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Abstract  

In this paper we summarize principles of operation of 
micromachined gyroscopes, analyze dynamics of ideal 
and non-ideal systems, and propose an approach for 
formulation and solving problems of control. The sug- 
gested approach uses active non-linear feedback con- 
trol for drive and compensation of errors. Both non- 
adaptive and adaptive strategies are presented. These 
strategies can be used for a broad class of microma- 
chined vibratory gyroscopes including those for angle 
and angular rate measurement. Control approaches de- 
scribed in this paper are in the implementation stage 
and will soon be tested on gyroscope prototypes. 

1 Introduct ion 

Gyroscopes are the most commonly used devices for 
measuring angular velocity and angular rotation in 
many navigation, homing, and stabilization applica- 
tions. Over the past several decades many differ- 
ent gyroscope concepts have been developed. Recent 
advances in silicon micromachining technology have 
raised the possibility of revolutionizing the field of 
inertial instruments by providing inexpensive, minia- 
ture gyroscopes, to address market needs for low-cost 
medium performance inertial instruments. Microma- 
chined accelerometers have been extremely successful 
in high volume and low-cost automotive applications 
such as air bags, vehicle stabilization systems and ac- 
tive suspensions. Micro-gyroscopes are projected to ex- 
hibit similar success. However, the dynamics of micro- 
machined gyroscopes is much more complicated than 
that of most micromachined accelerometers. The later 
are generally one degree of freedom systems while the 
former have to be modeled by a multi-degree of freedom 
coupled differential equations. 

Micromachined gyroscopes are probably the most chal- 
lenging type of transducers ever attempted to be de- 
signed in micro-world. A nail size dynamic system in- 
tegrated with control electronics on the same silicon 
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chip (Fig.1) is designed to be a very sensitive sensor 
which is able to detect maneuvers and motions which 
are even beyond human perception abilities. Along 
with exciting opportunities which MEMS gyroscopes 
could bring to our everyday life, the miniaturization 
introduces many technical challenges. Multi-degree of 
freedom dynamics, sensitivity to fabrication imperfec- 
tions, dynamic instability, limited control resources - 
all these raise a number of fundamentally complicated 
issues in the design, analysis, and control of microma- 
chined gyroscopes. In this paper we discuss some of 
these issues and propose an approach for formulation 
and solving problems of control. 

Figure 1: Layout of integrated gyro module (5mm x 
5mm). Includes two gyroscopes (center) and 
on-chip control electronics. The chip is being 
fabricated in Sandia's iMEMS technology. 

2 Basics of Micromachined Gyroscopes 

In most micromachined gyroscope designs the vibrating 
angular rate sensor consists of a mass suspended on 
elastic flexures anchored to the substrate. This mass is 
constrained to vibrate on one of the planes: x-y plane 
in case of the z-axis gyroscope[l] or y-z plane in case 
of the x-axis gyroscope (e.g., [2]). The x-axis and y- 
axis form a plane parallel to the substrate and the z- 
axis is perpendicular to the substrate, Fig.2. In this 
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paper, without lost of generality, we refer to the z-axis 
gyroscope, however, all results are directly applicable 
to gyroscopes with x- and y-axis of sensitivity. 

2.1 Dynamics 
To describe dynamics of the gyroscope, it is convenient 
to intoduce two coordinate systems: C t ,  q, C3 - iner- 
tial, fixed in an absolute space, and Cx, y, z3 - non- 
inertialA rigidly attached to the platform. Angular ve- 
locity il = (Qs ,  ily , il,) of the platform is associated 
with angular velocity of the object to which the gyro- 
scope is attached. 

Rotating platram kv 
Stationary frame 

Figure 2: Mass-spring model of the vibratory microma- 
chined gyroscope. 

The behavior of the gyroscope is naturally described 
with respect to the non-inertial coordinate frame 
€x, y, z3. When equations of motion are written with 
respect to this frame, the "fictitious" or "inertial 
forces" has to be treated as actual physical forces. 
The second Newton Law then has the form mZsYz = 
Fert - ma', - m&. Here, a',,, is a linear acceleration 
of the gyrotcope with respect to the coordinate frame 
Cz, y, z3, Fert is a sum of all external forces acting 
on the proof mass (including elastic restoring forces, 
damping, etc.), a', is centrifugal acceleration which is a 
function of i12 and 6, and iic is the Coriolis accelera- 
tion. 

