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ABSTRACT OF THE THESIS

Four Degrees-of-Freedom Micromachined Gyroscope

by

Cenk Acar

Master of Science in Mechanical and Aerospace Engineering
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Professor Andrei M. Shkel, Chair

In this thesis, a novel micromachined vibratory rate gyroscope design approach is presented.

The device provides inherent robustness against fabrication variations, and uctuations in the

ambient temperature or pressure during the operation time of the device. With the new

design concept, structural disturbance-rejection is achieved, shifting the complexity of the

control electronics to complexity in the dynamical system. The thesis covers the operation

principle of the design concept, followed by the detailed analysis of gyroscope dynamics. A

MEMS implementation of this design concept is presented together with the details on the

fabricated prototype devices. For demonstration of the improved robustness of the proposed

system, the e�ects of realistic parameter variations on the system response are investigated,

and the sensitivity of the proposed system to these variations is compared to the conventional

design approach.
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Chapter 1

Introduction

In this chapter, a general overview of conventional micromachined gyroscopes, and their oper-

ation principle is presented. Analysis of the dynamics, Coriolis response and implementation

basics of the micromachined vibratory rate gyroscopes is followed by discussion of the limita-

tions of the conventional approach, which de�nes the motivation of this thesis.

1.1 Micro-Electro-Mechanical Gyroscopes (MEMS Gy-

roscopes)

Even though there is an extensive variety of micromachined gyroscope designs and operation

principles, almost all of the reported micromachined gyroscopes use vibrating mechanical

elements to sense rotation. The vibrating mechanical elements have no rotating parts that

require bearings, and hence they can be batch fabricated in micromachining processes. All

vibratory gyroscopes are based on the transfer of energy between two vibration modes of a

structure caused by Coriolis acceleration, which is induced due to an input rotation rate.

Micromachined gyroscopes for measuring rate or angle of rotation can be used in a wide

spectrum of areas including automotive applications for ride stabilization and rollover de-

tection; some consumer electronic applications, such as video-camera stabilization, virtual

reality, and inertial mouse for computers, robotics applications, and a wide range of military

applications; or to provide position information in inertial navigation systems together with

micromachined accelerometers.

Precision �ber-optic gyroscopes, ring laser gyroscopes, and conventional rotating wheel

gyroscopes are too expensive and too large for use in most emerging applications. With

micromachining technologies, sensor size is reduced by orders of magnitude, and fabrication

cost is dropped signi�cantly. Moreover, advances in the fabrication techniques allow the

electronics to be integrated on the same silicon chip together with the mechanical components.
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1.2 Conventional Micromachined Vibratory Rate Gy-

roscopes

This section covers the basic operational principles of conventional micromachined vibratory

rate gyroscopes. First, the dynamics of the vibratory gyroscopes is developed, then the MEMS

implementation basics are presented. Also the response characteristics of the gyroscope to the

rotation-induced Coriolis force is analyzed.

1.2.1 Gyroscope Dynamics

Almost all existing micromachined rate gyroscopes operate on the vibratory principle of a

single proof mass suspended above the substrate. The proof mass is free to oscillate in two

orthogonal directions (Fig. 1.1): the drive direction (x-Axis) and the sense direction (y-Axis)

[1]. The overall dynamical system is simply a two degrees-of-freedom (2-DOF) mass-spring-

damper system.

Figure 1.1: A conventional rate gyroscope has a single proof mass which is free to oscillate in two

principle directions: drive and sense.

The principle of operation can be best understood by considering the rotation-induced

Coriolis force acting on a body observed in a rotating reference frame. The accelerations

experienced by a moving body in a rotating reference frame can be calculated having the

following de�nitions:

FrameA : Inertial frame

FrameB : Rotating reference frame

~rA : Position vector relative to inertial frame A

~rB : Position vector relative to rotating frame B

~� : Orientation of rotating frame B

~R : Position of rotating frame B,

and the time derivative of a vector ~r, which is de�ned in two reference frames A, and B as

~rA, and ~rB, respectively, is given as

_~rA(t) = _~rB(t) + _� � ~rB(t): (1.1)

2



Figure 1.2: Time derivative of a vector in a rotating frame.

