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Abstract

Given two points in a plane, each with a prescribed direction of motion in it, the question being asked is to find the
shortest smooth path of bounded curvature that joins them. The classical 1957 result by Dubins gives a sufficient set of paths
(each consisting of circular arcs and straight line segments) which always contains the shortest path. The latter is then found
by explicitly computing all paths on the list and then comparing them. This may become a problem in applications where
computation time is critical, such as in real-time robot motion planning. Instead, the logical classification scheme considered
in this work allows one to extract the shortest path from the Dubins set directly, without explicitly calculating the candidate
paths. The approach is demonstrated on one of two possible cases that appear here —when the distance between the two
points is relatively large (the case with short distances can be treated similarly). Besides computational savings, this result
sheds light on the nature of factors affecting the length of paths in the Dubins problem, and is useful for further extensions,
e.g. for finding the shortest path between a point and a manifold in the corresponding configuration space. © 2001 Published
by Elsevier Science B.V.
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1. Introduction

Consider the problem of finding the shortest smooth path between two points in the planéjghand final
points P; and Py. Each point is associated with its owrientation angle« andg, respectively, which defines the
prescribed direction of motion in it (see Fig. 1). The combinatighs«) and(Py, ), called thenitial and final
configurations define two points in the correspondingnfiguration spac€C-spacg, and present the problem’s
boundary conditions. Give@P;, «) and(Py, B), the task is to find the shortest smooth path frBnto Py, such
that it starts and ends with the directions of motioand 8, respectively, and the path curvature is limited by,1
wherep is the minimal radius of turning.

This kind of tasks appear in various applications, such as when joining pieces of railways [1] or planning two- and
three-dimensional pipe networks. In robotics, this problem plays a central role in most of the work on nonholonomic
motion planning [2—4].
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Fig. 1. The coordinate system, the initial configurati@h, ) and the final configuratiotP,, 8). Possible orientation angles are divided into
four quadrants.

The complete solution to this problem was first reported in an elegant paper by Dubins [5] in 1957. He showed
that any geodesic (i.e. the shortest path) consists of exactly three path segments and presents &CeGuence
CSC whereC (for “circle”) is an arc of radiuso, and S (for “straight”) is a line segment. Each a€t has two
options — turning left or turning right. Denote thokeand R, respectively, and the line segmentfyThe Dubins
set, D, includes sixadmissible pathgor words),D = {LSL RSRRSL LSR RLR LRL}. Furthermore, Dubins’
theorem states that in order to be a candidate for the optimal path, each arc must be of the minimal allowed radius

Using advanced calculus, this result of Dubins was later proved by Reeds and Shepp [6]. Also, Boissonnat et al.
[7] proved this result from the standpoint of optimal control, by making use of the powerful Pontryagin’s optimality
principle [8]. The more difficult case in which the path frg®, ) to (P, 8) can be further shortened by allowing
reversals of motion (and thus introducing cusps) was first considered in the same work by Reeds and Shepp [6].
They showed that the initial and final configurations define a sufficient set of 48 paths which contains the optimal
path. The technique presented in [9] allows one to pick the optimal solution out of this set of 48 by partitioning the
C-space into multiple domains such that a single path type is associated with 150 elements and two path types are
associated with the other 11 elements.

An alternative approach to the problem with reversals was proposed by Soueres and Laumond [10]. They tie the
Pontryagin’s optimality principle with geometric reasoning, and arrive at the optimal solution via partitioning of
C-space into regions with uniform properties of path optimality.

In the context of robotics, the original Dubins problem of constructing a smooth path has a significance of its own.
In many motion planning tasks, such as in the aircraft control, motion reversals are not feasible. Or, if the shortest
time path, rather than the shortest path, is desired, the solution is likely to be a smooth path, because the deceleration,
stop, and acceleration at the reversal cusps add time to the path execution. Unfortunately, Dubins’ problem with
smooth paths is not a subset of the Reeds—Shepp’s problem — the sufficient set of the former is not contained in the
sufficient set of the latter. Also, the techniques proposed in [9,10] are not directly applicable to the smooth path case.

To use Dubins’s result for the shortest path calculation, one would need to explicitly calculate the lengths of
all arcs and straight line segments in the Dubins set, and then choose the shortest of the computed paths. The
time necessary for this calculation may become a bottleneck in time-constrained applications, as e.g. in real-time
robot motion planning — which is one motivation for this work. Another motivation comes from problems where
one looks for the shortest path from a point to a manifold inGkspace. For example, in sensor-based obstacle
avoidance, when planning an arrival to some intermediate poion the obstacle boundary, the current sensing
data may suggest that in order not to collide with the obstacle, the orientationfagle must be within some
sector of angles (which may include, e.g. the tangent to the obstak)e Binding the shortest path #® under this
constraint corresponds to finding the shortest path to a liie space.

In this work, we propose a scheme which allows one to select the shortest path from the Dubirtirsetly,
without the usual exhaustive calculation of its elements. The scheme is based on a rather suggestive fact, developed
in Section 5, that the elements of the Dubins set can be classified into a small number of the seqcaligléncy
groups based on the angle quadrants of the corresponding pairs of the initial and final orientation angles. Each
equivalency group consists of a felasse®f paths, such that any path in a group is equivalent, up to an orthogonal
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transformation, to any other path in the same group. This means that the optimal path analysis can be reduced to
fewer terms. Further, a simple logical classification of the equivalency groups can be built which points directly to
the optimal path.

Below, d is the Euclidean distance between the initial and final pofitand Py. A rectangular coordinate
system(x, y) is chosen such that its origin & = (0, 0) and the positive direction of-axis is towardP; = (d, 0)

(Fig. 1). The initial and final orientation angles,and 8, are measured counter-clockwise, with respect to the
positive direction ofc-axis. Without loss of generality, assume a unit radius of the minimum turning cirelel
(any otherp can be reduced to 1 by the scaliig= D/p, whereD is the actual distance betwe@nhand Py). The
initial and final arc segments (of radip3in the Dubins set are denoté€t, Cir, C, Cx (Wwherei and f stand for
“initial” and “final”, and r and! — for “right” and “left”).

The analysis necessary for solving our classification problem turns out to become simpler if it is divided into two
cases, which can be called tlg path casend theshort path caseOur approach is equally applicable to both
cases, with minor differences between the resulting computational schemes. For the sake of example, we consider
here only one case, theng path casewhich seems to be of more interest from the standpoint of applications and
the computational savings. More precisely, the “long paths” are those where the digtagivecen the point®;
and Py satisfies the condition of non-intersection of the four circles ab@ygy) Cir} N {Cq U Cgr} = 9. This covers
all cases whed > 4p and some cases whén< 4p (see Fig. 4 and Proposition 5).

We first develop, in Section 2, a proper specification scheme for admissible paths. The notion of an equivalency
group is then introduced in Section 3, and the scheme for classifying the Dubins set is fully developed in Section
4. This work’s main result which makes this classification possible and becomes the logical scheme for finding the
shortest path is summarized in Section 4.

