC1[α, β](t, p, q) with the lengths of the initial, mid-
dle and final segments equal to t, p, and q, respectively, the orthogonal transformationsG(PiPf ), G(O) and their
composition lead to the topologically equivalent paths

C1SC2[α, β](t, p, q) ' C̄1S̄C̄2[−α, −β](t, p, q) ' C̄2S̄C̄1[β, α](q, p, t) ' C2SC1[−β, −α](q, p, t).

The Transformation Theorem gives a linguistic rule for topologically equivalent transformations; it emphasizes
the structure of equivalent paths obtained as a result of these transformations. This theorem will be now used for
defining equivalency groups and thus reducing the amount of computations, namely the following statement holds.

Proposition 4. Matrix {aij } can be divided into six independent equivalency groups: (1)a11 ' a44, (2)a12 ' a21 '
a34 ' a43, (3) a13 ' a24 ' a31 ' a42, (4) a14 ' a41, (5) a22 ' a33, and (6)a23 ' a32.

Indeed, according to the Transformation Theorem, any path withα ∈ [0, π/2], β ∈ [0, π/2, π ] (i.e. belonging
to classa11) is transformed into an equivalent path withα ∈ [3π/2, 2π ], β ∈ [3π/2, 2π ] (which is from classa44).
That is, the central symmetry reflection,G(O), leads to a topologically equivalent path from classa11, while the
composition ofG(PiPf ) andG(O) leads to a topologically equivalent path from classa44. In the case of the equivalency
group (2), for any path of classa12 there exists an equivalent path in each of the classesa21, a34, anda43.

By choosing one representative from each equivalency group, we define abasis setB of matrix{aij } — a list of six
mutually independent classes of orientation pairsα, β. This reduces from 16 to 6, the number of path classes to be an-
alyzed for the optimal solution. Note that the basis set is not unique since its members can be chosen in various ways.

4. Classes of paths and their equivalency groups

The above scheme for classifying the Dubins set will be fully developed in this section; the necessary analysis
involves the following steps:

1. Find the necessary and sufficient condition of non-intersection of the unions{Cil ∪ Cir } and{Cfl ∪ Cfr}. This
condition formally defines what is meant by the “long paths” in the case under study.

2. Show that the condition 1, when satisfied, leads to a further simplification of the set of candidates for the optimal
solution that need be considered.
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3. For every element of matrix{aij }, find the minimum number of the optimal path candidates.
4. For those elementsaij which, as found in step 3, allow more than one candidate for the optimal solution, derive

the correspondingswitching functionswhich uniquely define the optimal path.

Since elements from the same equivalency group have similar properties, the development steps 3 and 4 are
combined below for each of the groups, forming six corresponding subsections.

When applying results of this analysis to a specific problem, one would proceed as follows:

• Make sure that the task at hand satisfies the condition in step 1.
• Associate the given initial and final orientations with a classaij . For classaij , use the uniquely defined optimal

path.

Below, after analyzing steps 1 and 2, for the sake of convenience we choose for step 3, a particular example of basis
setB, B = {a11, a12, a13, a14, a22, a23}. For each of the six elements ofB, questions posed in steps 3 and 4 are
then addressed in the respective six sections.

The following additional notation is used below: unless stated otherwise, forms likeAB and A˘B represent
straight line segments and circular arc segments, respectively, withA andB being the segments’ endpoints. When
in mathematical expressions, the same forms denote the lengths of the segments. When needed for clarity, the strings
may be longer: e.g.A1B1̆ C1D1 is an arc with the endpointsA1, D1 and two inner pointsB1, C1.

4.1. The long path case

Turning to the step 1 above, the condition of non-intersection of union{Cil ∪ Cir } with union {Cfl ∪ Cfr} is as
follows.

Proposition 5. {Cil ∪ Cir } ∩ {Cfl ∪ Cfr} = ∅ if d >
√

4 − (| cosα| + | cosβ|)2 + | sinα| + | sinβ|. This condition
on d is a precise definition of the long path case.

To prove this necessary and sufficient condition, consider the case when the union{Cil ∪Cir } is tangent to the union
{Cfl ∪ Cfr}, i.e. there exist only one point belonging to both unions. Take, for instance, the casea11 (α andβ are in
the first quadrant, Fig. 4). Assume a unit radius,ρ = 1. Given a common tangent to both arcs,IF = IA + AB+ BF.
From 4IAO1: IA = sinα andO1A = cosα. From 4FBO2: BF = sinβ andO2B = cosβ. From 4O1O2C:
O1O2 = 2, O2C = O2B + O1A, and thereforeO1C =

√
4 − (cosα + cosβ)2. Summing up forIA + AB+ BF,

obtain the expression for distanceIF, which is a condition for a common tangent for the right initial circle and left
final circle. In general, the expression

√
4 − (| cosα| + | cosβ|)2 + | sinα| + | sinβ| = d covers all possible cases

of paths consisting of circular arcs with a common tangent point.