Taking the second time derivative of the position vector ~r, the accelerations on a body

moving with the rotating reference frame can be calculated as:

~rA(t) = ~R(t) + ~rB(t) (1.2)

_~rA(t) =
_~R(t) + _~rB(t) + _� � ~rB(t) (1.3)

�~rA(t) =
�~R(t) + �~rB(t) + _� � _~rB(t) + _� � ( _� � ~rB(t)) + �� � ~rB(t) + _� � _~rB(t): (1.4)

With the de�nition of ~vB and ~aB as the velocity and acceleration vectors with respect to

the reference frame, ~aA as the acceleration vector with respect to the inertial frame, A as the

linear acceleration of the reference frame, and ~
 as the angular velocity of the rotating frame;

the expression for acceleration reduces to:

~aA = A+ ~aB + ~
� ~rB + ~
� (~
� ~rB) + 2~
� ~vB: (1.5)

The last term 2~
 � ~vB in the equation is called the Coriolis term. This acceleration term

is of special interest since the rotation rate of the rotating reference frame B can be deduced

by measuring the Coriolis acceleration. Consequently, the rate gyroscopes can be viewed as

an accelerometer measuring the Coriolis acceleration to calculate the rotation rate.

When the acceleration vector of the proof mass is expressed with respect to the inertial

frame by taking the second time derivative of the position vector (Figure 1.3), the equation

of motion become

~Fext = m(A+ ~aB + ~
� ~rB + ~
� (~
� ~rB) + 2~
� ~vB) (1.6)

where A is the linear acceleration and ~
 is the angular velocity of the rotating gyroscope

frame, ~vB and ~aB are the velocity and acceleration vectors of the proof mass with respect to

the reference frame, and ~Fext is the total external force applied to the proof mass.

If the motion is decomposed into the two principle oscillation directions, the drive and the

sense directions, and if the linear accelerations are cancelled out by the control system, the

two equations of motion can be expressed as

m�x + cx _x+ (kx �m(
y
2 + 
z

2))x+m(
x
y � _
z)y = �x + 2m
z _y
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m�y + cy _y + (ky �m(
x
2 + 
z

2))y +m(
x
y + _
z)x = �y � 2m
z _x: (1.7)

Figure 1.3: Schematic illustration of the inertial frame and the rotating gyroscope frame.

For a constant angular rate input _
z = 0, and for angular rates much lower than the driving

frequency of the gyroscope, the terms 
x
2, 
y

2, and 
x
y can be neglected; resulting in the

simpli�ed 2-DOF equations of motion:

m�x + cx _x + kxx = �x + 2m
z _y

m�y + cy _y + kyy = �y � 2m
z _x: (1.8)

The two �nal terms 2m
z _y, and 2m
z _x in the equation are the rotation-induced Coriolis

forces, which cause dynamic coupling between the oscillation axes, and which are used for

angular rate measurement.

1.2.2 Implementation

Most of the reported micromachined vibratory rate gyroscopes have a singe proof mass sus-

pended above the substrate. The proof mass is supported by anchored exures, which serve

as the exible suspension between the proof mass and the substrate, making the mass free to

oscillate in two orthogonal directions - the drive and the sense [1].

The proof mass is driven into resonance in the drive direction by an external sinusoidal

force. The external force is generally the electrostatic forces applied by comb-drive structures

(Figure 1.4), covered in Section 3.2.1. If the gyroscope is subjected to an angular rotation,

the Coriolis force is induced in the y-direction. If the drive and sense resonant frequencies

are matched, the Coriolis force excites the system into resonance in the sense direction. The

resulting oscillation amplitude in the sense direction is proportional to the Coriolis force and,

thus, to the angular velocity to be measured [3]. The sense direction oscillation is detected

generally by air-gap capacitors (Figure 1.4), which is covered in Section 3.2.2, as well.
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Figure 1.4: MEMS implementation of a conventional rate gyroscope.

1.2.3 The Coriolis E�ect

To achieve the maximum possible gain, the conventional gyroscopes are generally designed to

operate at or near the peak of the response curve. This is typically achieved by matching drive

and sense resonant frequencies (Fig. 1.5). However, the system is very sensitive to variations

in system parameters causing a shift in the resonant frequency.

Under high quality factor conditions the gain is high, however, the bandwidth is extremely

narrow. For example, 1% uctuation in frequency matching between drive and sense modes

will produce an error of 20% in the output signal gain [4]. In addition, the gain is a�ected

signi�cantly by uctuations in damping conditions (Figure 1.5).