2. Admissible paths and their specification

Given a path from the initial to the final configuration, the position of a point on the path is fully specified by
its Cartesian location(t), y(t), where the parameterization variablean be interpreted as time or the length of
path traversed fron®; with unit velocity. Assume

;=0,i.e.P, = P(t;) = P(0);

the point on the path can move only “forward”, fraPp toward P;

it moves with the unit speed,;

the orientation angle (direction of motion) cannot change faster thamadlian per time unit,
wherep = 1 is the minimal turning radius.

Following [5], anadmissible patlis defined as a continuously differentiable curve which is either (i) an arc of a
circle of radius 1, followed by a line segment, followed by an arc of a circle of radius 1, or (ii) a sequence of three
arcs of circles of radius 1, or (iii) a subpath of a path of type (i) or (ii). A list of admissible paths forms a sufficient
set of optimal paths.

To specify admissible paths, we introduce three elementary motions: turning to the left, turning to the right
(both along a circle” of radius 1), and straight line motioh Also needed will be three corresponding operators,

L, (for left turn), R, (for right turn), S, (for straight), which transform an arbitrary poit, y, ¢) € R3 into its
corresponding image point iR,

Ly(x,y,¢) = (x +sin(¢ + v) — sing, y — cod¢ + v) + C0Sp, ¢ + v),
Ry(x,y,¢) = (x — sin(¢p —v) +sing, y + cog¢ — v) — COSp, ¢ — v), Q)
Sy(x,y,¢) = (x +vCOSp, y + vSing, ¢),

where indexv indicates that the motion has been along theo( S) segment of lengtlr. With these elementary
transformations, any path in the Dubins $et= {LSL RSRRSL LSR RLR LRL} can be expressed in terms of
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the corresponding equations. In the coordinate system chosen, the initial configuration of each p@Hlisvat
and the final configuration &t/, 0, 8). For example, a path made of segmehiR and L, of the lengths, p, ¢,
respectively, which starts at poi(@, 0, «), must end al,(R,(L;(0, 0, @))) = (d, 0, B). The lengthl of the path
can be defined as the sum of lengthg andgq of its constituent segments,

L=t+p+q. )

Our goal is to classify the elements of gethased on the boundary conditions, with the purpose of replacing the
explicit computation of all candidates for the shortest path with a simple logical procedure that would directly
produce the shortest path. To this end, we will now consider elemeriisarfe-by-one and derive the operator
equations for the length of each path.

1. Ly(Sp(L:(0,0,@))) = (d,0,B). By applying the corresponding operators (1), this first pattDican be
represented by a system of three scalar equations:
pcoSa +1t) — Sina +sing =d,
pSin(a + ) + cosae — cosp = 0,
a+t+qg=p{mod2r}.

The solution of this system with respect to the segmgntsandg is found as

COSB — Cosu
sl = —a + arctan Sl.g —— {mod 2r},
d 4+ sine — sing
pisl = V2 +d2 —2cosa — B) + 2d(sina — sinp), ©)
cosp — co
qisl = B — arctan sP h {mod 27}.

d + sina — sinf
Using definition (2), the length of the paltfsL as a function of the boundary conditions can be now written as
Lisi = tisl + pisl + qisl = = + B + pigl. 4)
2. R;(S,(R:(0,0,m))) = (d, 0, B). Using (1), we obtain the corresponding scalar equations:
pcoda —t) + Sine — sing =d,

pSin(a — 1) — cosa + cosp = 0,
a—t—q=pg{mod2r}.

The solution of this system, i.e. the lengths of the corresponding segments, is

Cosa — CO0S
tsr = a — arctan - _’3 {mod 27},
d — sina +sing
prsr = v/2+d2 — 2coda — B) + 2d(sinp — sina), (5)
cosa — COsp

grsr = —B(mod 2r) + arctan {mod 27},

d — sina +sing

and the path length is given by

Lrsr = trsr + Prsr + grsr = o — B+ prsr. (6)
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3. Ry(Sp(Ls(0,0,))) = (d, 0, B). Using (1), we obtain the corresponding scalar equations:
pcosa + 1)+ 2sin(e +t) — sine — sing =d,
psin(a + 1) — 2coga + 1) + cosu + cosp = 0,
a+t—qg=pB{mod2r}.

The solution of this system is

— COSx — COS -2
fsr = | —o + arctan —ﬁ — arctan[ — ] | {mod 2r},
d 4 sina + sing PDlsr

Plsr = v/—2 +d? + 2coga — B) + 2d(sina + sinB), 7

— COSx — COSf -2
= —B(mod 2t arctanf ——— ) — arctan[ — ) {mod 27},
st = P )+ <d+sina+sin,3) <p|sr){ )

and the path length is given by
Lisr = tisr + pisr + qisr = o — B+ 2115y + Ppisr- 8)
4. L,(Sp(R:(0,0,))) = (d, 0, B). Using (1), we obtain the corresponding scalar equations:
pcoSa —t) — 2sin(a — t) + Sina +sing = d,
psSin(e —t) +2coga —t) — cose — cosB =0,
a—1t+qg=p{mod2r}.

The corresponding solution is

COSa + COS 2
Irsl = a — arctan - + ﬁ + arctan| — | {mod 2r},
d — sina — sinf Drsl

Prsl = /d? — 2+ 2cosa — B) — 2d(sina + sing), (9)

coSux + cospB 2 o
- d27) — arct . - i d2r},
grsl = B(mod 2r) — arc an(d — sina — SII’I,3> arc an(PrsI) (mod 2r]

and the path length is given by
Lrsl = trsl + prsl + grsl = —a + B+ 2trg) + prsl. (10)
5. R;(L,(R:(0,0,@))) = (d, 0, B). Using (1), we obtain the corresponding scalar equations:
2sin(a —t + p) — 2siN(e —t) = d — Sina + sing,
—2cogx —t+ p) + 2cogw — t) = COSx — COSp,

a—t+p—q=p{mod2r}.
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The solution of this system is

tr = o — arctan(%) + p_;r {mod 27},
prr = arccosg (6 — d? + 2 coga — ) + 2d(sina — sinp)), (11)
grir =& — B — tir + pyr {Mod 2r},
and the path length is obtained by substituting (11) into (2),
Lur = tir + prr +qrir = o — B+ 2pyr.- 12)
6. Ly(Ry(L:(0,0,@))) = (d, 0, B). Using (1), we obtain the corresponding scalar equations:
—2sina +t — p) + 2sin(e +t) = d + Sina — sing,
2cosa +1t— p) —2coSa +t) = — COSx + COSp,
a+t—p+qg=p{mod2r}.
The corresponding solution is
f = (—a + arctan(%) + ILZ”) {mod 2r},
pin = arccosg (6 — d2 + 2 coga — B) + 2d(sina — sinp)){mod 2r}, (13)
qn = p(mod 2r) — a + 2py {mod 2},
and the path length is given by
Lig =tn + pin +qn = —a+ B+ 2pi. (14)

3. Equivalency groups

We are now prepared to turn to the classification of the Dubin®s&livide the range of possible orientation
angles(a, B) into four quadrants; Fig. 1: quadrant 1 corresponds to the range/f), quadrant 2 to#/2, x],
qguadrant 3 to#, 37/2], and quadrant 4 to the ranger®, 2]. Since each o& or 8 can be in any of the four
guadrants, together this produces 16 different combinations of possible quadrants. We represent thosex1 by a 4
matrix, {ajj }, where index corresponds to the quadrant number of the initial, and indbat of the final orientation.
Elementg;; therefore describes traassof all paths whose initial and final orientation angles g) belong to the
qguadrants and j, respectively. For example, the case [0, 7/2], B € [7/2, 7] corresponds to the element;
and covers all those paths whose orientation angles belong to the first and second quadrants, respectively.