Proposition 6. For the long path case, the path CCC cannot be the optimal solution.

To show this, consider the basis setB of independent orientation pairs(α, β). We need to show that for any
element fromB, there exists a path of typeCSCthat is shorter than the pathCCC.

Since for the long path case,{Cil ∪Cir }∩ {Cfl ∪Cfr} = ∅, thenCil , Cir , Cfl, Cfr do not intersect. Fig. 5 illustrates
this for the general case: it is clear in this example that though the pathCCC is physically realizable, it can be
excluded from the list of candidates for an optimal solution.

To prove this, assume that circleCleft is one of the initial circlesCil or Cir , andCright is eitherCfl or Cfr . Two
other circles tangent toCleft andCright areCup (upper tangent) andCdown (lower tangent). The initial and final
orientations can be chosen either clockwise or counter-clockwise. Notice that the orientation of the initial and final
circles has to be the same, since the path of typeCCCswitches directions when passing from one circle to another.
If two switchings take place, the initial and final circles must have the same orientation.
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Fig. 4. The case of a path of two circular arcs with a common tangent point; here both orientation anglesα andβ are in the first quadrant.

The area of possible initial and final positions is limited; the first must lie on the arcA1B1̆ C1D1 of circleCleft,
and the second on the segmentA2B2̆ C2D2 of circleCright (both segments are shown in solid line in Fig. 5). These
restrictions are dictated by Proposition 5.

Let us say, the initial and final positions lie within the arcsA1B1̆ C1D1 andA2B2̆ C2D2, respectively, both with
the same counter-clockwise orientations. (For the clockwise case, the analysis is similar.) There are four options:
(i) the initial positionP(ti) belongs to segmentA1B̆1C1 and the final positionP(tf ) to segmentA2B̆2C2, (ii)
P(ti) ∈ C1̆ D1 andP(tf ) ∈ C2̆ D2, (iii) P(ti) ∈ C1̆ D1 andP(tf ) ∈ A2B̆2C2, and (iv)P(t0) ∈ A1B̆1C1 and
P(tf ) ∈ C2̆ D2.

In case (i) the solutionLSL is the shortest possible path, since the straight line segment connectingC1 andC2 is
shorter than the sum of segmentsC1̆ D1 +D1̆ D2 +D2̆ C2. In case (ii), the pathLRLcannot be the optimal solution:
since the middle arc is less thanπ/2, this path is of typeCCC, which was shown above to disqualify it from being a

Fig. 5. An illustration to the fact that pathCCCcannot be the optimal solution in the long path case.
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Fig. 6. The optimal solution for classa11; bothα andβ are in the first quadrant.

candidate for the optimal solution. For the same reason, pathCCCcannot be the optimal solution in cases (iii) and
(iv).

4.2. The equivalency groups of{aij } classes

We now turn to defining the equivalency groups for each element of the matrix{aij }. Recall that each element
represents a class of paths.

4.2.1. Equivalency group{a11, a44}
According to Proposition 4, classesa11 anda44 belong to the same equivalency group. We first show for class

a11 that the corresponding Dubins set can be reduced directly to a unique optimal solution. Then, by applying an
orthogonal transformation to the optimal path for classa11, the optimal solution fora44 will be obtained.

Proposition 7. For the long path case(see Proposition5), the optimal solution corresponding to the elementa11
is RSL.

Note that the number of candidate curves for the optimal path in setD is now reduced toLSL, LSR, RSL, RSR—
the curves of typeCCCare excluded from consideration (Proposition 6). For three of those paths,LSL, LSR, RSR,
thex-coordinate goes outside the range 06 x 6 d. Take the length of the curveLSas the lower bound on the length
of the pathsLSL, LSRandRSR(LS is a subpath of pathsLSLor LSRwith α = π/2).

It is claimed that the upper bound on the length of paths for which thex-coordinate is in the range 06 x 6 d

is the pathRSLwith α = β = π/2. Indeed, from Section 2,∂Lrsl/∂α > 0 and∂Lrsl/∂β > 0. Therefore, the
maximum ofLrsl in this region will occur whenα andβ are equal toπ/2.

To prove that the optimal solution for paths within the range 06 x 6 d is RSL, one needs to show that the lower
bound on the path length in the Dubins subset{LSL, LSR, RSR} is bigger than the upper bound on the pathRSL.
This case is illustrated in Fig. 6.

Lemma 1. If α andβ are in the first quadrant then the upper bound forLrsl is limited by

max
α,β∈[0,π/2]

Lrsl 6
√

d2 − 4d + 2π.