- 

For traditional inertial navigation applications the ro- 
tation rate is small relative to the natural frequency of 
the system and is also constant over a relatively long 
time interval. Also, linear acceleration terms can be 
typically cancelled out as an offset from the output re- 
sponse. In addition] if we are interested in measuring 
the rotation rate about only the z-axis (Fig. a ) ,  then 
it is possible to make the stiffness in the z-direction 
much larger than the stiffness in the other two orthog- 
onal directions through special fabrication techniques 
and careful design. If all these requirements are sat- 
isfied, all inertial forces, except the Coriolis force, can 
be ignored and the governing equations in Cartesian 
coordinates Cx, y, z3  are given by 

x +w;x - 2 n y  = 0 

The essential feature of these equations is the pres- 
ence of the Coriolis acceleration terms -2ily and 2ilx. 
These two terms will appear only if the equations of 
motion are written in a non-inertial coordinate frame. 
It is the Coriolis acceleration that causes a transfer of 
energy between two of the gyroscope modes of opera- 
tion (Fig. 3). 

Figure 3: The Coriolis acceleration causes the precession 
of the line of oscillation. The oscillating proof 
mass is intending to keep the line of oscilla- 
tion constant in the absolute space; this effect 
is equivalent to the transfer of energy between 
two of the gyroscope modes of operation in a 
non-inertial coordinate frame. 

If the "input" angular velocity il is zero, and under 
appropriate initial conditions, the ideal gyroscope will 
oscillate along a straight line. The orientation of the 
straight line is defined by initial conditions. In a more 
general case, when the initial conditions are such that 
the vector of displacement is not parallel to the vector 
of velocity, the "orbit" of the gyroscope motion is an 
ellipse. The general solution of (1) then, for the case 
when Cl = 0, is 

E = A cos(w,t + 00) cos 4 - B sin(w,t + 00) sin q5 
y = A cos(w,t + 00) sin 4 + B sin(w,t + 00) cos q5 

The parameters A ,  B ,  4, and 00 are constants defined 
by the initial conditions: a and b define the shape of 
the ellipse, 4 - orientation of the ellipse, and Bo defines 
location of the gyroscope reference point on the ellipse 
at the initial instant. 

2.2 Principle of Operation 
The vibratory gyroscopes can operate in two different 
modes: the angle and the angular rate modes. Regard- 
less of the mode of gyroscope operation, the best per- 
formance is achieved when the stiffness is same in all di- 
rection, or the system is isotropic. When the isotropic 
oscillator is allowed to freely oscillate, the precession 
of the straight line of oscillation provides a measure 
of the angle of rotation (Fig. 3). The angle of the 
precessing pattern can be instantly defined from the 

21 20 



measurements of the vector of displacement and veloc- 
ity [3]: 

S ( 4 c y  + iY) 
W;(d - y2) + (i.2 - Y2) 

tan$ = 

TO measure rotation rate, the proof-mass would be 
driven to a fixed amplitude along the x-axis by apply- 
ing an electrostatic drive force to the proof-mass along 
the x-axis. In the absence of rotation there would be no 
motion of the proof-mass along the y-axis. Under rota- 
tion, however, the Coriolis acceleration will cause en- 
ergy to be transferred from the x-axis (primary mode) 
to the y-axis (secondary mode) building up vibration 
amplitude along the y-axis. The ratio of the amplitude 
in the secondary mode vibration to the amplitude of 
the primary mode vibration can be shown to be pro- 
portional to the rotation rate and is given by (e.g., [4]) 

Y R - = 2Q- 
X Wn (3) 

Notice, that the gyroscope response is proportional to 
quality factor Q of the gyroscope. If the quality fac- 
tor is not changing, the rotation rate can be deter- 
mined by simply measuring the amplitude of the sec- 
ondary mode. Rotation rate can be measured in by 
operating the gyroscope in either the open-loop or the 
closed-loop (force-to-rebalance) modes. The force-to- 
rebalance control loop operates exactly like the ampli- 
tude control in the drive direction. Only in this case, 
the secondary mode amplitude is continuously driven 
to zero rather than a fixed value. 

2.3 Non-ideal Gyroscope 
Fabrication of micromachined gyroscopes involves mul- 
tiple processing steps including the deposition, etching, 
and patterning of materials. Depending on the technol- 
ogy, different number of steps is involved and different 
fabrication tolerances can be achieved at each step. As 
a rule, every fabrication step contribute to imperfec- 
tions in the gyroscope. In practice, imperfections are 
reflected in asymmetry and anisoelasticity of the struc- 
ture. Consequently, asymmetries result in undesirable 
constantly acting perturbations in the form of mechan- 
ical and electrostatic forces. 