It will be shown below that these 16 classes can be reduced to six independent clustersgcai@ency groups
such that an orthogonal transformation of any path in a given group changes it into a path in the same or a different
class of the same group.

Dubins’ main theorem [5] says that each (non-degenerate) candidate for the optimal path mwststart with
a piece of circle and end with a piece of circle (of radius: 1, see above). Depending on the pat®irthe initial
and the final circle can turn either left or right; we denote thGseCir andCy, Cy, respectively. To proceed, we
will need the following definition.

Definition. Two paths are topologically equivalent (denoted by)'if there exists an orthogonal transformation
that maps one path into the other, with both paths sharing their respective initial and final points.
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Fig. 2. ArcsP; P, and P3P are obtained by orthogonal transformations of theRu®; : the first is a mirror reflection of; P, with respect to
line (P; Py), the second —the central symmetry reflectiorPpPy with respect to poinO. Arc P4 Py is obtained by applying a composition of
both transformations.

Note that two equivalent paths are of the same length and allow equivalent parameterization. The following
proposition relates the topological equivalency of paths and their initial/final configurations.

Proposition 1. For any path connecting two point®(¢;, «), P(tr, f), where (o, p) are the initial and final
orientation angles, there exist another three paths which are topologically equivalent to it. Their corresponding
orientation angles aré—o, —B), (B, @), and (-8, —«a).

To see this, consider a path that starts at an initial configuréftonx) and is of the formP; Py - - - [—«, —8];
here the ellipsis “ - " reflect our emphasis on the segmeht’y (Fig. 2). By applying a mirror reflectiofp, p,)
with respect to the lin€P; Py), this path is transformed into the pafhPs - - - [—«, —B]. Similarly, by applying the
central symmetry reflectiofi o) with respect to the midpoir® of segment P;, P], the same path is transformed
into - - - P3P¢[B, a]. The composition of both transformations leads to

G0)(Gp Py (PiPL- [, B1)) = G(pi Py (Go)(PiPr- -+ [, B])) = - - - PaPs[—B, —a]. (15)

This general fact will be used below in the analysis of paths defined l#.98ecall that those paths take a form
eitherCCCor CSG whereC is an arc of a circle of radiys with optionsL andR (left and right), and’ is a straight
line segment. To distinguish between the first and the second arc segments in G8@athbscripts will be used,
C1SG.

Define theconjugateof C, denotedC;, as the complement af, i.e. if C; = R then its conjugate i€ = L,
and vice versa. The application of the orthogonal transformations,) andg ) leads to

Gp,p)(C1SG[a, B]) = C1SCo[—a, —Bl,  Go(C1SG[a, B]) = C25C1[B, a].

Notice that the mirror reflectiogp, p,) reverses the signs of anglesg and changes the arc segments to their
conjugates. The central symmetry reflectigp) has a triple effect: it switches orientatiomsindg, switches seg-
mentsC1 andC», and switches each segment to its conjugate. This relation can be proven rigorously by formalizing
the operatorg(p, p,) andG o) and then applying them to the path presented in the general operator form, as e.g.
Lqy(Sp(L:(0,0,a))) = (d, 0, B).

Independent of the order of transformations, the compositigh %) andg o) leads to

G0)(G(p,py)(C1SCG[e, B]) = G(p, P)(G(0)(C1SC[e, B])) = C2SG[—B, —a].

Using the above definition of topological equivalence, the following proposition defines the set of topologically
equivalent paths.



186 A.M. Shkel, V. Lumelsky/ Robotics and Autonomous Systems 34 (2001) 179-202

(b)

(d)

Fig. 3. An illustration for Proposition 2.

Proposition 2. Given the patfC1SG|e, 8], the composition of orthogonal transformatiofg, p,) andg o) leads
to the topologically equivalent paths
C18Gle, B] == C15Ca[~a, —f] = C25C1[B, o] == C2SG[-B, —al.

wherew, g are the initial and final orientationgjp, p,) the mirror reflection with respect to lin€?; Py), (o) the
central symmetry reflection with respect to the midpoint O of segi®enP ], and“~" the sign of equivalency

Example. Consider the paths shown in Fig. 3. Initially there are two pa®®&R«, 8] andRSU«, 8] (Fig. 3(a)),
wherex € [0, /2], B € [7/2, x].

1. Consider first the patRSRea, 8]. With the notation of Proposition 2, we hav® = R andC2 = R. The
proposition gives the following set of topologically equivalent paths (see Fig. 3(a)—(d)):
RSRa € [0, /2], B € [n/2, #]] ~ LS« € [37/2, 27], B € [r, 37/2]]
~ LSUu € [7/2, 7], B € [0, /2]
~ RSR«a € [, 37/2], B € [37/2, 27]].

2. Consider now an examplé; = R, C2 = L. By applying Proposition 2 to the paRSl«, 8] with ¢ €
[0, /2], B € [r/2, 7] (Fig. 3(a)), we obtain three other paths (Fig. 3(b)—(d)):
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RSUa €[0,7/2], B € [7/2, 7]] ~ LSRa € [37/2, 27], B € 7, 37/2]]
~ RS« € [n/2, 7], B € [0, /2]
~ LSHa € [7,37/2], B € [37/2, 27]].

Proposition 3. Given the pathC1SGJ«, 8], the individual orthogonal transformationg(pipf), G0y and
their composition lead to the topologically equivalent pathsSG[w, 8], C1SCo[—a, —B], C2SC1[B, ], and
C2SG[—8, —«], for which the following holds

Leise = teyse + Perse + Geises L1356, = le156, + Pérse, + qersess
Leyse, = lepsey + Pépscy + Gerscys Leyse = tepse + Peasa + Gegsers
and
tClSCz = t51§52 = {qcp5¢1 = Ycrsas Pcise = Péiscy = Pégsey = Persas dci1se = 4é15cp = tc_‘sz_‘l = tCzSC]_'

It is convenient to combine Propositions 2 and 3 into one theorem.

Theorem 1 (Transformation Theorem)Given the pathC1SG|ea, B](z, p, g) with the lengths of the initial, mid-
dle and final segments equal to t, p, and g, respectively, the orthogonal transformgiops, G.o) and their
composition lead to the topologically equivalent paths

C1SGla, B1(t, p, q) =~ C1SCa[—a, —B1(t, p, q) = C25C1[B. al(q, p, 1) =~ C2SG[-B, —al(q, p, 1).

The Transformation Theorem gives a linguistic rule for topologically equivalent transformations; it emphasizes
the structure of equivalent paths obtained as a result of these transformations. This theorem will be now used for
defining equivalency groups and thus reducing the amount of computations, namely the following statement holds.

