Current and Future Performance of Si-MEMS Quad Mass Gyro (QMG) System

Flat is not Dead

ION JNC 2014, June 18
Orlando, FL, USA

Trusov, Rozelle, Atikyan, Meyer (NGC)
Zotov, Simon, Shkel (UCI)
Current Status of SoA MEMS Gyros

<table>
<thead>
<tr>
<th>MEMS gyro parameter (SoA production IMUs)</th>
<th>Tactical grade</th>
<th>Inertial / azimuth grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias in-run, °/hr</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>Bias composite, °/hr</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>ARW, °/√hr</td>
<td>0.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Rate Noise, °/hr/√Hz</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>Scale factor, ppm</td>
<td>>100</td>
<td>1</td>
</tr>
</tbody>
</table>

100x improvement in MEMS gyro performance required for Navigation / Azimuth grade applications.

NG LITEF
Honeywell
ADI
Sensonor
Goodrich

Approved for public release
Two Classes of Coriolis Vibratory Gyros

<table>
<thead>
<tr>
<th>IEEE STD 1431</th>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modal symmetry (not axial)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Whole angle, self-calibration</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>MEMS implementation</td>
<td>lumped masses</td>
<td>ring, disk, (shells in R&D)</td>
</tr>
<tr>
<td>Angle gain, drive amplitude</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Modal mass, decay time (Q)</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Defining examples</td>
<td>Draper/ Honeywell</td>
<td>BAE/ AIS/ Goodrich/ UTC</td>
</tr>
</tbody>
</table>

Tactical grade HG-1930 and SiIMU02 are dominant production SoA MEMS IMUs since ~2000.

Revolutionary potential: mode-symmetric tuning fork with low ARW of Class I and good stability of Class II.
Quad Mass Gyro (QMG)

- 4 tines, 20 levers
- Symmetry, balance

- No anchor loss, TED limited $Q > 1 \ M$
- Measured $\tau = 3 \ \text{min}$ and $Q > 1 \ M$

Quad Mass Gyro: Class II tuning fork CVG with $Q > 1 \ M$, whole angle, and self-calibration.
Resonator Alone Does Not Gyro Make

- Rate mode, whole angle, mode reversal, carouseling
- All closed loop

Stand alone, turn key gyro suite; DARPA PALADIN compatible. Adaptable to other CVGs through analog card interchange.

QMG in cer. DIP (no getter, Q=1 k)
USB port to PC
RS 232 to PC
Gyro buffer card
Motherboard (DSP, FPGA, power, and communication)
PALADIN connector
Whole Angle QMG Performance

- QMG without getter
- $Q = 1\ k, \ \tau = 0.1\ sec$

1 hr at 100 °/s for .3E6 °
All closed loop operation

Whole Angle with 3 PPM error demonstrated on QMG (despite low Q package without getter). 18,000 °/s range.
Rate Mode QMG Performance

- QMG without getter
- $Q=1 \, k$, $tau=0.1 \, sec$
- $1/2 \, month$ in-run experiment
- All closed loop with self-cal.

Modified Allan deviation ($^\circ$/hr) vs. time (s)

- 1 $^\circ$/hr or 0.2 PPM @10 s
- 0.5 $^\circ$/hr or 0.1 PPM @30 s
- 0.2 $^\circ$/hr (0.04 PPM) from mins to weeks

0.2 $^\circ$/hr or 0.04 PPM bias stability over weeks.
Full scale of 1350 $^\circ$/s, dynamic range >145 dB.
Angle Random Walk \propto Mass$^{-1/2} \times$ (Frequency \times Q-factor)$^{-1/2}$
Navigation Grade QMG Capability

Q=1 M QMG with getter packaging beats navigation grade ARW of <0.05 °/hr/√Hz with room for more improvement.

- 2.5 kHz, (8 mm)$^2 \times 100$ um, AG=0.75, A=1.5 um

- **QMG no getter (test & simulation)***

- **QMG w/ getter (simulation)***

Approved for public release
Quad Mass Gyro (QMG) Conclusions

QMG - a clear path to Navigation / Azimuth grade Si-MEMS

- Ultra-low dissipation due to mechanism design
- Mode symmetry enables whole angle, self-cal.
- Wide range in rate mode due to large capacitance
- Mature silicon technology, no exotic fabrication

Supported by DARPA micro-PNT, project PASCAL
UCI / NGC N66001-12-C-4035, PM Dr. R. Lutwak.