The governing equations of a non-ideal gyroscope in 
Cartesian coordinates Cx, y, z )  are given by 

M q + D q + K q + 2 r q = F  (4) 

where M is a matrix of mass distribution, q = (2, Y ) ~  
is the displacement of the gyroscope's reference point, 
and F = (Fz ,  Fy)T is the control input. In presence of 
imperfections stiffness and damping have the form 

The essential part of the equation is the Coriolis force 
which is defined by the skew-symmetric matrix 

0 -R 
r = [ n  0 1  

For any two dimensional system of springs, no mat- 
ter how complex, we can uniquely define two principal 
spring axes (or main axes of elasticity) and correspond- 
ing equivalent spring constants. The off-diagonal ele- 
ments in the stiffness matrix appear when the main 
axes of elasticity do not coincide with the coordinate 
system {x y}. By analogy with stiffness, damping can 
also be described in terms of two main axes of damping. 
In general, the principal axes of elasticity and damp- 
ing are not necessarily aligned because asymmetry in 
stiffness and damping are caused by different physical 
phenomena. Thus, off-diagonal elements in the damp- 
ing matrix are also appear due to misalignment of the 
main axes of damping with the coordinate axes x and y 
[51. 

-1 . . , . . _ .  . . . . .  4 

Figure 4: Off-diagonal elements in the stiffness matrix 
result in frequency change and disruption of the 
straight line oscillation. (Left) time response 
along z-axis and y-axis; (Right) (x,y) plane 
response 

Off-diagonal elements in the stiffness matrix result in 
frequency change and disruption of the straight line 
oscillation, Fig.4. (The ideal system is supposed to 
oscillate along a horizontal straight line with constant 
amplitude and frequency). The off-diagonal symmetric 
elements in the damping matrix result in precession of 
the straight line oscillation and amplitude change. On 
the other hand, skew-symmetric terms in the damping 
matrix cause only precession of the gyroscope line of os- 
cillation. The effect of off-diagonal damping elements is 
not distinguishable from the effect of the Coriolis force, 
and thus present significant difficulties for their com- 
pensation. Perturbations proportional to the velocity 
can appear as a result of losses due to structural damp- 
ing, transmission of energy to suspension, aerodynamic 
drag, etc. Gyroscopic forces (skew-symmetric terms in 
damping matrix) can appear only as inertial forces or 
as a side effect of an active control. The general clas- 
sification scheme on influence of defects on gyroscope 
behavior is presented in [5]. 
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3 Gyroscope Control 

The gyroscope control system performs four basic 
tasks: (1) initiates oscillations until the appropriate en- 
ergy level is reached; (2) maintains the reached energy 
level; (3) compensates for quadrature deviation from 
the reference straight line of oscillations; (4) senses dis- 
placements and velocities in a pair of orthogonal direc- 
tions. 

Traditionally, tasks (1) and (2) are solved by driving a 
micro-machined structure at resonance. This is typ- 
ically done by employing a transresistance amplifier 
configured in positive feedback [SI. The oscillation am- 
plitude can be kept constant using an automatic gain 
control loop. The task (4) can be solved using lateral 
and diffrenetial comb fingers. The lateral interdigitated 
comb fingers [7] can be used to measure linear velocity 
of the proof-mass and parallel plate capacitive arrange- 
ments can be used to measure deflection of the struc- 
ture (practical examples of arrangements are reviewed 
in [8]). Traditional quadrature error cancellation, task 
(3), cannot be easily extrapolated to mode matched 
gyroscopes and is dependent on exact phase relations 
between signals corresponding to displacement and ve- 
locity in the two orthogonal directions [l]. In this paper 
we propose a more general approach which treats the 
gyroscope as a multi-degree of freedom device and com- 
pensates for a general class of quadrature errors and 
energy losses. Among advantages of the proposed con- 
trol strategies are their universal applicability to differ- 
ent gyroscope designs, robust quadrature cancellation 
scheme, feedback compensation of energy dissipation, 
and on-line parameter tuning. 