Proposition 4. Matrix {gjj} can be divided into six independent equivalency gro(idsi11 ~ asas, (2)ai12 >~ a1 >~
aza > as3, (3) a13 = aza > az1 > asp, (4) a1a = aay, (5) azz = azz, and (6)azs =~ azp.

Indeed, according to the Transformation Theorem, any pathavih0, /2], 8 € [0, = /2, 7] (i.e. belonging
to classu11) is transformed into an equivalent path withe [37/2, 2], 8 € [37/2, 2] (which is from clasgi4a).
That is, the central symmetry reflectiafi,o), leads to a topologically equivalent path from class, while the
composition oty p, p,) andG o) leads to atopologically equivalent path from clags In the case of the equivalency
group (2), for any path of clasg, there exists an equivalent path in each of the clagsgsiza, andass.

By choosing one representative from each equivalency group, we défasissse3 of matrix {ajj } — a list of six
mutually independent classes of orientation pajr8. This reduces from 16 to 6, the number of path classes to be an-
alyzed for the optimal solution. Note that the basis set is not unigue since its members can be chosen in various ways.

4. Classes of paths and their equivalency groups

The above scheme for classifying the Dubins set will be fully developed in this section; the necessary analysis
involves the following steps:

1. Find the necessary and sufficient condition of non-intersection of the ufiigns Cj;} and{Cy U Cf}. This
condition formally defines what is meant by the “long paths” in the case under study.

2. Show that the condition 1, when satisfied, leads to a further simplification of the set of candidates for the optimal
solution that need be considered.
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3. For every element of matrij;j}, find the minimum number of the optimal path candidates.
4. For those elements which, as found in step 3, allow more than one candidate for the optimal solution, derive
the correspondingwitching functionsvhich uniquely define the optimal path.

Since elements from the same equivalency group have similar properties, the development steps 3 and 4 are
combined below for each of the groups, forming six corresponding subsections.
When applying results of this analysis to a specific problem, one would proceed as follows:

e Make sure that the task at hand satisfies the condition in step 1.
¢ Associate the given initial and final orientations with a clagsFor classzjj, use the uniquely defined optimal
path.

Below, after analyzing steps 1 and 2, for the sake of convenience we choose for step 3, a particular example of basis
setB, B = {a11, a12, a13, a14, a2z, az3}. For each of the six elements Bf questions posed in steps 3 and 4 are
then addressed in the respective six sections.

The following additional notation is used below: unless stated otherwise, form&\Bkend A"B represent
straight line segments and circular arc segments, respectivelyAvatid B being the segments’ endpoints. When
in mathematical expressions, the same forms denote the lengths of the segments. When needed for clarity, the strings
may be longer: e.gd1B1°C1D; is an arc with the endpoint$;, D1 and two inner point,, C1.

4.1. The long path case

Turning to the step 1 above, the condition of non-intersection of ufdgnJ Cj;} with union{Cs U Cy} is as
follows.

Proposition 5. {Cjj UCj} N {CqU Cir} =0 if d > \/4 — (J cosu| + | cosp|)2 + | sina| + | sinB|. This condition
on d is a precise definition of the long path case

To prove this necessary and sufficient condition, consider the case when thé@iniod; } is tangent to the union
{C U Cy}, i.e. there exist only one point belonging to both unions. Take, for instance, the;ggseandg are in
the first quadrant, Fig. 4). Assume a unit radipiss 1. Given a common tangent to both arés= I1A + AB+ BF.
From AIAO;: IA = sine and 014 = cosa. From AFBO,: BF = sing and O2B = cosf. From AO102C:
01072 = 2, 02C = 02B + 014, and therefore)C = \/4 — (cosa + cosp)2. Summing up folA + AB + BF,
obtain the expression for distankée which is a condition for a common tangent for the right initial circle and left
final circle. In general, the expressith — (| cosa| + | cosB|)2 + | sina| + | sinB| = d covers all possible cases
of paths consisting of circular arcs with a common tangent point.

Proposition 6. For the long path case, the path CCC cannot be the optimal solution

To show this, consider the basis ¢&bf independent orientation paita, ). We need to show that for any
element fromB, there exists a path of tyg@SCthat is shorter than the pa@CC.

Since for the long path casi}; U Cir } N {Cq U Csr} = @, thenCyj, Cir, Cqi, Ci do notintersect. Fig. 5illustrates
this for the general case: it is clear in this example that though the@@tis physically realizable, it can be
excluded from the list of candidates for an optimal solution.

To prove this, assume that ciral& is one of the initial circle<C; or Cjr, andCyign is eitherCq or Cy. Two
other circles tangent tGert and Crignt are Cyp (upper tangent) and'qown (lower tangent). The initial and final
orientations can be chosen either clockwise or counter-clockwise. Notice that the orientation of the initial and final
circles has to be the same, since the path of @€ switches directions when passing from one circle to another.
If two switchings take place, the initial and final circles must have the same orientation.
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Fig. 4. The case of a path of two circular arcs with a common tangent point; here both orientationxaengdigsare in the first quadrant.

The area of possible initial and final positions is limited; the first must lie on the aBg"C1 D1 of circle Ciet,
and the second on the segmentB, C» D; of circle Ciign: (both segments are shown in solid line in Fig. 5). These
restrictions are dictated by Proposition 5.

Let us say, the initial and final positions lie within the arcsB1"C1 D1 and A2 By Co Do, respectively, both with
the same counter-clockwise orientations. (For the clockwise case, the analysis is similar.) There are four options:
(i) the initial position P(z;) belongs to segmem1B:C; and the final positionP () to segmentd B> C», (ii)
P(1) € Cr'D1and P(ty) € C2'Dy, (i) P(1;) € Cr'D1andP(ry) € A2B2Ca, and (iv) P(10) € A1B1C1 and
P(ty) € Co'Ds.

In case (i) the solutiohSLis the shortest possible path, since the straight line segment conn€gtimgiCy is
shorter than the sum of segmea¥D; + D1"D, + D2 'C». In case (i), the pathRL cannot be the optimal solution:
since the middle arc is less thari2, this path is of typ€CC, which was shown above to disqualify it from being a

{Oett

Fig. 5. An illustration to the fact that patbCC cannot be the optimal solution in the long path case.
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Fig. 6. The optimal solution for class 1; bothae andg are in the first quadrant.

candidate for the optimal solution. For the same reason,@@tbcannot be the optimal solution in cases (iii) and

(iv).
4.2. The equivalency groups (@i} classes

We now turn to defining the equivalency groups for each element of the njajrixRecall that each element
represents a class of paths.

4.2.1. Equivalency groufay1, aas}

According to Proposition 4, classes; andas4 belong to the same equivalency group. We first show for class
a11 that the corresponding Dubins set can be reduced directly to a unique optimal solution. Then, by applying an
orthogonal transformation to the optimal path for clags the optimal solution fot:44 will be obtained.