Fabrication imperfections are inevitable, and a�ect material properties and geometry of

MEMS structures. For surface micromachining, the thickness of the suspension elements is

determined by deposition process, and the width is a�ected by etching process. In addition,

Young's Modulus of the structure is a�ected by deposition conditions [2]. Variations in these

parameters have drastic e�ect on dynamic response of gyroscopes. Generally, very sophis-

ticated control electronics is used to provide operation in the region of the resonance peak

[6]. Furthermore, during the operation time of these devices, uctuations in the ambient

temperature and pressure introduce signi�cant errors (Figure 1.5).
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Figure 1.5: The response of the system can be viewed as a 1-DOF system excited by the Coriolis

force. Note that the gain is very sensitive to matching of drive and sense mode resonant frequencies,

as well as damping uctuations.

1.2.4 Conclusion

In this section, the dynamics of a conventional vibratory rate gyroscope was developed, and

the principle of operation of a MEMS implementation was discussed. It was concluded that the

dynamic system response of the conventional single-mass gyroscope to the rotation-induced

Coriolis force is very sensitive to variations in system parameters. Furthermore, the gain was

observed to be a�ected signi�cantly by uctuations in damping conditions.

1.3 Problem Statement

The current state of the art micromachined gyroscopes require an order of magnitude im-

provement in performance, stability, and robustness. Fabrication variations and uctuations

in the ambient temperature or pressure during the operation time of these devices introduce

signi�cant errors, which have to be compensated by sophisticated control electronics. To

eliminate the limitations of the existing micromachined gyroscopes, complexity of the control

electronics can be shifted to complexity in the dynamical system. The objective of this thesis

is to develop a new dynamical system design approach for gyroscopes, which will have inherent

robustness against parameter variations, and require less active compensation.

6



1.4 Thesis Outline

This thesis covers a novel micromachined vibratory rate gyroscope design approach that pro-

vides inherent disturbance-rejection by the use of two independently oscillating proof masses.

In Chapter 2, the operation principle of the design approach is discussed, and the dynamics of

the 4-DOF system is analyzed. Chapter 3 covers the basics of the MEMS implementation of

the design concept concentrating on the mechanical and electrical components of the system,

along with the details on the fabricated prototype devices. In Chapter 4, the e�ects of real-

istic parameter variations on the system response are investigated, and the robustness of the

proposed system against these variations is compared to the conventional designs. Finally,

the conclusions and the future work are discussed in Chapter 5.

7



Chapter 2

A Novel Design Approach

In this chapter, a micromachined vibratory rate gyroscope design approach that suggests the

use of two independently vibrating proof masses is presented. The principle of operation is

also described. Finally, the dynamics of the 4-DOF system is derived and analyzed.

2.1 Design Approach and Principle of Operation

In contrast to the conventional micromachined gyroscopes, the proposed design approach uti-

lizes a 4 degrees-of-freedom (DOF) dynamic system. In order to achieve dynamic ampli�cation

of mechanical motion, a system containing two vibrating proof masses (Fig. 2.2) is used. The

increased degrees-of-freedom results in an increased design parameter space, which allows the

dynamic response of the gyroscope to be shaped as needed with much less compromise in

performance. An implementation of the conceptual design, Fig. 2.1, is illustrated in Fig. 2.2.

Figure 2.1: Lumped mass-spring-damper model of the dual-mass gyroscope. The �rst mass is

driven in the x direction, and the response of the second mass along the y-axis is sensed.

8



2.1.1 The Design Basics

The dynamic system of the proposed micromachined gyroscope consists of the following main

components: two vibrating proof masses suspended above the substrate, the exures between

the active mass and the ground that are anchored to the substrate, and the exures between

the active mass and the passive mass that mechanically couple both masses (Fig. 2.2).

The gyroscope has two orthogonal principle axes of oscillation: the drive direction (x-axis

in Figure 2.1) and the sense direction (y-axis in Figure 2.1). Both of the proof masses are

rendered free to oscillate in the drive and sense directions by the suspension system.