3.1 Definition of Quadrature 
Ideally, the gyroscope oscillates along a straight line 
and the Coriolis force causes the precession of this 
straight line, the precession is detected and informa- 
tion about the angle or angular rate is extracted. Non- 
idealities in the gyroscope, such as misalignment of 
the drive forces and anisoelasticity can cause elliptic- 
ity of the nominal straight line motion. Ellipticity of 
the gyroscope trajectory is undesirable because it di- 
rectly enters into the measurements. Thus, as a general 
rule, zero ellipticity is desirable. Angular momentum 
[(i, y)T x (2, Y ) ~ ]  or ellipticity (quadrature) are good 
measures of deviation from a straight line oscillations: 

P = - (zdy-yd2) = - (zCy-yi)dt 
2 'f :: s,'" 

This measure of quadrature P will be used for defin- 
ing a quadrature compensating controller. With some 
precautions discussed in the next section, the general 
goal of the quadrature control is to drive the area of 
the quadrature ellipsoid (5) to zero. 

3.2 General Control Strategy 
The gyroscope is sensitive to uncompensated defects 
which can arise due to the nature of the fabrication pro- 
cess, parasitic electrostatic forces and unwanted elec- 
trostatic cross coupling. These defects manifest them- 
selves as unwanted terms in the spring and damping 
matrix. For example, symmetric off-diagonal terms in 
the stiffness matrix can cause the evolution of motion 
to be a precessing ellipsoid instead of a straight line, 
Figure 5(a). Therefore, the Coriolis force induced am- 
plitudes along the x- and y-axis no longer give us the 
correct information about the rotation rate. 
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Figure 5: Performance of control minimizing quadrature. 
(a) The ellipsoid defining the quadrature pre- 
cesses due to the Coriolis force; no control ap- 
plied; (b) The area of quadrature ellipsoid con- 
verges to zero while the line of oscillation con- 
tinue to precess; active feed-back control (6 )  is 
applied 

At the same time this control should not interfere with 
the Coriolis force. Based on the result of classification 
of errors [5], the topology of the controller which will 
not interfere with the Coriolis force, while compensat- 
ing for the quadrature, should have the form 

Fquadr = -71 . P .  sT . q (6) 

Here, 71 is a constant gain, P is quadrature defined by 
(5), S is a skew-symmetric matrix, and q is a displace- 
ment vector. This non-linear feedback control stabi- 
lizes the system to a manifold in the gyroscope phase 
space; the manifold corresponds to the straight line seg- 
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ment in (x,y)-plane. The performance of the quadra- 
ture compensation controller is illustrated in Fig. 5. In 
result of the quadrature control action, the area of the 
quadrature ellipsoid converges to zero, i.e. the ellipsoid 
approaches a straight line. Notice also that the quadra- 
ture control does not effect the rate of the precession. 

In addition to such a control, one often uses an addi- 
tional control to maintain constant overall energy of 
the system so that damping and other dissipative ef- 
fects can be compensated. The deviation of the actual 
energy level of the system from the nominal can be 
defined by 

(7) 
w;(z? + y2)  + (k2 + Y2) 

2 
A E = E , -  

where E, denotes the nominal energy of the system 
normalized with respect to the effective mass. A con- 
trol which will not interfere with the Coriolis force and 
will force the system to maintain the nominal energy 
level has the form: 

This control force is proportional to the velocity and 
acts to cancel out the damping effects. Even though 
it is designed for angle masuring gyroscope, it can be 
easily adapted for use in rate gyroscopes. 

In most gyroscope designs, it is also important to match 
fundamental frequencies of the system. This can be 
done, for example, by driving the average frequency to 
the nominal one 

(9) 

The goal can be accomplished with the control 

Ftuning = -73 ' AW . (10) 

Spherical potential forces (10) can only cause frequency 
change in the system and do not contribute to any other 
changes in the system. This insures that the control 
(10) will not interfere with the Coriolis signal and will 
drive the frequency mismatch (9) to zero. The tuning 
control is a very important element in design of angular 
rate transducers because frequency mismatch directly 
defines the sensitivity of the device. 

When a gyroscope operates as an angle measuring 
transducer, it should be allowed freely precess in re- 
sponse to the Coriolis force - no feedback strategies for 
compensation of precession can be effectively employed. 
However, the rate measuring gyroscope can operate in 
two different modes: the open-loop mode and the force- 
to-rebalance mode. In the closed-loop mode, the sec- 
ondary mode amplitude is continuously monitored and 
driven to zero by applying the appropriate drive force 

to the proof-mass along the y-axis (e.g., see [4]). In 
this case, the force-to-rebalance control should be in- 
tegrated with all three control loops described above: 
quadrature, energy, and frequency tuning. 

