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ABSTRACT
This paper studies the nonlinear effects of squeeze film stiff-

ening on the performance of a high resolution MEMS non-
resonant inertial sensor. It is shown that these effects intro-
duce a surprising dynamic response that extends the operational
frequency range of the devices by retarding the resonate re-
sponse. In addition, this performance advantage will occur with-
out the traditional gain trade-off associated with linear systems
of this type. A method is introduced to experimentally char-
acterize the squeeze film stiffness of a passive inertial sensor
through the resonant characterization of a Fabry-Pérot inter-
ferometric accelerometer under reduced pressure. Such passive
devices are uniquely suited for the study of squeeze films and,
due to the dependence of both the sensitivity and bandwidth
on the device structural stiffness, variation of the stiffness with
frequency must be considered to accurately predict sensor per-
formance. The characterization confirms established analytical
squeeze film stiffness theory in the continuous gas regime for
conditions of Knudsen numbers less then one. As the Knudsen
number equal to one is approached, it is shown that ideal kinetic
gas theory and continuous squeeze film theory converge yielding
a simplified stiffness estimate at resonance under reduced pres-
sure. These analytical results are used to predict the performance
gains due to the nonlinear, frequency dependent total stiffness of
the sensor during non-resonant operation.

∗Address all correspondence to this author.

INTRODUCTION
The characterization of structural parameters is central to the

design and performance analysis of inertial sensors employing
proof-mass elements. In many Microelectromechanical System
(MEMS) devices, the stiffness due to a squeeze film may be a
significant component of the total suspension stiffness of such
an element. However, in contrast to the stiffness due to flexural
suspension members, the squeeze film stiffness is nonlinear and
may introduce some surprising dynamic effects.

Squeeze films are formed between closely vibrating surfaces
due to the dynamic encapsulation of viscous gases, a represen-
tation of such is shown in Figure 1. The earliest description
was by Crandell in 1918 [1] for circular plates in parallel mo-
tion and a more complete derivation was presented by Langlois
in 1962 [2]. Squeeze film effects are commonly encountered in
MEMS sensors and actuators due to the small dimensions and the
frequent reliance on vibratory motion, such as in micromachined
accelerometers [3] and mirrors [4, 5]. For example, squeeze film
damping is commonly examined in relation to the quality factor
of the amplitude response of resonant devices, as in [6]. Less
frequently examined is the effect of squeeze film stiffening on
non-resonant sensors. Most prominently, Andrews et. al consid-
ered the experimental effects of both the damping and stiffness
of a squeeze film formed between the square plates of a vibrating
microstructure on it’s frequency response [7].

The mechanical sensitivity, resolution and usable frequency
range (bandwidth) of many non-resonant sensors (such as the

1 Copyright c© 2007 by ASME



dgap

sin( t)w

Squeeze Film

Figure 1. A squeeze film formed between a vibrating and fixed plate

passive accelerometers examined here) is closely related to their
structural stiffness. This is due to the dependence of these perfor-
mance characteristics on the natural frequency of the suspended
proof-mass vibrational element composing the sense element of
the sensor system. Accurate characterization of this frequency
is critical to the understanding of the operating characteristics
of the device [8]. Commonly, this characterization is achieved
by driving the structure into resonance and deriving the natural
frequency from the resonant response. For systems of low damp-
ing, these two frequencies are nearly identical. Since for many
MEMS structures air damping is the dominant damping source,
such characterization is commonly done under vacuum to reduce
the damping levels and allow accurate characterization of the nat-
ural frequency.

In addition to the evaluation of the structural characteris-
tics at resonance, the mechanical properties of non-resonate ac-
celerometers should be well known over the wide frequency
bandwidth below their principle resonance. It is in this region
that such instruments are traditionally designed to operate. Since
the stiffness properties of a squeeze film are known to be fre-
quency dependent [9], a simple lumped parameter linear modal
will not accurately characterize the response over this frequency
range.