2.1.2 Principle of Operation

In the proposed design concept, the active mass (m1 in Figure 2.1) is electrostatically forced

to oscillate in the drive direction by the comb-drive structures built on each side of the mass

(Fig. 2.2). There is no electrostatic force applied to the passive mass (m2 in Figure 2.1), and

the only forces acting on this mass are the elastic coupling forces and the damping forces. The

design approach is based on dynamically amplifying the oscillation of the "active mass" by

the "passive mass", as will be explained in Section 3.3. The response of the passive mass in

the sense direction to the rotation-induced Coriolis force is monitored by the Air-Gap Sense

Capacitors built around the passive mass (Fig. 2.2) providing the angular rate information.

Figure 2.2: Schematic illustration of a MEMS implementation of the dual-mass z-axis gyroscope.

With appropriate selection of dynamical system parameters including the masses and the

spring rates, the device will have the frequency response illustrated in Fig.2.3. There exists

three regions of interest on this response curve: two resonant peaks, regions 1 and 3; and a at

region between the peaks, region 2. According to the proposed design approach, the nominal

operation of the gyroscope is in the at region, where the signal gain is relatively high, and
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the sensitivity of the gain to driving frequency variations is low. Since the device is operated

in the at wide-bandwidth region, a 1% variation in natural frequencies of the system results

in only 0.8% error in the output signal, whereas the same uctuation will produce an error of

20% in the conventional micromachined gyroscopes [4].

Figure 2.3: Response of the dual-mass gyroscope in the at operation region is insensitive to resonant

frequency uctuations and has over 15 times wider bandwidth than in conventional gyroscopes.

2.2 Gyroscope Dynamics

The dynamics of the gyroscope should be considered in the non-inertial frame. Referring to

Figure 2.4, the expression of absolute acceleration (in the inertial frame) of a rigid body with

the position vector ~r attached to a rotating reference frame B is

~aA = ~aB + ~
� ~rB + ~
� (~
� ~rB) + 2~
� ~vB: (2.1)

where the subscript A denotes "relative to inertial frame A", B denotes "relative to rotating

gyroscope frame B", ~vB and ~aB are the velocity and acceleration vectors with respect to

the reference frame respectively, ~
 is the angular velocity of the gyroscope frame, and the

operation "�" refers to cross-product of two vectors. The reference rotating gyroscope frame

is assumed to be non-accelerating. The last term, 2~
� ~vB, in the equation, the Coriolis term,

is of special interest since the operation of the gyroscope depends on excitation of system

in the sense direction by the Coriolis force due to this term. Thus, for a mass driven into

oscillation in the x-direction, and subject to an angular rate 
z about the z-axis, the Coriolis

acceleration induced in the y-direction reduces to
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ay = 2
z _x(t): (2.2)

Similarly, when the active and passive masses are observed in the non-inertial rotating

frame, the "gyroscope frame", additional inertial forces appear acting on both masses. The

equations of motion for the two-mass system can be written as

m1 ~a1 = ~F2�1 + ~Fs�1 � 2m1
~
� ~v1 �m1

~
� (~
� ~r1)�m1
_~
� ~r1

m2 ~a2 = ~F1�2 + ~Fs�2 � 2m2
~
� ~v2 �m2

~
� (~
� ~r2)�m2
_~
� ~r2 (2.3)

(a) (b)

Figure 2.4: (a) Representation of the position vector of a body relative to the rotating frame. (b)

Representation of the position vectors of the proof masses of the gyroscope relative to the rotating

"gyroscope frame" B.

where ~r1 and ~r2 are the position vectors, ~v1 and ~v2 are the velocity vectors of the masses de�ned

in the gyroscope frame, ~F2�1 and ~F1�2 are the opposing coupling forces between the masses

that each mass applies on other depending on relative position ~r2 � ~r1, including spring and

damping forces. ~Fs�1 consists of spring and damping forces between the active mass and the

substrate, and ~Fs�2 includes the damping force between the passive mass and the substrate .

Since both masses are subject to an angular rate of 
z about the axis normal to the plane of

operation (z-axis), the equations of motion along the x-axis and y-axis become

m1 �x1 + c1x _x1 + k1xx1 = k2x(x2 � x1) + c2x( _x2 � _x1) +m1

2x1 � 2m1
 _y1 +m1

_
y1 + Fd(t)

m2 �x2 + c2x( _x2 � _x1) + k2x(x2 � x1) = m2

2x2 � 2m2
 _y2 +m2

_
y2

m1 �y1 + c1y _y1 + k1yy1 = k2y(y2 � y1) + c2y( _y2 � _y1) +m1

2y1 + 2m1
 _x1 +m1

_
x1

m2 �y2 + c2y( _y2 � _y1) + k2y(y2 � y1) = m2

2y2 + 2m2
 _x2 +m2

_
x2:

(2.4)

where Fd(t) is the driving electrostatic force applied to the active mass, and 
 is the angular

velocity applied to the gyroscope about the z-axis.
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Figure 2.5: The 4-DOF dynamical system observed in the rotating gyroscope frame.

