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Abstract

 

This paper reports a novel design concept for micromachined gyroscopes with inherent disturbance-rejection capabilities. The
proposed approach is based on increasing the degrees-of-freedom (DOF) of the oscillatory system by the use of two indepen-
dently oscillating interconnected proof masses. Utilizing dynamical amplification in the 4-DOF system, inherent disturbance
rejection is achieved, providing reduced sensitivity to structural and thermal parameter fluctuations and damping changes over the
operating time of the device. In the proposed system, the first mass is forced to oscillate in the drive direction, and the response of
the second mass in the orthogonal direction is sensed. The response to the rotation-induced Coriolis force has two resonant peaks
and a flat region between peaks. Nominal operation of the device is in the flat region of the response, where the gain is less sensi-
tive to frequency fluctuations. Simulations indicate over 15 times increase in the bandwidth of the system due to the use of the
proposed design concept. In addition, the gain in the operation region has low sensitivity to damping changes. Consequently, by
utilizing the disturbance-rejection capability of the dynamical system, improved robustness is achieved, which might relax tight
fabrication tolerances and packaging requirements, and thus, reduce the production cost of micromachined gyroscopes.
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1. Introduction

 

With the advances in micromachining technologies, low cost
inertial micro-sensors on-a-chip are beginning to enter the
market. Derived from the conventional Integrated Circuit (IC)
fabrication technologies, micromachining processes allow
mass-production of microstructures with moving parts on a
chip controlled by electronics integrated on the same chip.
Optimistic projections predict that in a near future, expensive
and bulky conventional inertial sensors will be replaced by
their low-cost and micro-sized counterparts without any
compromise in performance. Micromachined gyroscopes
could potentially provide high accuracy rotation
measurements leading to a wide range of applications
including navigation and guidance systems, automotive safety
systems, and consumer electronics. Gyroscopes are probably
the most challenging type of transducers ever attempted to be
designed using MEMS technology. Truly low-cost and high-
performance devices are not on the market yet. Due to
complexity of their dynamics, the current state of the art
micromachined gyroscopes require an order of magnitude
improvement in performance, stability, and robustness.

All existing micromachined rate gyroscopes operate on the
vibratory principle of a single proof mass suspended by
flexures anchored to the substrate. The flexures serve as the
flexible suspension between the proof mass and the substrate,
making the mass free to oscillate in two orthogonal directions

- the drive and the sense [1] (Fig. 2a). The proof mass is driven
into resonance in the drive direction by an external sinusoidal
force. If the gyroscope is subjected to an angular rotation, the
Coriolis force is induced in the y-direction. If the drive and
sense resonant frequencies are matched, the Coriolis force
excites the system into resonance in the sense direction. The
resulting oscillation amplitude in the sense direction is
proportional to the Coriolis force and, thus, to the angular
velocity to be measured.

 

Fig. 1: Conceptual sketch of the micromachined dual-mass z-axis
gyroscope.
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To achieve the maximum possible gain, the conventional
gyroscopes are designed to operate at the peak of the response
curve. This is typically achieved by matching drive and sense
resonant frequencies (Fig. 2b). However, the system is very
sensitive to variations in system parameters causing a shift in
the resonant frequency. Under high quality factor conditions
the gain is high, or the amplitude of the response is large;
however the bandwidth is extremely narrow. This results in
high sensitivity of the device not only to the Coriolis force,
but also to any disturbance in the dynamical system
parameters. For example, a 1% fluctuation in frequency
matching between drive and sense modes will produce an
error of 20% in the output signal gain [4]. In addition, the
gain is affected significantly by fluctuations in damping
conditions (Fig. 2b).

Fabrication imperfections are inevitable, and affect material
properties and geometry of MEMS structures. For surface
micromachining, the thickness of the suspension elements is
determined by deposition process, and the width is affected
by etching process. In addition, Young's Modulus of the
structure is affected by deposition conditions. Variations in
elastic modulus, beam thickness or residual stresses have
drastic effect on dynamic response of gyroscopes, causing
resonant frequency shifts or quadrature errors. Generally,
very sophisticated control electronics is used to provide
operation in the region of the resonance peak [6].
Furthermore, during the operation time of these devices,
fluctuations in the ambient temperature alter the gyroscope
geometry together with structural properties; and pressure
fluctuations affect the damping conditions, resulting in
significant errors.