Indeed, whenα ∈ [0, π/2] andβ ∈ [0, π/2], the gradient of the pathRSLis a positive function. This means that
the function is monotonically increasing on that interval and reaches its maximum on the interval’s boundary, i.e.
α = β = π/2. Assuming, as usual,ρ = 1, the upper bound for the path length is

Lrsl = I˘A + AB+ B˘F, (16)

where

I˘A + B˘F < 2π. (17)
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SegmentABcan be found asAB = 2AD or, expressingAD in terms ofO1D andO1A,

AB = 2
√

(1
2(d − 2))2 − 1 =

√
d2 − 4d. (18)

Substituting (17) and (18) into (16), we obtain

max
α,β∈[0,π/2]

Lrsl 6
√

d2 − 4d + 2π.

Lemma 2. If α andβ are in the first quadrant then the lower bound onLlsl, Llsr, Lrsr is

min
α,β∈[0,π/2]

{Llsl,Llsr,Lrsr} >
√

d2 + 2d + 3π/2.

The lower bound onLSL, LSRandRSRcan be obtained by takingα = π/2 andβ as shown in Fig. 6. The minimum
path length can then be estimated as

min
α,β∈[0,π/2]

{Llsl,Llsr,Lrsr} = I ĔC + CF > 3π/2 +
√

(d + 1)2 − 1 > 3π/2 +
√

d2 + 2d. (19)

In order to prove that the optimal solution corresponding to classa11 is RSL, we need to show that

min
α,β

{Llsl,Llsr,Lrsr} − max
α,β
Lrsl > 0. (20)

It is easy to see that (20) holds if
√

d2 + 2d − √
d2 − 4d − π/2 > 0: moveπ/2 to the right side of the inequality

and multiply both sides by the positive expression
√

d2 + 2d + √
d2 − 4d. The result is 6d > π

√
d2 + 2d, which

is true ifd2 − 4d > 0 — precisely the case we are interested in. This completes the proof of inequality (20) and of
the claim that the optimal solution for classa11 is RSL. By applying Proposition 2 to the pathRSL, obtain a similar
statement for classa44.

Proposition 8. Given thata11 anda44 are in the same equivalency group and the optimal solution fora11 is RSL,
the optimal solution fora44 is LSR.

4.2.2. Equivalency group{a12, a21, a34, a43}
According to Proposition 4, path classesa12 ' a21 ' a34 ' a43 are in the same equivalency group. We first

show how to extract the optimal solution for classa12: it turns out that classa12 defines two (rather than one as with
classa11) elements of the Dubins set as candidates for the optimal solution. Accordingly, a switching functionS12
will be derived whose sign will uniquely determine which of the two is the optimal solution. Then, by applying the
orthogonal transformation to the paths of classa12 (see Proposition 2), optimal solutions for path classesa21, a34,
anda43 will be obtained.

Proposition 9. For the long path case, the optimal solution corresponding to the classa12 is either RSL or RSR.

It follows from Proposition 6 that the path of typeCCC can be excluded from consideration. This leaves four
candidates,RSR, RSL, LSR, andLSL. Define thecritical initial orientation as one where orientationα coincides
with the tangent to the circleORF; denote itα = ᾱ. Note that the set(β, d) uniquely defines the critical initial
orientation,ᾱ = ᾱ(β, d). If α > ᾱ then the pathLSR is not feasible and can be excluded from consideration;
otherwise, pathRSRshould be excluded. Consider the case when pathLSRis feasible(α < ᾱ). If α = 0 andβ = π

then the length ofLSRis equal to that ofRSL. Analysis of gradients of functionsLrsl andLlsr shows that ifα is
increasing orβ is decreasing then pathRSLbecomes shorter thanLSR. This is true untilα reaches the critical initial
orientationα = ᾱ. Comparing the lower bound on the length of pathLSLand the upper bound on the length of path
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Fig. 7. Choosing the switching functions for the equivalency group(a12, a21, a34, a43) — an illustration.

RSL, observe that pathLSLcan be excluded from consideration. This argument plus the fact thatLlsr > Lrsl for
α < ᾱ end the proof of the proposition.

To find now the optimal solution for classa12, we define a switching function,S12. The following proposition
holds.

Proposition 10. For classa12(i.e.0 < α 6 π/2, π/2 < β 6 π ), the optimal solution is RSR ifS12(prsr, prsl, qrsl) <

0, and it is RSL ifS12(prsr, prsl, qrsl) > 0, with

S12(prsr, prsl, qrsl) = prsr − prsl − 2(qrsl − π), (21)

whereprsr, prsl, andqrsl are defined by(5) and(9).