The overall dynamic model can be reduced having the active mass driven into forced oscil-

lation in drive direction by Fd(t) with a constant amplitude xo and a frequency !d. Assuming

the oscillation of the �rst mass in the drive direction is set by the control system to be

x1 = xocos(!dt); (2.5)

the system (2.4) reduces to three degrees of freedom. The equations of motion of the reduced

system become [4]:

�y1 + 2!n� _y1 + 2�!n�( _y1 � _y2) + (!n � 
)y1 + !2
n�1(y1 � y2) = �2
!dxosin!dt + _
xocos!dt

�( �y2 � 
2y2) + 2�!n�( _y2 � _y1)� 2�
 _x2 � � _!zx2 + !2
n�1(y2 � y1) = 0

�( �x2 � 
2x2) + 2�
 _y2 + � _
y2 + !2
n�2x2 = w2

n�2xocos!dt
(2.6)

where � = m2=m1, �1 = k2y=k1y, �2 = k2x=k1x, � = c2=c1, � = c1=(2m1wn), and wn is the

natural frequency in the sense direction. Proper selection of system parameters will result in

the frequency response illustrated in Figure 2.3.

2.3 Summary

The proposed vibratory rate gyroscope design approach was presented, and the principle of

operation is described together with the detailed analysis of the 4-DOF system dynamics.

With appropriate selection of dynamical system parameters, a at region was observed in the

response curve, where the sensitivity of the gain to driving frequency variations is low.
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Chapter 3

MEMS Implementation of the Design

Concept

This chapter describes the principle elements of a MEMS implementation of the conceptual

design presented in Chapter 3. First, the suspension system and the damping components of

the dynamic system are analyzed. Then, the basics of electrostatic actuation and capacitive

sensing methods are presented, followed by a detailed analysis of the drive and sense compo-

nents employed in the prototype design. Selection of design parameters for achieving dynamic

ampli�cation in the drive mode is addressed as well. In addition, fabrication of a prototype

is discussed along with an overview of the used fabrication technology.

3.1 Mechanical Design

In this section, the main mechanical elements of the gyroscope design, including the suspen-

sion system and the damping components, are analyzed. The theoretical models of these

components are also introduced.

3.1.1 Suspension Design

The complete suspension system of the device consists of two sets of four exible beams per

each mass. For each proof mass, one set of �xed-guided beams provides the desired spring

rate in the drive direction, while the other set provides the desired spring rate in the sense

direction (Figure 3.1). For a single �xed-guided beam (Figure 3.2), the translational sti�ness

for motion in the orthogonal direction to the beam axis is given by [12]

ky =
1

2

3EI
L
2

3 =
Etw3

L3
; (3.1)
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Figure 3.1: Illustration of the proposed dual-mass z-axis micromachined gyroscope design.

where E is the Young's Modulus, and I is the second moment of inertia. The beam length,

thickness, and width are L, t, and w, respectively.

Figure 3.2: The �xed-guided end beam deection.

Spring rates for a mass in drive or sense direction are determined by four �xed-guided

beams if the axial strains in the other beams are neglected. This assumption is reasonable

since the axial sti�ness of a beam, kaxial =
Etw
L
, is generally four orders of magnitude (L

2

w2

times) larger than the �xed-guided sti�ness, which means the beams under axial load can be

assumed in�nitely sti�. Each sti�ness value of the suspension can be calculated as

k1x =
4Etw3

L3
1x

; k1y =
4Etw3

L3
1y

; k2x =
4Etw3

L3
2x

; k2y =
4Etw3

L3
2y

: (3.2)

where w and t are the width and thickness of the beam elements in the suspension, respectively.