Proposition 7. For the long path casésee Propositiord), the optimal solution corresponding to the element
is RSL

Note that the number of candidate curves for the optimal path P $&£how reduced ta.SL, LSR RSL, RSR—
the curves of typ&€€CCare excluded from consideration (Proposition 6). For three of those h8hd,.SR RSR
thex-coordinate goes outside the rangg & < d. Take the length of the cunteSas the lower bound on the length
of the pathd.SL, LSRandRSR(LSis a subpath of patHsSLor LSRwith ¢ = 7/2).

It is claimed that the upper bound on the length of paths for whichxtbeordinate is in the range 9 x < d
is the pathRSLwith « = 8 = n/2. Indeed, from Section L5/dax > 0 anddLs/98 > 0. Therefore, the
maximum ofL,g in this region will occur whem andg are equal tor/2.

To prove that the optimal solution for paths within the range ® < d is RSL, one needs to show that the lower
bound on the path length in the Dubins subi¢eSL, LSR RSR is bigger than the upper bound on the pR{BL
This case is illustrated in Fig. 6.

Lemma 1. If « and B are in the first quadrant then the upper bound &g is limited by

max Lrg < Vd? —4d + 2m.

a,B€[0,7/2]

Indeed, wherx € [0, 7/2] andB € [0, = /2], the gradient of the patRSLis a positive function. This means that
the function is monotonically increasing on that interval and reaches its maximum on the interval’'s boundary, i.e.
o = B = x/2. Assuming, as usuab, = 1, the upper bound for the path length is

Liss =1'A+AB+ BF, (16)
where

I'A+ BF < 2m. a7
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SegmenfAB can be found a8B = 2AD or, expressind\D in terms of 01D and 01 A,

AB=2/(3d-2)2—1=+d?—4d. (18)

Substituting (17) and (18) into (16), we obtain

X
a,Be[0,7/2]

Lemma 2. If « and g are in the first quadrant then the lower bound 8, Lisr, Lrsr iS

min _{Lisi, Lisr, Lrst} > Vd? +2d + 31 /2.
«,B€[0,7/2]
The lower bound ohSL, LSRandRSRcan be obtained by taking= /2 andg as shown in Fig. 6. The minimum
path length can then be estimated as

min ]{£|5|,£|sr,ﬁrsr}=IEC+CF>37T/2+\/(d+1)2—1>37'[/2+Vd2+2d. (19)

a,Be[0,7/2
In order to prove that the optimal solution corresponding to classs RSL we need to show that

Tiﬁn{ﬁlsl, Lisr, Lrsr} — T%X[:rsl > 0. (20)

It is easy to see that (20) holdsvfd?2 + 2d — +/d? — 4d — /2 > 0: mover /2 to the right side of the inequality

and multiply both sides by the positive expressidi? + 2d + +/d2 — 4d. The result is 8 > w+/d? + 2d, which

is true ifd? — 4d > 0— precisely the case we are interested in. This completes the proof of inequality (20) and of
the claim that the optimal solution for clagg, is RSL By applying Proposition 2 to the paRSL, obtain a similar
statement for classs.

Proposition 8. Given thata;1 anday4 are in the same equivalency group and the optimal solutioafois RSL,
the optimal solution for4 is LSR

4.2.2. Equivalency groufayo, a1, as4, as3}

According to Proposition 4, path classes >~ az1 >~ azq >~ ay3 are in the same equivalency group. We first
show how to extract the optimal solution for clags: it turns out that class; > defines two (rather than one as with
classay1) elements of the Dubins set as candidates for the optimal solution. Accordingly, a switching fufgtion
will be derived whose sign will uniquely determine which of the two is the optimal solution. Then, by applying the
orthogonal transformation to the paths of clags(see Proposition 2), optimal solutions for path classesasa,
andagz will be obtained.

Proposition 9. For the long path case, the optimal solution corresponding to the elgsis either RSL or RSR

It follows from Proposition 6 that the path of tygaCC can be excluded from consideration. This leaves four
candidatesRSRRSL LSR andLSL Define thecritical initial orientation as one where orientatian coincides
with the tangent to the circl®rg; denote ite = &. Note that the sets, d) uniquely defines the critical initial
orientation,@ = a(8,d). If « > & then the patLSRis not feasible and can be excluded from consideration;
otherwise, patfiRSRshould be excluded. Consider the case when p&fkis feasiblela < @). Ife =0andg ==
then the length of SRis equal to that oRSL Analysis of gradients of function§,s) and L5, shows that ifx is
increasing op is decreasing then paRSLbecomes shorter tharSR This is true untikv reaches the critical initial
orientatione = a. Comparing the lower bound on the length of pa8iand the upper bound on the length of path
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(d

Fig. 7. Choosing the switching functions for the equivalency gr@up, a1, aza, aaz) — an illustration.

RSL, observe that pathSL can be excluded from consideration. This argument plus the facCiat- L;g for
a < @ end the proof of the proposition.

To find now the optimal solution for clagg,, we define a switching functiors;2. The following proposition
holds.

Proposition 10. Forclassai2(i.e.0 < o < 7/2, /2 < B < 7),the optimal solutionis RSRSi2( prsr, prsls grsl) <
0, anditis RSL ifSlz(prsr, Prsl, qrs|) > 0,W|th

S12(Prsr, Prsl, Grsl) = Prsr — Prsl — 2(qrsl — 7)), (21)
wherepysr, prsl, andgyg are defined bybs) and(9).

Consider an example in Fig. 7(a)ri, Orr, andOLr are the centers of circles;, Cr, andCj;, respectively. The
realizable paths here aRSRandRSL Line EH connects the origin®, r and Org and intersects the circl€g; and
Cyf inpointsk andH . Since lineOR)|G is parallel to lineEH, arcA™G is equal to ar®”H defined by the anglg, and
arcG'C is equal to ard’E defined by the angle. For segmenfB, denotes,sr to be the length of the straight line
segment of patRSR similarly for segmen€D, sg is the length of the straight line segment of pRBL Then the
path lengths oRSRandRSLare given byC,sy = SA+ prsr +£& +m andLys) = SA+& +y + prsi +y + 7. Therefore,
the sign of the differencélsr — L;s) defines the bigger of the lengthsRERandRSL Expanding the difference
(Lrsr — L)) and substituting = (grs) — ), obtain expression (21) for the switching function of clags



A.M. Shkel, V. Lumelsky / Robotics and Autonomous Systems 34 (2001) 179-202 193

Remark. For classiyo, the region ofr, 8 whereRSHs the optimal solution is much smaller than the corresponding
region forRSL To save on computations, divide the whole region into two subregions: one RBéigthe optimal
solution, and the other (much smaller), where the soluti&Skor RSRand depends on the condition of Proposition
9. The first subregion (whelRSLis the optimal solution) is defined by

d cosp — 3sin(B) cosp + sin(8 — ) + cosa sing > 0.

This case occurs if andg are such that the last arc in the p&BL, g,g, is equal tar. If gr5) < 7 then pathRSL
is shorter than patRSRIf ¢, > 7, then the switching functioi;> needs be checked.

We now turn to the classe®i, azs, andassz which are in the same equivalency groupaas. By applying
the orthogonal transformation (see Proposition 2), the set of path candidatgs transformed into the set of
candidates for the remaining elements of the equivalency graupss, a4z (see Fig. 7). That leads to the following
result.