It is shown in this work that characterization under vacuum
allows the proof-mass suspension stiffness contribution due to a
squeeze film to be reduced. In this way, the stiffness contribu-
tion due to the flexure suspension and the squeeze film may be
independently extracted. This allows the mechanical response of
the sensor under the operational ambient conditions to be more
accurately modeled by considering the frequency dependence of
the total proof-mass stiffness over the frequency bandwidth of
operation.

BACKGROUND
Knudsen number

Under reduced pressures, the effects of gas rarefaction on
behavior of a squeeze film can be characterized by the Knudsen
number. The Knudsen number is the ratio of the mean-free-path
(λm) of a gas particle to the squeeze gap spacing (dgas). For Kn ¿
1 the squeeze film is considered to be in the continuous regime
and can be treated as a viscous fluid. For Kn À 1 the squeeze

film gas can be considered as discrete particles and is said to be
in the free-molecular regime. The area around Kn ' 1 is known
as the transition region [10]. The Knudsen number is calculated
as

Kn =
λm

dgap
=

kBT√
2ø2

gasPadgap
, (1)

where kB is Boltzmann’s constant, T is the absolute temperature
measured in Kelvin, øgas is the gas molecule diameter, and Pa is
the ambient pressure [11]. For example, for a 10µm gap com-
monly found in bulk micro-machined structures, the Knudsen
number is greater then one for pressures under 2.4kPa (18torr).

The effect of Knudsen number on squeeze film behavior has
been previously achieved by replacing a constant gas absolute
viscosity (µ) with an Knudsen number dependent effective abso-
lute viscosity (µe f f = f (Kn)) in calculations of the properties of
a continuous squeeze film. These relationships are empirically
derived from experimental data, such as in the work by Veijola et
al. [12] and Li et al. [13]. These relationships become necessary
as the unit Knudsen number is traversed and the free-molecular
region is entered.

Continuous Squeeze Film Stiffness
For the continuous regime, Blech [9] characterizes the con-

tinuous squeeze film by solving the compressible Reynolds equa-
tion in terms of the nondimensional squeeze number (σ), given
for circular plates as

σ =
12µr2

Pad2
gap

ω, (2)

where ω is the excitation frequency in radian, µ is the gas ab-
solute viscosity, and r is the plate radius. Increasing squeeze
number indicates increasing spring force to damping force ratio
in a squeeze film.

Adapted from Blech, the squeeze film stiffness for a circular
plate is given by

kcont = {1+

√
2
σ

[Ac(ber1
√

σ+bei1
√

σ)

−Bc(ber1
√

σ−bei1
√

σ)]} PaA
dgap

, (3)

where A is the area of the plate, Pa is the ambient pressure, and
dgap is the gap spacing beneath the plate1. Calculation of the

1There is a slight error in the formulation of the equation given by Blech in [9]
corrected in equation 3 here through comparison with the original work done by
Crandall [1]
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Figure 2. Variation of the normalized squeeze film stiffness with
squeeze number σ

Kelvin functions (berγ,beiγ) and the coefficients (Ac,Bc) is de-
scribed in the Appendix.

It is noted by Andrews et al. [7] that in the limit of large
squeeze numbers the squeeze film stiffness solutions for square
plates given by Blech converges to

kcont(σÀ 1) =
PaA
dgap

. (4)

In this work, it is numerically confirmed that an identical conver-
gence occurs for solution presented by Blech for circular plates,
as shown in Figure 2. The convergence is rapid and the error in
using equation (4) verses (3) is less then 10% for squeeze num-
bers greater then 200. In addition, for constricted boundary con-
ditions (increased pressure at the edge of the squeeze film due
to non-ideal venting geometry), the problem may solved by su-
perposition and the convergence has been shown to occur more
rapidly [14].

For any particular device operating under fixed pressure con-
ditions, large squeeze numbers are achieved at higher frequen-
cies. For the non-resonate sensors considered here, the upper
end of the frequency range is limited by the resonant response.
Under these conditions, large squeeze number are frequently ex-
perienced and the quantity given by (4) may be used to estimate
the stiffness due to a squeeze film at resonance in many instances.