To eliminate the limitations of the existing micromachined
gyroscopes, a design approach that does not require the
system to operate in resonance is presented in this paper. The
proposed architecture suggests the use of two independently
vibrating proof masses in the dynamical system (Fig. 1)
instead of one, as this is typically done in the conventional
devices. The first mass is forced to oscillate in the drive
direction, and this forced oscillation is amplified by the
second mass. The response of the second mass in the
orthogonal sense direction is monitored. The resulting 4-DOF
dynamic system has a more favorable frequency response,
and can operate in a wider frequency band with insignificant
change in the gain. The device is demonstrated to have
improved robustness against expected fabrication and
packaging fluctuations, especially against damping variations
due to ambient pressure. We first present, in Section 2, the
design approach and the principle of operation. The dynamics
of the device is then analyzed in Section 3, and a MEMS
implementation of the design concept is presented in Section
4. The detailed analysis of sensitivity of the device to
fabrication variations, temperature fluctuations, and pressure
changes is fully developed in Section 5.

 

Fig. 2: (a) A conventional rate gyroscope has a single proof mass
which is free to oscillate in two principle directions: drive and sense.
(b) The lumped model of the overall 2-DOF dynamical system. (c)
The response of the system can be viewed as a 1-DOF system
excited by the Coriolis force. Note that the gain is very sensitive to
matching of drive and sense mode resonant frequencies, as well as
damping fluctuations.

(a)

(b)

(c)
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2. Design Approach and Principle of Operation

 

In contrast to the conventional micromachined gyroscopes,
the proposed design approach utilizes a 4 degrees-of-freedom
(DOF) dynamic system. In order to achieve dynamic
amplification of mechanical motion, a system containing two
vibrating proof masses (Fig. 4) is used. The increased
degrees-of-freedom results in an increased design parameter
space, which allows the dynamic response of the gyroscope to
be shaped as needed with much less compromise in
performance. An implementation of the conceptual design,
Fig. 3, is illustrated in Fig. 4 (see details in [9]).

 

Fig. 3: Lumped mass-spring-damper model of the dual-mass gyro-
scope. The first mass is driven in the x-direction, and the response of
the second mass along the y-axis is sensed.

 

2.1. Principle of Operation:

 

The dynamic system of the proposed micromachined
gyroscope consists of the following main components: two
vibrating proof masses suspended above the substrate, the
flexures between the active mass and the ground which are
anchored to the substrate, and the flexures between active
mass and the passive mass which mechanically couple both
masses (Fig. 4).

The gyroscope has two orthogonal principle axes of
oscillation: the drive direction (x-axis in Fig. 3) and the sense
direction (y-axis in Fig. 3). Both of the proof masses are
rendered free to oscillate in the drive and sense directions by
the suspension system.

The active mass (

 

m

 

1

 

 in Fig. 3) is electrostatically forced to
oscillate in the drive direction by the comb-drive structures
built on each side of the mass (Fig. 4). There is no
electrostatic force applied on the passive mass (

 

m

 

2

 

 in Fig. 3),
and the only forces acting on this mass are the elastic
coupling forces and the damping forces. The design approach
is based on dynamically amplifying the oscillation of the
active mass by the passive mass, as will be explained in
Section 4.3. The response of the passive mass in the sense
direction to the rotation-induced Coriolis force is monitored
by the air-gap sense capacitors built around the passive mass,
Fig. 4, providing the angular rate information.

With appropriate selection of dynamical system parameters
including the masses and the spring rates, one can obtain the
frequency response in the sense direction of the gyroscope
illustrated in Fig. 5. There exists three regions of interest on
this response curve: two resonant peaks, regions 1 and 3; and
a flat region between the peaks, region 2. According to the
proposed design approach, the nominal operation of the
gyroscope is in the flat region, where the signal gain is
relatively high, and the sensitivity of the gain to driving
frequency variations is low. Because of the widened
bandwidth, a 1% variation in natural frequencies of the
system results in only 0.8% error in the output signal,
whereas the same fluctuation will produce an error of 20% in
the conventional micromachined gyroscopes [4].