Proposition 11. Sinceajs >~ az1 >~ aza =~ as3 and the optimal solution fad12 is {RSL or RSR then the optimal
solutions for the remaining elements of this equivalency groupugire— {RSLorLSL; azqs — {LSRorRSR
as3 +— {LSRorLSL.

The respective switching functions for clasaes aza, andaas (see the next three propositions) are obtained from
the switching function for class: 2, by replacing andg segments as prescribed by the transformation theorem.

Proposition 12. For classaz1 (i.e.7n/2 < a < 7, 0 < B < 7/2), the optimal solution is LSL 1§21 < 0,and it is
RSL ifS21 > 0, with

S21(pists Prsl, trsl) = Pisl — Prsl — 2(trsl — 7). (22)

To check, apply Theorem 1 to the switching functi®ig = Lisr — Lrs| = prsr — prsi — 2y, wherey = grg| — 7;
obtainLrsr = SA+ prsr +& +m andLys) = SA+£ 4y + prsr + v + 7. According to Proposition 3, the orthogonal
transformation implies

EI‘SI‘(“ € [0, 77:/2]’:3 € [77:/29 7T]) = £|S|(0‘ € [7‘[/2, JT],,B € [0’ 77"/2])9

and, additionally,pysr(@ € [0, /2], 8 € [n/2,7]) = pisi(e € o € [n/2,7],B € [0,7/2]) and prgi(a €

[Ov T[/Z]v B € [jT/Z’ T[]) = psi(@ € € [T[/Z’ 71]7:3 € [0,7'[/2]), andCIrsI(a € [0’ 71/2]’ B € [T[/Zv T[]) = sl €

a €[n/2, ], B €0, 7/2]). The switching function for clasg1 can be simply obtained from the functiciy by
changing the segments froprsr, prsi, grsi 10 pisi, Prsis frsl, respectively. The validity of this procedure follows from

the transformation theorem, and using again the same theorem, obtain directly the switching functions for classes
asa anda43.

Proposition 13. For classazs (i.e.m < o < 37/2, 3n/2 < 8 < 27), the optimal solution is RSR $k4 < 0, and
itis LSR ifS34 > 0, with

S34(Prsr, Pist, tist) = Prst — Plsr — 2(tsr — 7). (23)

Proposition 14. For classaas (i.e.37/2 < a < 27, m < B < 37/2), the optimal solution is LSL i$43 < 0, and
itis LSR ifS43 > 0, with

S43(pist» Pisr> Qist) = Plsl — Plsr — 2(qisr — 7). (24)
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(b)

(© (@)

Fig. 8. Choosing the switching functions for the equivalency gr@up, a4, az1, aa) — an illustration.

4.2.3. Equivalency groufaiss, az4, azi, as2}

According to Proposition 4, classess, az4, az1, as2 belong to the same equivalency group. First we show that
for classai3 the Dubins set can be reduced to two path candidates, and then further reduced to a unique optimal
solution using an appropriate switching functisig. Then, by applying the transformation theorem, the switching
function S13 will be modified to produce the corresponding switching functions for clagsggsi, asz. Forass,
the following holds.

Proposition 15. For the long path case, the optimal solution corresponding to the elemeri$ either RSR or
LSR

Similar to the argument for clagg, above, one can see that p&BLcan be excluded from the set of candidates
considered for the optimal path. Indeedgit= 0 andg = &, thenLisr = Lyg. If o Or 8 are increasing then path
LSRbecomes shorter than pa®8L To see this, compare the line segm8} which is a tangent to circl®g,
with SD, a tangent to circl®rr (see Fig. 8(a)). NowSA < SDfor any 8 € (r, 37/2], andAB < D'C; also,
SD< §°G + GE+ E™D. This leads to

SA+AB<SG+GE+ETC.

Therefore, ifa € [0, @] then Lisr < Lig. Similarly, if « > a then Ly < L. Herea is the critical angle
o = a(d, B), where patht SRandRSRdegenerate t8R This implies that only pathsSRandRSRare candidates
for the optimal solution.

Using Proposition 2, a similar argument extends this result to the remaining three elements, as follows.
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Proposition 16. Sincea13 >~ a4 >~ a3z1 =~ a4 and the optimal solution faa13 is either RSR or LSR, the optimal
solutions forazy, az1, aso are, respectively

a4 — {RSR or RS]; asl — {LSL or LSR; asp — {LSL or RSI}..

Turning back to clasaiz, we can verify that the critical angke defines switching of the optimal path frobSR
to RSRi.e. if « > & the optimal solution iRRSR otherwise it i SR Another indicator of the switch frohSRto
RSRis the length of args,. Notice that ifRSRis the optimal solution for class 3 thenss cannot exceed .

This observation leads to the corresponding switching functions necessary for obtaining the optimal solution.

Proposition 17. For classais (i.e.0 < o« < 7/2, 37/2 < B < 27), if

1. S13(trsr) < 0,then the optimal solution is RSR
2. S13(trsr) > 0,then the optimal solution is LSR

where

S13(frsr) = frsr — 7. (25)
The transformation theorem extends the results obtained foralasthe accompanying classes, az; andaap.

Proposition 18. For classaz4 (i.e.7/2 < o < 7, 3n/2 < B < 27), the optimal solution is RSR$b4 < 0,and it
is RSL otherwise, where

S24(qrsr) = qGrsr — TT. (26)

Proposition 19. For classas; (i.e.m < a < 37/2, 0 < B < 7/2), the optimal solution is LSL if31 < 0, and it
is LSR otherwise, where

S31(qis1) = qis1 — 7. (27)

Proposition 20. For classay (i.e.37/2 < a < 27, /2 < B < w), the optimal solution is RSL §42 < 0,and it
is LSL otherwise, where

Sa2(ns)) = sl — 7. (28)

4.2.4. Equivalency groufay 4, aa1}

According to Proposition 4, path classes; ~ a41 are in the same equivalency group, and so, by the rules
established in the transformation theorem, the classification of optimal solutions forldsads to the optimal
solutions for clasgs;.

Proposition 21. Forthelong path case, the optimal solution corresponding to the elemgistt RSR or LSR or RSL

Recall that by now the total number of candidates for the optimal solution is reduced to 1dBEESR RSL
RSR—because the curves of ty@CC are excluded from consideration due to Proposition 4. As before, define
the critical orientations, which for class4 appear for bothw and 8 (see Fig. 9): namely, the valugsand 8
determine the critical orientation for, @ = a(d, B8), and the valued anda determine the critical orientation for
B, B = B(d, a) (notice thatx # a(d, B)).