Ideal Pressure Spring
Insight into equation (4) may be gained by modeling the en-

closed gas particles in the squeeze film as discrete particles, as in
Figure 3. Basic kinetic theory predicts the relation between the
pressure on a surface and kinetic energy of the surrounding gas
particles. A well known result for an enclosed volume (V ) is that

l
^

sin( t)w

vavg
Squeeze Film

Figure 3. The discrete particles of the gas forming a squeeze film each
with average velocity vavg contained in a cavity between plates of per-
pendicular separation l⊥

the force on one surface (Fsur f ) of the volume is given by

Fsur f =
Nmgasv2

⊥
l⊥

, (5)

where N is the number of particles in the volume, mgas is the mass
of each gas particle, v⊥ is the average velocity of the enclosed gas
particles perpendicular to the surface and l⊥ is the dimension of
the volume perpendicular to the surface. [15]

Applying Hooks law (k =− dF
dx ), the stiffness of the enclosed

volume (kvol) under perpendicular (x) displacement of the plate
is given as

kvol =
Nmgasv⊥2

l2
⊥

. (6)

Applying the ideal gas law (PaV = NkBT ) and the velocity due
to the thermal excitation of a particle (v⊥2 = kBT/mgas) to (6)
yields

kvol =
PaV
l2
⊥

=
PaA
dgap

, (7)

which is identical to (4) when the surface displacement is per-
pendicular and l⊥ = dgap. This identity indicates the connec-
tion between the continuous and molecular regimes. From this,
we may make the observation that under high squeeze number
conditions we expect the continuous squeeze film to act like a
perfectly enclosed volume of an ideal gas or a perfect pressure
spring.

Although this analysis considers the molecules of the
squeeze film gas as individual particles, the ideal gas assump-
tions used imply that the gas interact most frequently with each
other and little energy is exchanged with the vibrating plate.
Such assumptions would be expected to be valid up to the limit
of the Knudsen number equal to one (Kn = 1). Once the unit
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Knudsen number is traversed, the transition to the free molec-
ular regime is entered and the gas molecules will contact the
surfaces more frequently then each other and ideal gas assump-
tions may not be valid. In such regimes, it may be necessary to
consider the energy gain in the squeeze film due to momentum
exchange between individual molecules and the vibrating plate
element [10, 16].

Comparing the limits of the two approaches, the application
of (4) and (7) can be limited to a specific range of conditions.
From the continuous film derivation, the simplified expression
holds true only under conditions in which large squeeze numbers
(large gap aspect ratios (r/dgap), reduced pressures, or high exci-
tation frequencies) are experienced. From the discrete molecule
model, the expression holds only when Knudsen numbers less
then one (relatively high pressures) are experienced. Thus, char-
acterization of squeeze film stiffness from the resonant character-
istics of microstructures is most readily done under moderately
reduced pressure but not high vacuum. This is true for many mi-
cromachined devices, including the sensors characterized here.

EXPERIMENTAL
The squeeze film stiffness characteristics of passive seismic

proof-mass micromachined vibrometers based on parallel plate
Fabry-Pérot interferometers (FPI) are characterized (Figure 4a).
The optical characteristics of these device require geometries
(high gap aspect ratios, smooth surfaces, no perforations) that
show substantial squeeze film characteristics. The devices are
formed from pairs of micromachined substrates (Figure 4b) with
mirrored surfaces micro-assembled to form parallel faces with a
gap controlled by a spacer and fixed with epoxy. The proof-mass
mirror substrate is composed of ‘thinned-wafer’ flexure connect-
ing the proof-mass to a frame. The reference mirror substrate
contains a similar structure where the flexure has been replaced
by fixed supports to minimize compliance (Figure 5a).