Consider an example in Fig. 7(a);ORI, ORF, andOLF are the centers of circlesCri , Crf , andClf , respectively. The
realizable paths here areRSRandRSL. LineEH connects the originsOLF andORF and intersects the circlesClf and
Crf in pointsE andH . Since lineORIG is parallel to lineEH, arcA˘G is equal to arcB˘H defined by the angleξ , and
arcG˘C is equal to arcD˘E defined by the angleγ . For segmentAB, denotesrsr to be the length of the straight line
segment of pathRSR; similarly for segmentCD, srsl is the length of the straight line segment of pathRSL. Then the
path lengths ofRSRandRSLare given byLrsr = SA+prsr +ξ +π andLrsl = SA+ξ +γ +prsl +γ +π . Therefore,
the sign of the difference(Lrsr − Lrsl) defines the bigger of the lengths ofRSRandRSL. Expanding the difference
(Lrsr − Lrsl) and substitutingγ = (qrsl − π), obtain expression (21) for the switching function of classa12.
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Remark. For classa12, the region ofα, β whereRSRis the optimal solution is much smaller than the corresponding
region forRSL. To save on computations, divide the whole region into two subregions: one whereRSLis the optimal
solution, and the other (much smaller), where the solution isRSLorRSRand depends on the condition of Proposition
9. The first subregion (whereRSLis the optimal solution) is defined by

d cosβ − 3 sin(β) cosβ + sin(β − α) + cosα sinβ > 0.

This case occurs ifα andβ are such that the last arc in the pathRSL, qrsl, is equal toπ . If qrsl < π then pathRSL
is shorter than pathRSR. If qrsl > π , then the switching functionS12 needs be checked.

We now turn to the classesa21, a34, anda43 which are in the same equivalency group asa12. By applying
the orthogonal transformation (see Proposition 2), the set of path candidates fora12 is transformed into the set of
candidates for the remaining elements of the equivalency groupa21, a34, a43 (see Fig. 7). That leads to the following
result.

Proposition 11. Sincea12 ' a21 ' a34 ' a43 and the optimal solution fora12 is {RSL or RSR}, then the optimal
solutions for the remaining elements of this equivalency group area21 7→ {RSL or LSL}; a34 7→ {LSR or RSR};
a43 7→ {LSR or LSL}.

The respective switching functions for classesa21, a34, anda43 (see the next three propositions) are obtained from
the switching function for classa12, by replacingt andq segments as prescribed by the transformation theorem.

Proposition 12. For classa21 (i.e.π/2 < α 6 π, 0 < β 6 π/2), the optimal solution is LSL ifS21 < 0, and it is
RSL ifS21 > 0, with

S21(plsl, prsl, trsl) = plsl − prsl − 2(trsl − π). (22)

To check, apply Theorem 1 to the switching functionS12 = Lrsr −Lrsl = prsr − prsl − 2γ , whereγ = qrsl − π ;
obtainLrsr = SA+prsr + ξ +π andLrsl = SA+ ξ +γ +prsr +γ +π . According to Proposition 3, the orthogonal
transformation implies

Lrsr(α ∈ [0, π/2], β ∈ [π/2, π ]) = Llsl(α ∈ [π/2, π ], β ∈ [0, π/2]),

and, additionally,prsr(α ∈ [0, π/2], β ∈ [π/2, π ]) = plsl(α ∈ α ∈ [π/2, π ], β ∈ [0, π/2]) and prsl(α ∈
[0, π/2], β ∈ [π/2, π ]) = prsl(α ∈ α ∈ [π/2, π ], β ∈ [0, π/2]), andqrsl(α ∈ [0, π/2], β ∈ [π/2, π ]) = trsl(α ∈
α ∈ [π/2, π ], β ∈ [0, π/2]). The switching function for classa21 can be simply obtained from the functionS12 by
changing the segments fromprsr, prsl, qrsl to plsl, prsl, trsl, respectively. The validity of this procedure follows from
the transformation theorem, and using again the same theorem, obtain directly the switching functions for classes
a34 anda43.

Proposition 13. For classa34 (i.e.π < α 6 3π/2, 3π/2 < β 6 2π ), the optimal solution is RSR ifS34 < 0, and
it is LSR ifS34 > 0, with

S34(prsr, plsr, tlsr) = prsr − plsr − 2(tlsr − π). (23)

Proposition 14. For classa43 (i.e. 3π/2 < α 6 2π, π < β 6 3π/2), the optimal solution is LSL ifS43 < 0, and
it is LSR ifS43 > 0, with

S43(plsl, plsr, qlsr) = plsl − plsr − 2(qlsr − π). (24)
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Fig. 8. Choosing the switching functions for the equivalency group(a13, a24, a31, a42) — an illustration.

4.2.3. Equivalency group{a13, a24, a31, a42}
According to Proposition 4, classesa13, a24, a31, a42 belong to the same equivalency group. First we show that

for classa13 the Dubins set can be reduced to two path candidates, and then further reduced to a unique optimal
solution using an appropriate switching function,S13. Then, by applying the transformation theorem, the switching
functionS13 will be modified to produce the corresponding switching functions for classesa24, a31, a42. Fora13,
the following holds.