 

Fig. 4: Schematic illustration of a MEMS implementation of the
dual-mass z-axis gyroscope.

Fig. 5: Response of the dual-mass gyroscope in the flat operation
region is insensitive to resonant frequency fluctuations and has over
15 times wider bandwidth than in conventional gyroscopes
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Fig. 6: (a) Representation of the position vector of a body relative to
the rotating frame. (b) Representation of the position vectors of the
proof masses of the gyroscope relative to the rotating "gyroscope
frame" B.

 

3. Dynamics of the Gyroscope

 

The dynamics of the gyroscope should be considered in the
non-inertial frame. Referring to Fig. 6, the expression of
absolute acceleration (in the inertial frame) of a rigid body
with the position vector  attached to a rotating reference
frame 

 

B

 

 is

where the subscript 

 

A

 

 denotes "relative to inertial frame 

 

A

 

", 

 

B

 

denotes "relative to rotating gyroscope frame 

 

B

 

",  and 
are the velocity and acceleration vectors with respect to the
reference frame respectively,  is the angular velocity of the
gyroscope frame, and " " operation refers to cross-product

of two vectors. The reference rotating gyroscope frame is
assumed to be non-accelerating. The last term  in the
equation, the Coriolis term, is of special interest since the
operation of the gyroscope depends on excitation of system in
the sense direction by the Coriolis force due to this term.
Thus, for a mass driven into oscillation in the x-direction, and
subject to an angular rate of  about the z-axis, the Coriolis
acceleration induced in the y-direction reduces to

Similarly, when the active and passive masses are observed in
the non-inertial rotating frame, the "gyroscope frame",
additional inertial forces appear acting on both masses. The
equations of motion for the two-mass system can be written
as:

where  and  are the position vectors,  and  are the
velocity vectors of the masses defined in the gyroscope frame,

and  are the opposing coupling forces between the
masses that each mass applies on other depending on relative
position , including spring and damping forces. 
consists of  spring and damping forces between the active
mass and the substrate, and includes the passive mass -
substrate damping force. Since both masses are subject to an
angular rate of  about the axis normal to the plane of
operation (z-axis), the equations of motion along the x-axis
and y-axis become:

(1)

where  is the driving electrostatic force applied to the
active mass, and  is the angular velocity applied to the
gyroscope about the z-axis.

The overall dynamic model can be reduced having the active
mass driven into forced oscillation in drive direction by 
with a constant amplitude  and a frequency . Assuming

the oscillation of the first mass in the drive direction is set by
the control system to be

,

the system (11) reduces to 3 degrees of freedom. The
equations of motion of the reduced system become [4]:

(2)

where , , , ,
, and  is the natural frequency in the sense

direction. Proper selection of system parameters including the

masses 

 

m

 

1

 

 and 

 

m

 

2

 

, the spring constants 

 

k

 

1x

 

, 

 

k

 

1y

 

, 

 

k

 

2x

 

, and 

 

k

 

2y

 

will result in the frequency response illustrated in Fig. 5.
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4. Implementation of the Design Concept

This section describes the principle elements of a MEMS
implementation of the conceptual design presented in Section
2. First the stiffness and the damping components of the
dynamic system are analyzed, and then the issue of achieving
dynamic amplification in the drive mode is addressed.

Fig. 7: The layout of the dual-mass z-axis gyroscope.

4.1. Suspension Design

The complete suspension system of the device consists of two
sets of four flexible beams per each mass. For each proof
mass, one set of fixed-guided beams provides the desired
spring rate in the drive direction, while the other set provides
the desired spring rate in the sense direction [9]. For a single
fixed-guided beam, the translational stiffness in the
orthogonal direction to the axis of the beam is given by [10]

where E is the Young's Modulus, and I is the second moment
of inertia. The beam length, thickness, and width are L, t, and
w, respectively.