The individual beam lengths are shown in Figure 3.3. Finite element analysis of the gyroscope
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Figure 3.3: Suspension system con�guration provides two degrees of freedom (in drive and sense

directions) for the active proof mass and the passive proof mass.

is performed using the software package ANSYS to validate the assumptions in the theoretical

analysis. The resonant frequencies obtained from the modal analysis matched the theoretically

calculated parameters within 0.1% error. Furthermore, the unwanted resonant modes were

observed to be over 4 kHz higher than the nominal operational frequency.

3.1.2 Damping Estimation

During the oscillation of the gyroscope proof masses, viscous e�ects of the air surrounding

the structure results in damping. The structural damping of Polysilicon is orders of magni-

tude lower than the viscous damping, and is neglected in this analysis. The four damping

coeÆcients (c1x, c1y, c2x, and c2y) in the dynamical system, shown in Figure 2.1, are due to

the viscous e�ects of the air between the masses and the substrate, and in between the comb-

drive and sense capacitor �ngers. These viscous damping e�ects can be captured by using two

general damping models: Couette ow damping and squeeze �lm damping.

Couette ow damping occurs when two plates of an area A, separated by a distance y0, slide

parallel to each other (Figure 3.5). Assuming a Newtonian gas, the Couette ow damping

coeÆcient can be approximated as:

cCouette = �pp
A

y0
; (3.3)

where �p = 3:710�4 kg

m2:s:torr
is the viscosity constant for air, p is the air pressure, A is the

overlap area of the plates, y0 is the plate separation.

Squeeze �lm damping occurs when two parallel plates approach each other and squeeze the
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(a) (b)

(c)

Figure 3.4: The �rst three resonant modes of the gyroscope. The simulation is performed using the

�nite element analysis package ANSYS. FEA results agree with the theoretical analysis within 0.1%

error.
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Figure 3.5: Illustration of Couette ow damping between two plates.

uid �lm in between (Figure 3.6). Squeeze �lm damping e�ects are more complicated, and

can exhibit both damping and sti�ness e�ects depending on the compressibility of the uid.

Using the Hagen-Poiseuille law [2], squeeze �lm damping can be modeled as:

cSqueeze = �pp
7Az0

2

y03
: (3.4)

Figure 3.6: Illustration of Squeeze-�lm damping between two plates.

Utilizing the presented damping models; for the active mass, the total damping in the drive

mode can be expressed as the sum of damping due to Couette ow between the mass and the

substrate, and the damping due to Couette ow between the integrated comb �ngers [2]:

c1x = �pp
A1

z0
+ �pp

2Ncomblcombt

ycomb

; (3.5)

where A1 is the area of the active mass, z0 is the elevation of the proof mass from the

substrate, t is the thickness of the structure, Ncomb is the number of comb-drive �ngers, ycomb

is the distance between the �ngers, lcomb is the length of the �ngers, p is the ambient pressure

within the cavity of the packaged device, and �p = 3:710�4 kg

m2:s:torr
is the viscosity constant

for air.

In the sense mode, the total damping is the sum of damping due to Couette ow between

the proof mass and the substrate, and the Squeeze Film damping between the integrated comb

�ngers:
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c1y = �pp
A1

z0
+ �pp

7Ncomblcombt
3

y3comb

: (3.6)

However, for the passive mass, the total damping in the drive mode results from Couette

ow between the mass and the substrate, as well as Couette ow between the air-gap capacitor

�ngers:

c2x = �pp
A2

z0
+ �pp

2Ncapacitorlfingert

ycapacitor
; (3.7)

where A2 is the area of the passive mass, Ncapacitor is the number of air-gap capacitors, ycapacitor

is the distance between the capacitor �ngers, and lcapacitor is the length of the �ngers.

Damping of the passive mass in the sense mode can be estimated as the combination

of Couette ow between the proof mass and the substrate, and the Squeeze Film damping

between the air-gap capacitor �ngers:

c2y = �pp
A2

z0
+ �pp

7Ncapacitorlfingert
3

y3capacitor
: (3.8)

These pressure dependent e�ective damping values will be used in the parametric sensitivity

analysis simulations of the dynamic system.

3.2 Electrical Design

The micromachined gyroscope can be driven employing electrostatic forces, and the response

can be sensed capacitively. Due to ease of manufacturing, electrostatic forcing and capacitive

displacement sensing is preferred in most cases.

The electrostatic actuation and sensing components of the micromachined gyroscope can be

modeled as a combination of parallel-plate capacitors (Figure 3.7). The capacitance between

two parallel plates can be expressed as:

C =
"0Aoverlap

y0
=

"0x0z0

y0
: (3.9)

Figure 3.7: The capacitance between two plates.