Proposition 15. For the long path case, the optimal solution corresponding to the elementa13 is either RSR or
LSR.

Similar to the argument for classa12 above, one can see that pathRSLcan be excluded from the set of candidates
considered for the optimal path. Indeed, ifα = 0 andβ = π , thenLlsr = Lrsl. If α or β are increasing then path
LSRbecomes shorter than pathRSL. To see this, compare the line segmentSD, which is a tangent to circleOLF,
with SD, a tangent to circleORF (see Fig. 8(a)). Now,SA < SD for anyβ ∈ (π, 3π/2], andA˘B < D˘C; also,
SD< S ˘G + GE+ E ˘D. This leads to

SA+ A˘B < S ˘G + GE+ E ˘C.

Therefore, ifα ∈ [0, ᾱ] then Llsr < Lrsl. Similarly, if α > ᾱ thenLrsr < Lrsl. Here ᾱ is the critical angle
α = ᾱ(d, β), where pathsLSRandRSRdegenerate toSR. This implies that only pathsLSRandRSRare candidates
for the optimal solution.

Using Proposition 2, a similar argument extends this result to the remaining three elements, as follows.
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Proposition 16. Sincea13 ' a24 ' a31 ' a42 and the optimal solution fora13 is either RSR or LSR, the optimal
solutions fora24, a31, a42 are, respectively,

a24 7→ {RSR or RSL}; a31 7→ {LSL or LSR}; a42 7→ {LSL or RSL}.
Turning back to classa13, we can verify that the critical anglēα defines switching of the optimal path fromLSR
to RSR; i.e. if α > ᾱ the optimal solution isRSR, otherwise it isLSR. Another indicator of the switch fromLSRto
RSRis the length of arctrsr. Notice that ifRSRis the optimal solution for classa13 thentrsr cannot exceedπ .

This observation leads to the corresponding switching functions necessary for obtaining the optimal solution.

Proposition 17. For classa13 (i.e.0 < α 6 π/2, 3π/2 < β 6 2π ), if

1. S13(trsr) < 0, then the optimal solution is RSR,
2. S13(trsr) > 0, then the optimal solution is LSR,

where

S13(trsr) = trsr − π. (25)

The transformation theorem extends the results obtained for classa13 to the accompanying classesa24, a31 anda42.

Proposition 18. For classa24 (i.e.π/2 < α 6 π, 3π/2 < β 6 2π ), the optimal solution is RSR ifS24 < 0, and it
is RSL otherwise, where

S24(qrsr) = qrsr − π. (26)

Proposition 19. For classa31 (i.e. π < α 6 3π/2, 0 < β 6 π/2), the optimal solution is LSL ifS31 < 0, and it
is LSR otherwise, where

S31(qlsl) = qlsl − π. (27)

Proposition 20. For classa42 (i.e.3π/2 < α 6 2π, π/2 < β 6 π ), the optimal solution is RSL ifS42 < 0, and it
is LSL otherwise, where

S42(tlsl) = tlsl − π. (28)

4.2.4. Equivalency group{a14, a41}
According to Proposition 4, path classesa14 ' a41 are in the same equivalency group, and so, by the rules

established in the transformation theorem, the classification of optimal solutions for classa14 leads to the optimal
solutions for classa41.

Proposition 21. For the long path case, the optimal solution corresponding to the elementa14 is{RSR or LSR or RSL}.

Recall that by now the total number of candidates for the optimal solution is reduced to four —LSL, LSR, RSL,
RSR— because the curves of typeCCC are excluded from consideration due to Proposition 4. As before, define
the critical orientations, which for classa14 appear for bothα andβ (see Fig. 9): namely, the valuesd andβ

determine the critical orientation forα, ᾱ = ᾱ(d, β), and the valuesd andα determine the critical orientation for
β, β̄ = β̄(d, α) (notice thatᾱ 6= α(d, β̄)).

Among the four path candidates mentioned, pathLSLcan be excluded from consideration since the lower bound
for this path is bigger than the upper bound for pathRSR. The critical anglēα gives the optimal solutionSR, and
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Fig. 9. Example of critical orientations of the path candidates for classa14.

thus defines the switch condition for the optimal path fromLSRto RSR. Similarly, the critical anglēβ indicates the
switch of the optimal path fromRSRto RSL.