Mechanical Response
Under base displacement y(t), the Laplace domain (s) trans-

fer function sensor is given by

Z(s)
Y (s)

=
−ms2

ms2 + cs f s+ ktot
, (8)

where m is is the mass of the proof mass, cs f is the damping
attributable to the squeeze film, and ktot is the total structural
stiffness composed of the components due to the squeeze film
ks f and the flexure suspension k, such that ktot = ks f +k. (Fig 5b)
When normalized by mass, the parametric model is expressed as

Z(s)
Y (s)

=
−s2

s2 +2ωnζs+ω2
n
, (9)
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(a) Micro-assembled FPI-based inertial sensor (located on a quarter for scale
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(b) An array of pairs of micromachined FPI-based accelerometer components

Figure 4.

where the angular natural frequency ωn =
√

ktot/m and the
damping ratio ζ = cs f /2mωn.

Opto-mechanial Response
The operation of the FPI-based inertial sensor has been ex-

plained in depth previously. [17,18] Briefly, the spectral position
of an interferometric fringe created by an optical cavity between
two reflective surfaces allows the cavity spacing to be closely
monitored. If one surface is the face of a proof mass and the
other of an inertial reference, the deflection between the plates
(z) is related to the displacement of the reference plate (y) with a
proportional shift in the fringe position and is governed by

y =
[

Y (s)
Z(s)

]

s=iω

n(λ−λi)
2

, (10)
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(a) Cross-section of the assembled device

Base

Proof Mass (m)

c =f( )sf wk =f( )sf w

k/2 k/2 Z=X-Y

Y=sin( t)w

X

(b) Lumped parameter model of the passive accelerometer structure with flex-
ure suspension stiffness (k), squeeze film stiffness (ks f ) and damping (cs f )
under sinusoidal base excitation y(t) of frequency ω

Figure 5.

where n is the optical order of the FPI, λi is the initial (resting)
wavelength position of the fringe, and λ is the wavelength po-
sition of the fringe under acceleration a. If the ‘shoulder’ of the
fringe is monitored at a particular wavelength, as with a laser, the
response of the sensor is given as

y =
[

Y (s)
Z(s)

]

s=iω︸ ︷︷ ︸
MECHANICAL

n
2

[
δλ
δT

]

λ0

1
Pλ0︸ ︷︷ ︸

OPTICAL

∆P, (11)

where [δT/δλ]λ0
is the slope of the fringe, Pλ0 is steady-state

optical power transmitted at the operating wavelength λ0 and
∆P is the change in transmitted optical power under excitation,
where the mechanical and optical components of the response
have been labeled. Using (11), the base displacement is moni-
tored as a modulation in the optical power transmitted through
the device at a particular wavelength. In this work, we are con-
cerned with the mechanical characteristics of the sensor and con-
sider the optical characteristics as constant. In this work λo is
chosen to be at the midpoint or half-maximum of the fringe to
maximize [δT/δλ]λ0

over the greatest range.

Experimental Stage
In order to provide swept frequency excitation to the FPI-

based sensor, an excitation stage was developed that could both
vertically excite the sensor sample and provide optical access
through the bulk of the sample. A cylindrical piezoelectric stack

Figure 6. Experimental stage setup for base-excitation of FPI sensor
with pressure variation

was acquired (Steiner & Martins - SMR2412T80) to provide ex-
citation. The electromechanical resonant frequency of the piezo-
electric stack (' 60kHz) was chosen to be greater then the range
of frequencies of the tests to prevent the introduction of resonant
modes from the actuator. Two electrical leads were soldered to
the top and bottom surfaces of the stack. Up to 50 VAC was used
to excite vertical deformation in the stack providing base excita-
tion to the sample. This stage was inserted into a vacuum cham-
ber under which the pressure could be varied from less then 1 torr
(133 Pa) to atmospheric pressure. Two collinear optical windows
were installed on the stage to provide optical access through the
stage, the excitor and the sample. A pigtailed collimated fiber
was connected to the optical source and used as an emitter to
provide the pick-off signal to the sample. A similar collimated
fiber was aligned collinear with the emitter to collect the optical
signal.