The electrostatic force is generated due to the electrostatic conservative force �eld between

the plates. Thus, the force can be expressed as the gradient of the potential energy U stored

on the capacitor:
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~F = �rU =
rC(x; y; z)V 2

2
=

"0r(x0z0y0
)V 2

2
(3.10)

The electrostatic force generated in the x-direction as parallel plates slide over each other

in the x-direction can be approximated as:

~Fx =
"0V

2z0

2y0
: (3.11)

It should be noticed that this force is independent of x-direction displacement and the over-

lap area. However, the electrostatic force generated in the y-direction as the plates approach

to each other in the y-direction depends on the overlap area, and is a nonlinear function of

displacement:

~Fy = �"0V
2z0x0

2y20
: (3.12)

3.2.1 Electrostatic Actuation

Comb-drives are one of the most common actuation structures used in MEMS devices. The

primary advantages of comb-drives (Figures 3.8a and 3.9) are the linearity of the generated

forces, and the ability of applying displacement-independent forces.

(a) (b)

Figure 3.8: (a) The comb-drive structure for electrostatic actuation. (b) The balanced comb-drive

scheme.

Linearized drive forces along the x-axis can be achieved by appropriate selection of voltages

applied to the opposing comb-drive sets. A balanced interdigitated comb-drive scheme is

imposed by applying V1 = VDC + �AC to one set of comb drives, and V2 = VDC � �AC to

the other set (Figure 3.8b) , where VDC is a constant bias voltage, and �AC is a time-varying

voltage [13]. Assuming negligible deections along y-axis, the net electrostatic force reduces

to
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Figure 3.9: The microscope photograph of the comb-drives attached to the �rst mass in the fabri-

cated prototype z-axis dual-mass gyroscope.

F = 4
"0z0N

y0
VDC�AC : (3.13)

where z0 is the �nger thickness, and y0 is the �nger separation. It should be noticed that, the

net force along the x-axis is independent of the displacement along the x-axis, and the overlap

area of �ngers.

3.2.2 Electrostatic Sensing

By building air-gap sense capacitors (Figures 3.10a and 3.11) around the second mass, the

deection can be capacitively sensed. When the second mass deects in sense direction, the

capacitance between the mass and the �xed electrodes changes.

Figure 3.10: The di�erential air-gap sense capacitors for response sensing.

For a positive displacement, the �nger attached to the mass (Figure 3.10) approaches �nger

A decreasing the capacitance Cs+, and moves away from �nger B increasing the capacitance

Cs�. The movement of the �nger resulting from the deection will translate the displacement
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to a change in capacitance. De�ning y0 as the �nger separation, l as the length of the �ngers,

and t as the thickness of the �ngers; the di�erential capacitance values can be calculated as:

Cs+ = Cs� = N
"0tl

y0
: (3.14)

The capacitance change should be converted into a voltage signal. The purpose of the sense

electronics is to detect the small capacitance changes resulting from very small displacements

of the second mass, and to provide a suÆciently high sense voltage signal.

Figure 3.11: Air-gap sense capacitors attached to the second mass in the fabricated prototype z-axis

dual-mass gyroscope.

3.3 Dynamic Ampli�cation in Drive Mode

To achieve the maximum possible response of the gyroscope, amplitude of the drive-direction

oscillation of the passive mass should be maximized. In the drive mode, the dynamic system

is simply a 2-DOF system. A sinusoidal force is applied on the active mass by the comb-drive

structure. Assuming a lumped parameter model, the equations of motion in the drive mode

become:

m1 �x1 + c1 _x1 + (k1 + k2)x1 = F + k2x2

m2 �x2 + c2 _x2 + k2x2 = k2x1: (3.15)

When a sinusoidal force F = F0sin(!t) is applied on the active mass by the interdigitated

comb-drives, the steady-state response of the 2-DOF system will be

X1 =
F0

k1

1� ( !
!2
)2 + j! c2

k2

[1 + k2
k1
� ( !

!1
)2 + j! c1

k1
][1� ( !

!2
)2 + j! c2

k2
]� k2

k1

X2 =
F0

k1

1

[1 + k2
k1
� ( !

!1
)2 + j! c1

k1
][1� ( !