The proof of these facts is similar to those for classesa11 anda13. Define two critical angles:α = ᾱ(d, β) — the
angle at which pathsLSRandRSRdegenerate into the pathSR, andβ = β̄(d, α) — the angle at which pathsRSR
andRSLdegenerate into the pathRS. First consider the case whenα ∈ [ᾱ, π/2] andβ ∈ [3π/2, β(d, ᾱ)]. It is
claimed that ifα ∈ [ᾱ, π/2] andβ ∈ [3π/2, β(d, ᾱ)] then the upper bound forLrsr is limited by

max
α∈[ᾱ,π/2],β∈[3π/2,β(d,ᾱ)]

Lrsr 6 d − 2 + π.

Indeed, the gradient ofLrsr is strictly positive whenα ∈ [ᾱ, π/2] and strictly negative whenβ ∈ [3π/2, β̄]. In the
regionsα ∈ [ᾱ, π/2] andβ ∈ [3π/2, β̄], the maximum length of pathRSRoccurs whenα = π/2 andβ = 3π/2
(this follows from monotonicity of the functionLrsr), i.e. when

max
α∈[ᾱ,π/2],β∈[β̄,2π ]

Lrsr 6 d − 2 + π. (29)

One can conclude that ifα ∈ [ᾱ, π/2] andβ ∈ [3π/2, β̄] then the lower bound onLlsl, Lrsl, andLlsr is

min
α∈[ᾱ,π/2],β∈[3π/2,β̄]

{Llsl,Lrsl,Llsr} >
√

d2 + 2d + 3π/2.

These critical cases are shown in Fig. 10. The resulting bounds are

min
α∈[ᾱ,π/2],β∈[3π/2,β̄]

Llsl > 3π + d + 2, (30)

min
α∈[ᾱ,π/2],β∈[3π/2,β̄]

Lrsl > 3π/2 +
√

d2 + 2d, (31)

min
α∈[ᾱ,π/2],β∈[3π/2,β̄]

Llsr > 3π/2 +
√

d2 + 2d. (32)

This leads to the condition

min
α∈[ᾱ,π/2],β∈[3π/2,β̄]

{Llsl,Lrsl,Llsr} > 3π/2 +
√

d2 + 2d. (33)

Notice that the lower bound on paths{Llsl,Lrsl,Llsr} is larger than the upper bound onLrsr (Eqs. (29) and (33)).
This completes the proof of the fact that ifα ∈ [ᾱ, π/2] andβ ∈ [3π/2, β(d, ᾱ)], then the pathRSRis the optimal
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Fig. 10. Example of critical orientations of the path candidates for classa14.

solution. For classa14 two more candidates are possible, i.e.LSRandRSL. The proposition below relates the set of
candidates for classa14 to the accompanying classa41.

Proposition 22. Sincea14 ' a41 and the optimal solution for classa14 is {LSR or RSL or RSR}, the optimal solution
for classa41 is {RSL or LSR or LSL}.

Similar to the classa13, the critical angles̄α andβ̄ define the switch of the optimal solution fromRSRto LSR
and fromRSRto RSL, respectively. To simplify the calculations, we choose to build our classification based on the
length of segmentstrsr andqrsr. Following the same logic as in the case of classa13, one notices thattrsr andqrsr

cannot exceedπ if RSRis an optimal solution for classa14. If either of the two segmentstrsr or qrsr is bigger than
π , then there is always another path that is shorter thanRSR; i.e. if trsr > π then the optimal solution isLSR, and if
qrsr > π then the optimal solution isRSL. This observation leads to the following classification rule.

Proposition 23. For classa14 (i.e.0 < α 6 π/2, 3π/2 < β 6 2π ), if

1. S1
14(trsr) > 0, then the optimal solution is RSR,

2. S2
14(qrsr) > 0, then the optimal solution is RSL,

3. if neither(1) or (2) holds, then the optimal solution is RSR,

where

S1
14(trsr) = trsr − π, (34)

S2
14(trsr) = qrsr − π. (35)

By applying the transformation theorem, obtain the switching conditions for classa41.

Proposition 24. For classa41 (i.e.3π/2 < α 6 2π, 0 < β 6 π/2), if

1. S1
41(trsr) > 0, then the optimal solution is RSL,
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2. S2
14(qrsr) > 0, then the optimal solution is LSR,

3. if neither(1) or (2) holds, then the optimal solution is LSL,

where

S1
14(tlsl) = tlsl − π, (36)

S2
14(tlsl) = qlsl − π. (37)

4.2.5. Equivalency group{a22, a33}
According to Proposition 4, classesa22 ' a33 are in the same equivalency group, and so the classification of

optimal solutions for classa22 leads to that for classa33.

Proposition 25. For the long path case, the optimal solution corresponding to the classa22 is {LSL or RSL or RSR}.
The pathLSRis excluded from the consideration sinceLlsr is always larger thanLrsl. Indeed, forα = β = π the

lengthsLlsr = Lrsl, and pathLSRhas its minimum atα = β = π , and pathRSL— its maximum within classa22.