Both laser and broadband sources were used with this stage:
the first for the static optical characterization of the device and
the second for the dynamic characterization. When the tunable
laser source (HP 8168E) was used, the optical collector was cou-
pled to a photo-collector (Thorlabs PDA255) that sampled the
optical power of the transmitted signal. The voltage signal from
the photo-collector was then acquired by a dynamic signal ana-
lyzer (HP 35665A).

The piezo-excitation voltage was controlled by the dynamic
signal analyzer such that during swept sign analysis the sample
response voltage modulation was kept constant to within 1dB
of variation. This ensures that under excitation (a) the fringe
shift is small in comparison to the fringe width (FWHM) and the
optical properties of [δT/δλ]λ0

can be considered as constant and
(b) the proof mass deflection has a constant excited amplitude
throughout the test. Since the voltage applied to the piezo-stack
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ing half the free spectral range (FSR) and full-width at half maximum
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stage (Vstage) is proportional to the base displacement y and the
voltage from the photo-collector (VFPI) is proportional to the FPI
response due to the proof-mass displacement z, the frequency
response can evaluated by

[
Z(s)
Y (s)

]
∝ VFPI

VStage
.

Optical Characterization
The close relationship between gap spacing and the optical

characteristics that provides the device with its sensing mech-
anism also provides gap characterization precision not readily
available in other micromachined structures. Figure 7 shows
the static optical characteristics of the tested sample. From
the well established characteristics of the parallel plate Fabry-
Pérot interferometer, the order n = λc/FSR = 21, the FPI res-
olution or finesse N = FSR

FWHM ' 3, and in air the cavity gap
dgap = nλc/2 = 16.5µm [19]. Thus, the squeeze film gap as-
pect ratio is r/dgap = 60. The fringe slope at λo at the half-
maximum can be characterized directly as from figure 7 and is
[δT/δλ]λ0

= 0.05nm−1.
The fringe was limited to shifts of' 0.2nm. From the optical

sensitivity of the device and the control voltage, an maximum
excitation amplitude of ±22pm (±22 · 10−12m) is determined.
For the nominal dgap = 17µm, a total deflection of ' ±0.1% of
the gap was maintained throughout the excitation tests.

Experimental Results
The frequency response of a number of FPI-based ac-

celerometers were obtained. For example, Figure 8 shows the
frequency response of a device under base-displacement excita-
tion. Note the general shift to higher resonant frequencies as the
pressure is increased indicative of squeeze film stiffening. In-
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Figure 8. Frequency response at resonance of a FPI-based vibrometer
at various pressures

creased damping associated with the squeeze film is noted in re-
sponse peak broadening with pressure. The phase response of
the device yields a measure of the undamped natural frequency
( fn = ωn/2π) of the device by calculating the π/2 phase shift
cross-over according to

fn =
√

f π
4

f 3π
4
, (12)

where f π
4

and f 3π
4

are the frequencies of the π
4 and 3π

4 phase shift
points. [20]

Using (12), the natural frequencies are extracted. From the
definition of natural frequency, the mass normalized squeeze film
stiffness is calculated from each frequency response curve ac-
cording to

ks f

m
= ω2

n−
k
m

. (13)

The proof mass (m) is readily estimated from the sensor geome-
try. The normalized flexure stiffness is k/m = (2π fn)2, where fn
is calculated according to (12) from the resonant response under
the lowest available pressure.

Using the preceding technique, Figure 9 shows the response
of the squeeze film stiffness versus that predicted by the theoret-
ical expression presented previously in (3) and (4). In order to
approximate the response from nonideal venting conditions the
squeeze number was scaled by a factor of ten to match the ex-
perimental data. One can identify two regions of interest in the
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response. At high pressure and low Knudsen number, the contin-
uous theory presented by Blech accurately predicts the features
of the response. As the squeeze number increases and the Knud-
sen number approaches one from the left-hand side, the behavior
can be predicted by the ideal pressure spring response of (4) and
(7).