Spring rates for a mass in drive or sense direction are
determined by four fixed-guided beams if the axial strains in
the other beams are neglected. This assumption is reasonable
in this analysis, since the axial stiffness of a beam,

, is generally four orders of magnitude (
times) larger than the fixed-guided stiffness, which means the
beams under axial load can be assumed infinitely stiff. Thus,
each stiffness value in the dynamic system can be calculated
as

where w and t are the width and thickness of the beam
elements in the suspension, respectively. The individual beam
lengths are shown in Fig. 8. Finite element analysis of the
gyroscope is performed using the software package
ANSYSTM to validate the assumptions in the theoretical
analysis. The resonant frequencies obtained from modal
analysis results matched the theoretical calculations within
0.1% error. Furthermore, the unwanted resonant modes were
observed to be over 4 kHz higher than the nominal
operational frequency.

Fig. 8: Suspension system configuration provides two degrees of
freedom (in drive and sense directions) for the active proof mass and
the passive proof mass.
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Fig. 9: The first three resonant modes of the gyroscope. The simulation is performed using the finite element analysis package ANSYSTM.
FEA results were observed to agree with the theoretical analysis within 0.1% error.

4.2. Damping Estimation

The four damping coefficients (c1x, c1y, c2x, and c2y) in the
dynamical system shown in Fig. 3 are due to the viscous
effects of the air between the masses and the substrate, and in
between the comb-drive and sense capacitor fingers. For the
active mass, the total damping in the drive mode can be
expressed as the sum of damping due to Couette flow between
the  mass and the substrate, and the damping due to Couette
flow between the integrated comb fingers [2]:

where A1 is the area of the active mass, z0 is the elevation of
the proof mass from the substrate, t is the thickness of the
structure, Ncomb is the number of comb-drive fingers, ycomb is
the distance between the fingers, lcomb is the length of the
fingers, p is the ambient pressure within the cavity of the
packaged device, and µp= 3.7 10-4 kg/(m2.s.torr) is the
viscosity constant for air.

In the sense mode, the total damping is the sum of damping
due to Couette flow between the proof mass and the substrate,
and the squeeze film damping between the integrated comb
fingers [2]:

However, for the passive mass, the total damping in the drive
mode results from Couette flow between the mass and the
substrate, as well as Couette flow between the air-gap
capacitor fingers [2]:

where A2 is the area of the passive mass, Ncapacitor is the
number of air-gap capacitors, ycapacitor is the distance
between the capacitor fingers, and lcapacitor is the length of
the fingers.

Damping of the passive mass in the sense mode can be
estimated as the combination of Couette flow between the
proof mass and the substrate, and the Squeeze Film damping
between the air-gap capacitor fingers [2]:

These pressure dependent effective damping values will be
used in the parametric sensitivity analysis simulations of the
dynamic system.

Fig. 10: Lumped model of the drive mode of dual-mass gyroscope.
The passive mass (m2) acts as a vibration absorber, to amplify the
motion of the active mass (m1).
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4.3. Dynamic Amplification in Drive Mode

To achieve the maximum possible response of the gyroscope,
amplitude of the drive-direction oscillation of the passive
mass should be maximized. In the drive mode, the dynamic
system is simply a 2-DOF system. A sinusoidal force is
applied on the active mass by the comb-drive structure.
Assuming a lumped parameter model, the equations of
motion in the drive mode become:

When a sinusoidal force  is applied on the
active mass by the interdigitated comb-drives, the steady-state
response of the 2-DOF system will be

where  and  are the resonant
frequencies of the isolated active and passive mass-spring
systems, respectively. When the driving frequency  is
matched with the resonant frequency of the isolated passive
mass-spring system, i.e. , the passive mass
moves to exactly cancel out the input force F applied on the
active mass, and maximum dynamic amplification is achieved
[7].

Fig. 11: (a) The magnitude plots of each proof mass. At the antiresonant frequency, which is the resonant frequency of the isolated passive
mass-spring system, oscillation amplitude of the active mass approaches to zero.  (b) The phase plots of each proof mass.