In summary, it can be concluded that one of the neces- 
sary conditions for gyroscope operation is the stability 
of the nominal harmonic motion of the device and its 
insensitivity to the external perturbations. Three coor- 
dinated feedback control actions are designed: the first 
is the control that minimizes quadrature errors, equa- 
tion (6); the second compensates for the energy varia- 
tions, equation (8); and the third tunes the frequencies 
of the system to a desirable value, equation (10). All 
three controls are designed to compensate for manu- 
facturing defects and electrostatic interferences. The 
distinguishing feature of these controls is that they do 
not interfere with the measured Coriolis signal while 
performing assigned tasks. 

3.3 Adaptive Control 
The stiffness tuning described by (10) can be alterna- 
tively accomplished using an adaptive control scheme. 
The adaptive control scheme can also provide a good 
estimation of the angular velocity. 

We post the following problem: find a control strategy 
which will drive the non-ideal system (4) to an ideal: 

q + w ; q  = 0 (11) 

while provides stiffness tuning, compensation for d a m p  
ing, and estimation of the angular velocity. 

To solve this problem, we build the adaptive controller 
which is based on quadrature and energy compensa- 
tion, Fquadr and control compensating for energy losses 
Fenergy defined by (6) and (8), respectively. Denote the 
sum of these two controllers by F 1  = Fquodr + Fenergy, 

then the parameter estimation algorithm has the form 

and the corresponding adaptive controller is given by 

F 2  = K q  + 2f'q (13) 

In (12) and (13), I? and f' are estimated values of 
damping, stiffness, and angular velocity, respectively. 

If damping D is known and can be compensated, than 
it can be shown that the controller F = Fl+ F 2  guaran- 
tees that the stiffness converges to the desirable value 
(i.e., frequency tuning is accomplished) and the estima- 
tion of the angular velocity h converges to the actual 
value of the angular velocity R,  Fig. 6. 
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Figure 6: Convergence of the angular rate estimation to 
the actual value. After 70 non-dimensional sec- 
onds (in time scale of the natural frequency) the 
ratio between estimated and the actual values 
is less than 3 %. 

It should be noted, however, that if off-diagonal ele- 
ments in the damping matrix D are unknown, the effect 
caused by these elements to the change in dynamics of 
the system is not distinguishable from the Coriolis force 
and will enter into the estimation of angular velocity as 
an additional bias. Due to space limitations, the proof 
of convergence and strategy for estimation of unbiased 
angular ‘velocity are omitted and will appear elsewhere. 

4 Conclusions 

In this paper we studied issues of dynamics and control 
of micromachined vibratory gyroscopes and found that 
vibratory gyroscopes are inherently unstable systems 
which are extremely sensitive to defects, imperfections, 
and undesirable perturbations. Vibratory microma- 
chined gyroscopes should no doubt include a feedback 
control system to maintain the amplitude of oscillation 
constant and keep the ellipticity of the gyroscope tra- 
jectory small (i.e., drive the area of quadrature to zero). 
The essential requirement is that these tasks have to 
be accomplished while avoiding interference with the 
measured Coriolis acceleration. This is the necessary 
condition for gyroscope control. 

The analysis presented in the paper shows that, under 
certain conditions, the nonlinear feedback controller 
which includes quadrature control Eq.(6), energy con- 
trol Eq.(8), and frequency tuning Eq.(lO) can be uti- 
lized to stabilize the behavior of the gyroscope while 
providing no interference with the Coriolis signal. Also, 
if the adaptive extension (13) is used, additional fre- 
quency tuning and closed-loop angular velocity estima- 
tion options are available. It is also concluded, that the 
limitation of any feedback control system is its lack of 
ability to compensate for the Coriolis-like defects and 
perturbations. Thus, each gyroscope should include a 
calibration unit for identification and compensation of 
defects which cannot be compensated with the active 
control. 

In summary, the proposed nonlinear feedback control 
stabilizes the system, allows multi-directional vibra- 
tions of the gyroscope, and does not interfere with the 
Coriolis acceleration. This control architecture with 
slight modifications can be universally applied to angu- 
lar rate and angle measuring gyroscopes. The control 
will be implemented on a chip integrated with other 
conditioning loops. The implementation will be car- 
ried out in both polysilicon surface micromachining and 
silicon-on-insulator (SOI) technologies. 
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