Among the four path candidates mentioned, gz8h can be excluded from consideration since the lower bound
for this path is bigger than the upper bound for pR®R The critical anglex gives the optimal solutio®R and
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(a)

Fig. 9. Example of critical orientations of the path candidates for elass

thus defines the switch condition for the optimal path fic®&Rto RSR Similarly, the critical angles indicates the
switch of the optimal path frolRSRto RSL

The proof of these facts is similar to those for clasggsanda; 3. Define two critical anglesy = a(d, 8) —the
angle at which pathsSRandRSRdegenerate into the pa8R andp = B(d, o) —the angle at which patrRSR
andRSLdegenerate into the paRS First consider the case whene [&, 7/2] and B € [37/2, B(d, ®)]. Itis
claimed that ifx € [a, 7/2] andg € [37/2, B(d, @)] then the upper bound fats; is limited by

max Lisr <d—2+m.
aela,n/2],B€[3r/2,6(d,a)]
Indeed, the gradient dfs, is strictly positive when € [a, /2] and strictly negative whef € [37/2, B]. In the
regionse € [&, 7/2] andB € [37/2, B], the maximum length of patRSRoccurs wheny = /2 andg = 37/2
(this follows from monotonicity of the functiofs), i.e. when

max Lrsr <d—2+m. (29)
a€la,m/2],B€[B,2r]

One can conclude thatdf € [&, /2] and8 € [37/2, 8] then the lower bound 08|, Ls, andLis; is

min A{List, Lrsls Lisr} = m-ﬁ- 3r/2.
aela,n/2],B€[37/2,B]

These critical cases are shown in Fig. 10. The resulting bounds are

min Lig1 =3 +d+ 2, (30)
aela,n/2],8€[37/2,8]
aela,n/2],B€[37/2,8]

min Lisr > 31/2 + V2 + 2d. (32)

aela,n/2],pe[3m/2,B]
This leads to the condition

min ALt Lrsl, Lisr} = 37T/2+\/m. (33)
aela,n/2],€[37/2,8]

Notice that the lower bound on path8is|, Lrsi, Lisr} is larger than the upper bound dhs (Egs. (29) and (33)).
This completes the proof of the fact thatdfe [a, 7/2] andB € [37/2, 8(d, @)], then the patiRSRis the optimal
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Fig. 10. Example of critical orientations of the path candidates for elass

solution. For clasg14 two more candidates are possible, LERandRSL The proposition below relates the set of
candidates for clasg 4 to the accompanying clags;.

Proposition 22. Sincea14 >~ a41 and the optimal solution for clagg 4 is {LSR or RSL or RSRthe optimal solution
for classays1 is {RSLorLSRorLSL

Similar to the clasgs, the critical angles and 8 define the switch of the optimal solution froRSRto LSR

and fromRSRto RSL, respectively. To simplify the calculations, we choose to build our classification based on the

length of segmentss; andg,s;. Following the same logic as in the case of clagg one notices thats, andgysy

cannot exceed if RSRis an optimal solution for class 4. If either of the two segmentg; or ¢ is bigger than
7, then there is always another path that is shorter R@R i.e. if #,5y > 7 then the optimal solution SR and if
qrsr > 7 then the optimal solution IRSL This observation leads to the following classification rule.

Proposition 23. For classai4 (i.e.0 < a < /2, 3n/2 < B < 2n), if

1. Si,(trsr) > O, then the optimal solution is RSR
2. Sf4(qrsr) > 0, then the optimal solution is RSL
3. if neither(1) or (2) holds, then the optimal solution is RSR

where
5%4(trsr) =lrsr — T, (34)
S%40‘rsr) = (rsr — 7. (35)

By applying the transformation theorem, obtain the switching conditions for elass

Proposition 24. For classass (i.€.37/2 < o < 27, 0 < B < 7/2),if

1. Si'l(trsr) > 0, then the optimal solution is RSL
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2. S2,(qrsr) > 0, then the optimal solution is LSR
3. if neither(1) or (2) holds, then the optimal solution is LSL

where
Sialtis) = tisl — T, (36)
S2,(ts)) = qisl — 7. (37)

4.2.5. Equivalency groufizz, ass)
According to Proposition 4, classes; >~ azgz are in the same equivalency group, and so the classification of
optimal solutions for class;2 leads to that for clasgss.

Proposition 25. For the long path case, the optimal solution corresponding to the elgss {LSL or RSL or RSR

The pathLSRis excluded from the consideration sinfg; is always larger thafi,s. Indeed, forx = 8 = 7 the
lengthsLisr = Lg1, and path.SRhas its minimum a& = 8 = 7, and pattRSL— its maximum within clasgazo.

Proposition 26. Sincenss >~ azzand the optimal solution faryis {LSL or{RSL or RSR, then the optimal solution
for azzis {RSR o{LSR or LSL}.

The following proposition gives the condition for finding the optimal paths.

Proposition 27. For classaz; (i.e.m/2 <a <7, /2 < B < ), if

1. ¢ > gand S%Z < 0, the optimal solution is LSL
2. a > B ands3, > 0, the optimal solution is RSL
3. @ < pands2, < 0, the optimal solution is RSR
4. o« < B andS3, > 0,the optimal solution is RSL

where the switching functions are
Szlz(PIsIa Prsls trsl) = Plsl — Prsl — 2(frsl — 1), (38)
ng(Prsr, Prsls Grsl) = Prsr — Prsl — 2(qrsl — ), (39)

and pis1, prsr» Prsl» trsl, andgrg) are defined by3) and(9), respectively

The proof of the proposition is similar to that for clags with the only difference that the set of candidates
depends upon the relations betwessndg. Notice that ife = 8 then the length of pathSLis equal to that oRSR
Wheng starts increasing, pattSLbecomes shorter than pd$R(see Fig. 11). Similarly, using the transformation
theorem, obtain the solutions for clasg are as follows.

Proposition 28. For classazs (i.e.m < o < 37/2, 7 < B < 31/2),if

1. ¢ < gand S§3 < 0, the optimal solution is RSR
2. > pand S§3 > 0, the optimal solution is LSR
3. ¢ <pand S§3 < 0, the optimal solution is LSL
4. o > Band S§3 > 0, the optimal solution is LSR

where the switching functions are
S%g(l’rsrv Disrs tisr) = Prsr — Plsr — 2(tisr — 1), (40)

S§3(PI5I, Plsrs qisr) = Pisl — Plsr — 2(qisr — 7). (41)
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(a)

Fig. 11. For clasayy, the set of candidates for the optimal solution depends much upon the relations betareds: if « > 8, the candidates
areLSLandRSL, otherwise they arRSRandRSL

4.2.6. Equivalency groufaps, asz}
According to Proposition 4, classes ~ a3p are in the same equivalency group. The corresponding classification
of optimal solutions proceeds as follows.

Proposition 29. For the long path case, the optimal solution corresponding to the elgss RSR
Four path candidates need be considered heRSRRSL LSR LSL Note that

max Lisr = Lis1 Lisr £
weln/2.7).peln,31/2]  aeln/2, 7[] ﬂe[n 3 /2{ rsiLisrLisi)-
The maximum of the length of palRSRand the minimum of £, L5y L5} occur wherw = 8 = 7. By applying
the transformation theorem, the classificationdgris given by the following proposition.

Proposition 30. Sinceay3 >~ a3z and the optimal solution fagoz is RSR, the optimal solution fag, is LSL

The switching functions are logical functions of Boolean type. They are not uniquely defined. The choice of a
particular function will be usually guided by computational considerations.