Fig. 12: (a) The dynamic amplification ratio reaches its maximum at the antiresonant frequency, i.e., . (b) With a balanced
interdigitated comb-drive scheme, a 1 um amplitude is achieved by the passive mass with a bias voltage of about 20V.
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The values of oscillation amplitude in the drive-direction can
be calculated knowing the magnitude of sinusoidal force

 applied on the active mass by the comb-
drive structure. Applying  to one set of comb
drives (e.g. the set on the right side in Fig. 4, and

 to the opposing set (the set on the left side),
a balanced interdigitated comb-drive scheme can be imposed.
With this driving scheme, the resulting net electrostatic force
is linear to , which will lead to simplification of the
dynamic model:

where  is the sinusoidal voltage, VDC is the
constant bias voltage, z0 is the finger thickness, and y0 is the
finger separation. Thus, for the gyroscope, the magnitude of
the applied drive force is simply

With this balanced interdigitated comb-drive scheme, a 1 µm
oscillation amplitude is achieved by the passive mass in
atmospheric pressure when a bias voltage of about 20V and a
5V alternating voltage is applied.

5. Parametric Sensitivity Analysis

5.1. Fabrication Variations

Fabrication variations can affect the parameters of gyroscopes
directly. For micromachining processes, the dimensions of the
suspension beam elements are uncertain for different reasons.
The length of the beams are determined solely by lithography,

and are extremely accurate. However, the thickness is
determined by deposition process, and the width set by
lithography is affected by etching process. Thus, these two
parameters are less accurate, and can vary by 1% from wafer
to wafer.

In conventional gyroscopes, fabrication variations result in
resonant frequency shifts, requiring compensation by
sophisticated control electronics. Yet, for the proposed
system, a 0.05 µm deviation from 2 µm nominal beam width
or a 0.1 µm deviation from 2 µm nominal structure thickness
results in less than 1% error in the gain (Fig. 15a and Fig.
15b, respectively). Moreover, a variation in deposition
conditions that affect the Young's Modulus of the gyroscopes
structure by 10 GPa causes less than 0.5 % error (Fig. 15c).
The same parameter variations in a conventional
micromachined gyroscope without compensation by control
electronics result in over 10% error.

5.2. Pressure Fluctuations

Pressure fluctuations can have significant effects on
resonance dependent conventional gyroscopes (Fig. 2). In
contrast, since the proposed device utilizes dynamic
amplification of mechanical motion, and does not operate in
resonance, the response is insensitive to damping changes in
the operation region. For a possible vacuum leakage from 100
militorrs to 500 militorrs, e.g. due to package sealing
degradation over the operation time of the device, the
response gain reduces by less than 2% (Fig. 15d), where the
same pressure variation can result in over 20% gain reduction
in a conventional gyroscope design.

Fig. 13: Fabrication variations can affect the geometry of the device by varying thickness of the structure or the width of the suspension beam
elements. The proposed design illustrated in (b) is demonstrated to be more robust against these variations than the conventional approach
illustrated in (a).
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Fig. 14: Change in the response due to: (a)0.05 µm variation in the width of suspension beams, (b)0.1 µm variation in structure thickness, (c)
10 GPa variation in Young's Modulus.

Fig. 15: (a) Ambient pressure change form 100 militorrs to 500 militorrs results in 2% gain reduction for the proposed gyroscope design, (b)
The same pressure change causes over 40 times more gain reduction for a conventional gyroscope design with similar geometry.

5.3. Thermal Fluctuations

Variations in the temperature of the structure can perturb the
dynamical system parameters by three means: due to the
inherent temperature dependence of Young's Modulus, due to
changes in suspension geometry because of thermal
expansion, and due to the thermally induced localized stress
effects. Young's modulus of the structure at a given
temperature can be calculated by [8]:

where  is the Young's modulus for fine-grained
polysilicon at 0 0C (assumed 169 GPa),  is the
temperature coefficient of Young's modulus for polysilicon
(assumed [8] -75 ppm/0C), and  is the temperature

change. To reflect the effects of temperature dependent elastic
modulus and thermal expansion on the resonant frequency of
linear microresonators with folded-beam suspensions, the
temperature coefficient of the resonance frequency can be
determined as [8]:

where  is the temperature coefficient of the Young's
modulus, and  is the temperature coefficient of thermal
expansion, which is assumed 2.5 ppm/0C; leading to a
perturbed resonant frequency of
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Fig. 16: (a) Finite element simulation of the device with a uniform
temperature loading of 100 0C. Thermally induced localized stresses
were observed only in the drive-direction beam elements of active
mass, effecting only . (b) Static finite element analysis of the
thermally loaded system with the modified Young's modulus. (c)
Finite element analysis of a conventional gyroscope with similar
geometry, under the same thermal loading. (d) Static analysis of the
conventional design indicate the localized stresses leading to fre-
quency mismatch between the drive and the sense resonant frequen-
cies.