DISCUSSION
Accelerometer Performance

Multiplying (9) by 1/s2 yields the mechanical response of
the FPI-based vibrometer under base acceleration Ay as

Z(s)
Ay(s)

=
−1

s2 +2ωnζs+ω2
n
. (14)

Passive vibrometers are used as non-resonate accelerometers
at frequencies in the flat, gain stable frequency response region
below their natural frequency (ωn). This is done in order to main-
tain a constant response across all the detected frequencies. The
extent of this region is known as the mechanical or open-loop
sensor bandwidth. From (14) as s→ 0, non-resonate accelerom-
eters have the low-frequency response or DC gain

z
ay

=− 1
ω2

n
. (15)

Using (15), from (11) the FPI-based accelerometer response
is

a =−ω2
n

n
2

[
δλ
δT

]

λ0

1
Pλ0

∆P, (16)
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Figure 10. General performance trade-offs of accelerometers with con-
stant lumped parameters and linear response characteristics

such that increasing the sensor’s natural frequency decreases the
gain and reduces the acceleration sensitivity.

For systems with subcritical, nonzero damping levels (0 <
ζ < 1), (15) is generally valid within one dB of linearity for the
frequency band up to one-third of the natural frequency [8]. For
lumped parameter estimation, the operational sensor bandwidth
is proportional to natural frequency and can be estimated as

∆ fBW ' 1
3

ωn

2π
. (17)

For such sensors as the natural frequency is increased to in-
crease the bandwidth, the gain of the device is necessarily re-
duced. Thus, a fundamental trade-off between sensitivity and
bandwidth is observed in passive accelerometers. Figure 10
shows the response of an ideal accelerometer according to the
linear model (9) for both a high and low natural frequency fre-
quency suspended proof-mass accelerometer illustrating these
trade-offs.

Squeeze Film Effect on Frequency Response
The natural frequency and the damping ratio are readily

evaluated from the resonate response of the device. Assuming
a lumped parameter model, the accelerometer response can be
evaluated from the response according to (14). The bandwidth
and gain of the sensor can be estimated from this response.

However, it has been shown that squeeze films have proper-
ties which are strongly frequency dependent. At any given op-
erating conditions, the squeeze number will vary linearly with
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Figure 11. Calculated shift in the components and total proof mass sus-
pension stiffness due to frequency dependence of squeeze films for the
experimental characterization shown in Figures 8 and 9

excitation frequency ω and the squeeze film stiffness will vary
according to (3), as shown in Figure 2. Accordingly, system
with strong squeeze film characteristics will not be accurately
modeled by the lumped parameters evaluated at the resonate fre-
quency. Due to the dependence of both the sensitivity and band-
width of such sensors on the device structural stiffness, variation
of the stiffness with frequency must be considered to accurately
predict sensor performance. Only by accurately identifying the
frequency independent (k) and frequency dependent (ks f ) com-
ponents of stiffness, the total stiffness (ktot) can be correctly cal-
culated and the sensitivity and bandwidth can be accurately mod-
eled.

Figure 11 shows the characteristics increase of the stiffness
with frequency for the system with parameters extracted from
figure 8. The frequency independent (k) component of stiffness
is calculated from the response at the lowest available pressure.
The squeeze film component (ks f ) is calculated from the contin-
uous squeeze film stiffness relationship of (3). The total stiffness
is the sum of the two, ktot = k + ks f (ω).

The linear model of (8) is used to evaluate the response un-
der these nonlinear stiffness characteristics. This model is eval-
uated for ktot calculated for each frequency ω in the range and
used to calculate the magnitude response at that excitation fre-
quency. At each individual frequency excitation, a constant ktot
is assumed. The linear model of (14) is then used to estimate
the frequency response at that frequency and this estimation is
completed at each of the frequencies in the range. In this way
the nonlinear, frequency dependent response is estimated using
the linear model according to the known frequency dependence
of the squeeze film.