5. The main result

We can now summarize the whole scheme developed above, which presents the main result of this work. Using
the scheme, the problem of finding the shortest smooth path between two configurations is solved without an explicit
calculation of the paths involved. Instead, a simple logical scheme is used based on the aggregation of all possible
paths into classesg; and on the equivalency groups as defined above.

The input to the scheme are the angular quadrants of the directional &aglps its output is the name of the
element of the Dubins set that presents the shortest path. The scheme forms a decision tree summarized in the table
in Fig. 12. Each block of the table represents one elemgat matrix {gjj} and includes the corresponding options
for the optimal path. It may take only one step to obtain the solution, as e.g. the sdR8idior the quadrants
(1, 1), or it may take two steps, as for the quadrai®sl), or it may take at most three steps, as for the quadrants
(2, 2) (Fig. 12). When the second and third steps are necessary, their outcome is determined by the signs of one or
two switching functiongS}. The general form of functionss} is

f(s1,52,53) =851 — 52— 2(s3— 1), gs) =s—m. (42)
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inal Quadrant

Initial Quadrant

if S,> 0 then LSR
if Sf4> 0 then RSL|
else RSR|

if S;,<0 then RSR|if S;3< 0 then RSK

: RSL if S;,> 0 then RSL|if S;3> 0 then LSR

if Siz <0 then LSL
i S, <0 then LSL|if S),> 0 then RSL if S,,< 0 then RSR

2 if S,,> 0 then RSL|if S5, < 0 then RSR RSR if Spy> 0 then RSL
if Sﬁz >0 then RSL
if 8;3 < 0 then RSR|
3 if S3; <0 then LSL LsL if s%, > 0 then LSR|ifS;, < 0 then RSR
if S5,> 0 then LSR| if S33< 0 then LSL|ifS3,> 0 then LSR
if wa> 0 then LSR
i Sj,> 0 then RSL
2 if S42< 0 then LSL|if 543< 0 then LSL
4 if S;,> 0 then LSR| LSR

if S;,> 0 then RSL|if S43> 0 then LSR
else LSL

Fig. 12. The decision table for finding the shortest path.

The complete list of switching functions for all classgsis as follows (note that for some classes, the unique
optimal solution is obtained directly, without switching functions):

Classuy1 :  unique solution

Classai2: S12= f(prsr, Prsi, Grsl) = Prst — Prsl — 2(qrsl — 70),

Classuiz:  S13 = g(trsr) = trsr — 7,

Classay4: 5%4 = g(trsr) = trsr — 7, 53%4 = g(qrsr) = qrsr — ,

Classaz1:  S21= f(pisl, Prsls tisl) = pisi — Prsl — 2(trsl — 70),

ifa > B, thens%g = f(pisl, Prsls trsl) = pisl — Prsl — 2(frsl — ),

ifa < B, then5§2 = f(prsr> Prsl> Grsl) = Prsr — Prsl — 2(qrs| — 1),
Classupz @ unique solution

Classipa:  S2a = g(grsr) = grsr — 7,

Classazy:  S31= g(qis)) = qis1 — 7,
Classuz2 :  unigque solution

Classays :

(43)

ifa < B, thenS%3 = f(prsr, Pisr» tist) = Prsr — Plsr — 2tisr — ),
ifa > B, thenS§3 = f(pisl, Pists Qist) = Pisl — Plsr — 2(qisr — ),
Classazs . S34 = f(prsr. Pisrs tist) = Prsr — Plsr — 2(tisr — ),

Classua1: S3; = g(tisl) = tisl — 7, 52, = g(qis) = qisl — T,

Classuaz : Saz2 = g(tis) = tisl — 7,

Classusz:  Saz = f(pisi, Pisrs qisr) = pisi — Pisr — 2(qisr — 1),

Classuaq :  unique solution

Classuzs :
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Take, e.g. a selx € [0,7/2], B € [7/2, x]), which corresponds to the elemenb of matrix {g;}. Block (1, 2)
in the table in Fig. 12 suggests that the optimal solution is eR&lror RSR The switching functiorsy, listed in
block (1, 2) is then calculated as in the list above (Eq. (42)); its elemggts prs; andgs) come from the second
equation of (5) and the second and third equations of (9), respectively. The sfgntben determines which of
the two versions indicated in blogR, 2) is the unigue solution.

To demonstrate efficiency of the proposed classification scheme, consider the task of finding the shortest smooth
path fromP; to Py, located on the distand®; Pr| = 6, such that the path starts and ends with the directions of
motione = /6 andB = x/3, respectively, and the path radius of curvature is limiteghby 1. According to

Dubins result, six paths candidatgsSL, RSRRSL LSR RLR LRL} have to be calculated and compared. Using
expressions given in Section 2

Lisl = tisl + pisl + qisl = —a + B + pisl = 124526

Lrsr = trsr + prsr + grsr = o — B+ prsr = 121361,

Lisr = tisr + pisr + qisr = o — B + 215 + pisr = 18.3890Q

Lrsl = trsl + prsl + grst = —a + B + 2trs1 + prsi = 6.2488

Lir =tar + prr +qrir = o — B+ 2pyr  pathis not feasible
L =ty + pn +gn = —a + B+ 2py pathis not feasible

(44)

After all paths-candidates are calculated and compared, we conclude that the shortesRgathrnicontrast, if

we use the approach proposed in this paper, then based only on information about the initial and final configuration
and without any calculations involved, we can make the same conclusion. Indeed, for the case studied, the initial
and final configurations are in the first quadrant, i.e. the path belongs to theiglagscording to the look-up

table (Fig. 12), the optimal solution for all paths from this class have to have the topRBigyrhus, using the
classification scheme we were able to obtain the optimal solution without any calculations involved. This example
is a good illustration of the computational efficiency of the proposed classification scheme.

6. Conclusion

The central idea developed in this work is that the problem of finding the shortest path between two configurations
can be reduced to a logical manipulation of the set of appropriate path candidates, without their explicit calculation.
This is in sharp departure from the direct computation and comparison of the candidate paths that the existing
techniques require. The candidate paths come from the sufficient set known as the Dubins set [5]. One direct
benefit of the suggested scheme is computational savings— an important consideration in real-time control. For
example, when attempting to find the shortest path to a given position/orientation (configuration) for a driverless
car or a mobile robot, one would simply find in the table (Fig. 12), the element that corresponds to the initial and
final configurations, and then pinpoint the unique solution either immediately or using the sign of an appropriate
switching function of the form (42).

As mentioned in Section 1, the derivation of the approach is simplified if the problem at hand is divided into two
cases, called here theng path caseind theshort path caseTo save space, the suggested logical classification
scheme is fully developed here only for the long path case. Situations with short paths require a roughly similar,
though a bit tedious, analysis, resulting in a computational procedure that is somewhat more complex and less
economical than the one presented here (see Proposition 5 for a formal definition of both cases).

The presented result also gives a new interesting insight into the nature of Dubins’ problem. It suggests that
partitioning of the appropriat€-space can be a powerful tool for analyzing the shortest path problem in more
general and complex cases, as e.g. in finding the shortest path between a point and a manifold.
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