However, for the proposed suspension system, more accurate
results can be found conducting finite element analysis of the
system. To be able to capture parameter changes due to the
temperature dependence of Young's Modulus, due to thermal
expansion generated alteration in suspension geometry, and
due to thermally induced stresses; a finite element model of
the device was created using the finite element analysis
software package ANSYSTM. First, a uniform temperature
loading of 100 0C was applied to each surface, and the
thermally induced localized stresses were observed. The
results of the thermal finite element simulation indicated that
a stress of 82 MPa was induced only in the drive-direction
beam elements of active mass, effecting only . The other
beam elements of the suspension system were observed
stress-free (Fig. 17a). Then, static structural analysis of the
thermally loaded system with the modified Young's modulus
was performed to calculate each of the four spring rates ( ,

, , and ) in the dynamical system shown in Fig. 3.
The same procedure was also carried out for a uniform
temperature loading of -100 0C. The simulation of the
dynamical system with the perturbed parameters due to
thermal loading indicated a deviation of less than 0.9% in the

gain. Finite element analysis of a conventional gyroscope
with similar geometry demonstrated about 7% gain error for
the same thermal loading.

Fig. 17: (a) Simulation of the proposed design's dynamical system
with the perturbed parameters due to thermal loading was per-
formed, indicating less than 0.9% gain deviation. (b) Simulation of
the conventional design with the perturbed parameters indicates 7%
gain error for the same thermal loading.

5.4. Residual Stresses

Accumulation of residual stresses in the structure directly
affect the properties of the dynamical system. In the presence
of residual stresses, the beam stiffness values, and thus the
overall system spring rates change. Axial residual stresses in
x direction effect only the y-direction spring rates ( and

) of the suspension, while axial residual stresses in y
direction effect only the x-direction spring rates (  and

).
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Thus, for the suspension system with an x-direction axial
residual stress of  and a y-direction axial residual stress of

, the spring rate values become [3]

where ,  are the dimensionless strain
factors for beam bending, and ,

, , and .

However, an axial residual stress  in the x direction effects
the sense-direction spring rates (  and ) of the same
order, and an axial residual stress  in the y direction effects
the drive-direction spring rates (  and ) of the same
order as well. In result, the overall system response is less
sensitive to residual stresses (Fig. 18). To compare the
sensitivity of the proposed device to the conventional
approach, the designed system and a single mass gyroscope
with the same geometry of the isolated active mass-spring
system were simulated with a 10 MPa compression residual
stress. The single-mass system experienced approximately
2.5% gain reduction, while the proposed device experienced
less than 0.2% deviation in the gain.

6. Conclusion

A new micromachined gyroscope design with inherent
disturbance-rejection is presented, the dynamical system and
the design implementation are analyzed, and effects of
realistic parameter variations on the system response are
investigated. The implementation of the idea is based on the
use of two independently oscillating proof masses. By
utilizing dynamical amplification, the necessity of operation
in the resonance mode is eliminated, and over 15 times

increase in the bandwidth of the system is achieved compared
to the conventional micromachined gyroscopes. The proposed
device is also demonstrated to have improved robustness
against expected fabrication and packaging fluctuations,
especially against damping variations due to ambient
pressure. Sensitivity analysis revealed that, for the same
thermal loading, the device produces 87% less error than
conventional gyroscopes. Moreover, the proposed design was
shown to be approximately 12 times less sensitive to residual
stresses, and 20 times less sensitive to fabrication variations
than conventional gyroscopes. Consequently, with the
presented design approach, tight fabrication tolerances and
packaging requirements can be relaxed resulting in a lower
production cost of MEMS gyroscopes without compensation
in performance.

Fig. 18: Effect of residual stresses (a) in x-direction, (b) in y-direc-
tion.
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