The results of the nonlinear response (squeeze film) estima-
tion of the FPI-based vibrometer to acceleration input are shown
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Figure 12. The analytically estimated mechanical response of the ac-
celerometer under the properties calculated from the experimental char-
acterization from Figures 8 and 9

in Figure 12. Also shown are the responses according to the
linear model for the the properties of the response under vac-
uum and one atmosphere. These are estimated using the lumped
parameters calculated from the experimental resonate responses
of figure 8 obtained under the lowest available pressure and at-
mospheric pressure2. Since the frequency dependance of the
stiffness characteristics are included, the squeeze film response
shows a more accurate characterization of the sensor response in
ambient conditions then that estimated from an estimation of the
lumped parameters from a single resonate response.

Bandwidth and Gain Trade-off
For the lumped parameter estimates, the following is ob-

served. The response under vacuum has a mechanical gain 2.7dB
over that of the response under atmospheric pressure. However,
the bandwidth (less then 1dB amplitude response variation) un-
der low vacuum is limited to ∼ 1kHz less then that of the at-
mospheric response. Significantly, the nonlinear (squeeze film)
response characteristics show neither trade-off and shows the
higher performance advantages associated with both of the lin-
ear models.

Since the squeeze film stiffness is insignificant at lower fre-
quencies within the sensor bandwidth, the actual response retains
high gain characteristics identical to that of the response at low
vacuum. As the frequency increases, the squeeze film stiffness
increases and becomes a larger component of the total system
stiffness. This retards the resonant response relative to frequency
and increased the flat frequency response region used for the

2Estimation of the natural frequency from the resonant response was done
from the phase response according to (12). Estimation of damping ratio was
done using half-power points [21].
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sensor bandwidth. Thus, the characteristic gain and bandwidth
performance trade-off in non-resonant accelerometers can be re-
duced by the use of structures that have a high level of squeeze
film stiffening. Such an effect may be used to extend the band-
width of non-resonant sensors without sacrificing gain by maxi-
mizing squeeze film stiffness in device design.

For the sensor characterized here, we observe a dynamic per-
formance trade-off between a 15% loss in bandwidth for the low
pressure response in which the squeeze film stiffness has been
eliminated versus a 27% loss in mechanical sensitivity due to the
shift to a higher natural frequency under the the atmospheric re-
sponse. By both decreasing the low frequency stiffness and elon-
gating the flat frequency response region by retarding the reso-
nant response, the ambient response shows that the performance
with a squeeze film eliminates both these performance losses.

CONCLUSIONS

This paper characterizes the nonlinear effects of squeeze
film stiffening on the performance of a high performance MEMS
non-resonant inertial sensor. It is shown that such effects will ex-
tend the operational frequency range of the devices by retarding
the resonate response that usually limits the sensing bandwidth.
In addition, this performance increase will occur without the tra-
ditional gain trade-off associated with linear systems of this type.
This is due to the frequency dependence of squeeze film stiffness
due to strengthening operation at higher frequencies. Employing
a unique vacuum micro-vibration stage with optical ports and us-
ing resonant vibration testing methods, the squeeze film stiffness
of this device is extracted. The squeeze film stiffness under vary-
ing pressure is compared to established analytical models. The
connection between these models and kinetic gas theory is estab-
lished to confirm the results under the Knudsen numbers (sparse
gas) conditions approached in these devices. When compared to
linear models normally employed to describe such systems, it is
experimentally observed that the dynamic performance trade-off
as high as a 15% loss in frequency bandwidth versus a 27% loss
in mechanical sensitivity is largely eliminated with the inclusion
of nonlinear squeeze film stiffness effects.
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Appendix
The Kelvin functions ber and bei are given by

berγ(x)+ ibeiγ(x) = Jγ(xe3πi/4) (18)

where Jγ() is a Bessel function of the first kind.
The coefficients of (3), Ac and Bc, are given as

Ac =
bei
√

σ
ber2

√
σ+bei2

√
σ

(19)

Bc =− ber
√

σ
ber2

√
σ+bei2

√
σ

(20)
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