Proposition 26. Sincea22 ' a33 and the optimal solution fora22 is{LSL or{RSL or RSR}}, then the optimal solution
for a33 is {RSR or{LSR or LSL}}.

The following proposition gives the condition for finding the optimal paths.

Proposition 27. For classa22 (i.e.π/2 < α 6 π, π/2 < β 6 π ), if

1. α > β andS1
22 < 0, the optimal solution is LSL,

2. α > β andS1
22 > 0, the optimal solution is RSL,

3. α < β andS2
22 < 0, the optimal solution is RSR,

4. α < β andS2
22 > 0, the optimal solution is RSL,

where the switching functions are

S1
22(plsl, prsl, trsl) = plsl − prsl − 2(trsl − π), (38)

S2
22(prsr, prsl, qrsl) = prsr − prsl − 2(qrsl − π), (39)

andplsl, prsr, prsl, trsl, andqrsl are defined by(3) and(9), respectively.

The proof of the proposition is similar to that for classa12 with the only difference that the set of candidates
depends upon the relations betweenα andβ. Notice that ifα = β then the length of pathLSLis equal to that ofRSR.
Whenα starts increasing, pathLSLbecomes shorter than pathRSR(see Fig. 11). Similarly, using the transformation
theorem, obtain the solutions for classa33 are as follows.

Proposition 28. For classa33 (i.e.π < α 6 3π/2, π < β 6 3π/2), if

1. α < β andS1
33 < 0, the optimal solution is RSR,

2. α > β andS1
33 > 0, the optimal solution is LSR,

3. α < β andS2
33 < 0, the optimal solution is LSL,

4. α > β andS2
33 > 0, the optimal solution is LSR,

where the switching functions are

S1
33(prsr, plsr, tlsr) = prsr − plsr − 2(tlsr − π), (40)

S2
33(plsl, plsr, qlsr) = plsl − plsr − 2(qlsr − π). (41)
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Fig. 11. For classa22, the set of candidates for the optimal solution depends much upon the relations betweenα andβ: if α > β, the candidates
areLSLandRSL, otherwise they areRSRandRSL.

4.2.6. Equivalency group{a23, a32}
According to Proposition 4, classesa23 ' a32 are in the same equivalency group. The corresponding classification

of optimal solutions proceeds as follows.

Proposition 29. For the long path case, the optimal solution corresponding to the classa23 is RSR.

Four path candidates need be considered here —RSR, RSL, LSR, LSL. Note that

max
α∈[π/2,π ],β∈[π,3π/2]

Lrsr = min
α∈[π/2,π ],β∈[π,3π/2]

{LrslLlsrLlsl}.

The maximum of the length of pathRSRand the minimum of{LrslLlsrLlsl} occur whenα = β = π . By applying
the transformation theorem, the classification fora32 is given by the following proposition.

Proposition 30. Sincea23 ' a32 and the optimal solution fora23 is RSR, the optimal solution fora32 is LSL.

The switching functions are logical functions of Boolean type. They are not uniquely defined. The choice of a
particular function will be usually guided by computational considerations.

5. The main result

We can now summarize the whole scheme developed above, which presents the main result of this work. Using
the scheme, the problem of finding the shortest smooth path between two configurations is solved without an explicit
calculation of the paths involved. Instead, a simple logical scheme is used based on the aggregation of all possible
paths into classesaij and on the equivalency groups as defined above.

The input to the scheme are the angular quadrants of the directional angles(α, β); its output is the name of the
element of the Dubins set that presents the shortest path. The scheme forms a decision tree summarized in the table
in Fig. 12. Each block of the table represents one elementaij of matrix {aij } and includes the corresponding options
for the optimal path. It may take only one step to obtain the solution, as e.g. the solutionRSLfor the quadrants
(1, 1), or it may take two steps, as for the quadrants(3, 1), or it may take at most three steps, as for the quadrants
(2, 2) (Fig. 12). When the second and third steps are necessary, their outcome is determined by the signs of one or
two switching functions{S}. The general form of functions{S} is

f (s1, s2, s3) = s1 − s2 − 2(s3 − π), g(s) = s − π. (42)



200 A.M. Shkel, V. Lumelsky / Robotics and Autonomous Systems 34 (2001) 179–202

Fig. 12. The decision table for finding the shortest path.

The complete list of switching functions for all classesaij is as follows (note that for some classes, the unique
optimal solution is obtained directly, without switching functions):

Classa11 : unique solution,

Classa12 : S12 = f (prsr, prsl, qrsl) = prsr − prsl − 2(qrsl − π),

Classa13 : S13 = g(trsr) = trsr − π,

Classa14 : S1
14 = g(trsr) = trsr − π, S2

14 = g(qrsr) = qrsr − π,

Classa21 : S21 = f (plsl, prsl, trsl) = plsl − prsl − 2(trsl − π),

Classa22 :

{
if α > β, thenS1

22 = f (plsl, prsl, trsl) = plsl − prsl − 2(trsl − π),

if α < β, thenS2
22 = f (prsr, prsl, qrsl) = prsr − prsl − 2(qrsl − π),

Classa23 : unique solution,

Classa24 : S24 = g(qrsr) = qrsr − π,

Classa31 : S31 = g(qlsl) = qlsl − π,

Classa32 : unique solution,

Classa33 :

{
if α < β, thenS1

33 = f (prsr, plsr, tlsr) = prsr − plsr − 2(tlsr − π),

if α > β, thenS2
33 = f (plsl, plsr, qlsr) = plsl − plsr − 2(qlsr − π),

Classa34 : S34 = f (prsr, plsr, tlsr) = prsr − plsr − 2(tlsr − π),

Classa41 : S1
41 = g(tlsl) = tlsl − π, S2

41 = g(qlsl) = qlsl − π,

Classa42 : S42 = g(tlsl) = tlsl − π,

Classa43 : S43 = f (plsl, plsr, qlsr) = plsl − plsr − 2(qlsr − π),

Classa44 : unique solution.

(43)
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Take, e.g. a set(α ∈ [0, π/2], β ∈ [π/2, π ]), which corresponds to the elementa12 of matrix {aij }. Block (1, 2)

in the table in Fig. 12 suggests that the optimal solution is eitherRSLor RSR. The switching functionS12 listed in
block (1, 2) is then calculated as in the list above (Eq. (42)); its elementsprsr, prsl andqrsl come from the second
equation of (5) and the second and third equations of (9), respectively. The sign ofS12 then determines which of
the two versions indicated in block(1, 2) is the unique solution.

To demonstrate efficiency of the proposed classification scheme, consider the task of finding the shortest smooth
path fromPi to Pf , located on the distance|PiPf | = 6, such that the path starts and ends with the directions of
motionα = π/6 andβ = π/3, respectively, and the path radius of curvature is limited byρ = 1. According to
Dubins result, six paths candidates{LSL, RSR, RSL, LSR, RLR, LRL} have to be calculated and compared. Using
expressions given in Section 2

Llsl = tlsl + plsl + qlsl = −α + β + plsl = 12.4526,

Lrsr = trsr + prsr + qrsr = α − β + prsr = 12.1361,

Llsr = tlsr + plsr + qlsr = α − β + 2tlsr + plsr = 18.3890,

Lrsl = trsl + prsl + qrsl = −α + β + 2trsl + prsl = 6.2488,

Lrlr = trlr + prlr + qrlr = α − β + 2prlr path is not feasible,

Llrl = tlrl + plrl + qlrl = −α + β + 2plrl path is not feasible.

(44)

After all paths-candidates are calculated and compared, we conclude that the shortest path isRSL. In contrast, if
we use the approach proposed in this paper, then based only on information about the initial and final configuration
and without any calculations involved, we can make the same conclusion. Indeed, for the case studied, the initial
and final configurations are in the first quadrant, i.e. the path belongs to the classa11. According to the look-up
table (Fig. 12), the optimal solution for all paths from this class have to have the topologyRSL. Thus, using the
classification scheme we were able to obtain the optimal solution without any calculations involved. This example
is a good illustration of the computational efficiency of the proposed classification scheme.

6. Conclusion

The central idea developed in this work is that the problem of finding the shortest path between two configurations
can be reduced to a logical manipulation of the set of appropriate path candidates, without their explicit calculation.
This is in sharp departure from the direct computation and comparison of the candidate paths that the existing
techniques require. The candidate paths come from the sufficient set known as the Dubins set [5]. One direct
benefit of the suggested scheme is computational savings — an important consideration in real-time control. For
example, when attempting to find the shortest path to a given position/orientation (configuration) for a driverless
car or a mobile robot, one would simply find in the table (Fig. 12), the element that corresponds to the initial and
final configurations, and then pinpoint the unique solution either immediately or using the sign of an appropriate
switching function of the form (42).

As mentioned in Section 1, the derivation of the approach is simplified if the problem at hand is divided into two
cases, called here thelong path caseand theshort path case. To save space, the suggested logical classification
scheme is fully developed here only for the long path case. Situations with short paths require a roughly similar,
though a bit tedious, analysis, resulting in a computational procedure that is somewhat more complex and less
economical than the one presented here (see Proposition 5 for a formal definition of both cases).

The presented result also gives a new interesting insight into the nature of Dubins’ problem. It suggests that
partitioning of the appropriateC-space can be a powerful tool for analyzing the shortest path problem in more
general and complex cases, as e.g. in finding the shortest path between a point and a manifold.
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