!2
)2 + j! c2

k2
]� k2

k1

; (3.16)

where !1 =
q

k1
m1

and !2 =
q

k2
m2

are the resonant frequencies of the isolated active and passive

mass-spring systems, respectively. When the driving frequency !drive is matched with the
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Figure 3.12: Lumped model of the drive mode of dual-mass gyroscope. The passive mass (m2)

ampli�es the motion of the active mass (m1).

resonant frequency of the isolated passive mass-spring system, i.e. !drive =
q

k2x
m2

, the passive

mass moves to exactly cancel out the input force F applied to the active mass, and maximum

dynamic ampli�cation is achieved [9].

(a) (b)

Figure 3.13: (a) The magnitude plots of each proof mass. At the antiresonant frequency, which is

the resonant frequency of the isolated passive mass-spring system, oscillation amplitude of the active

mass approaches to zero. (b) The phase plots of the proof masses.

The oscillation amplitudes in the drive-direction can be calculated once the magnitude

of sinusoidal force F = F0sin(!t) applied to the active mass by the comb-drive structure is

known. If a balanced interdigitated comb-drive scheme is utilized by applying V1 = VDC+�AC

to one set of comb drives (e.g. the set on the right side in Fig. 2.2), and V2 = VDC � �AC to

the opposing set (the set on the left side); the resulting net electrostatic force is linear in �AC ,

which will lead to simpli�cation of the dynamic model:

F = 4
"0z0N

y0
VDC�AC ; (3.17)
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(a) (b)

Figure 3.14: (a) The dynamic ampli�cation ratio reaches its maximum at the antiresonant frequency,

i.e., !drive =
q

k2x
m2

. (b) With a balanced interdigitated comb-drive scheme, a 1�m amplitude is

achieved by the passive mass with a bias voltage of about 20V.

where �AC = j�AC jsin!t is the sinusoidal voltage, VDC is the constant bias voltage, z0 is the

�nger thickness, and y0 is the �nger separation. Thus, for the gyroscope, the magnitude of

the applied drive force is simply

F0 = 4
"0z0N

y0
VDC j�AC j: (3.18)

assuming small oscillation amplitudes of the active mass in the sense direction. With this

balanced interdigitated comb-drive scheme, a 1 �m oscillation amplitude is achieved by the

passive mass in atmospheric pressure when a bias voltage of about 20V and a 5V alternating

voltage is applied.

3.4 Fabrication of a Prototype

The design concept of a wide-bandwidth micromachined z-axis gyroscope can be implemented

in any standard surface or bulk micromachining process. For the purpose of illustration,

a design of a z-axis gyroscope implemented using two-layer 2 �m surface micromachining

fabrication process is presented.

The general features of a standard two-layer surface micromachining process include uti-

lizing polysilicon as the structural material, LPCVD deposited oxide (PSG) as the sacri�cial

layer, and silicon nitride as electrical isolation between the polysilicon and the substrate.

In a standard three polysilicon layer surface micromachining process, the moving parts

of the device are formed using the second structural polysilicon layer (Poly1) or the third

(Poly2). The electrical connections are formed using the �rst structural polysilicon layer

(Poly0) deposited on the nitride-covered substrate [19]. Summary of the process is followed.
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3.4.1 MUMPs Surface Micromachining Process

For fabrication of a prototype of the gyroscope, commercially available Multi-User MEMS Pro-

cesses (MUMPs) o�ered by Cronos/JDS Uniphase was used. MUMPs is a standard three-layer

polysilicon surface micromachining technology. However, the prototype gyroscope structures

employ only the �rst two structural layers, Poly0 and Poly1.

Figure 3.15: The fabrication steps of the three-layer MUMPs technology.

The �rst step of the fabrication process is deposition of a 600 nm low-stress Silicon Nitride

layer on the silicon n-type (100) wafers as an electrical isolation layer. This is followed directly

by the deposition of the �rst structural polysilicon �lm, Poly0, which is 500 nm thick. Poly0

is then photolithographycally patterned: The Poly0 layer is �rst coated with photoresist.

Then, photoresist is exposed with the �rst level mask (Poly0), and the exposed photoresist is

developed to create the desired etch mask for subsequent pattern transfer to the underlying

layer. After patterning the photoresist, the uncovered areas of the Poly0 layer is etched in an

RIE (Reactive Ion Etch) system. The remaining photoresist is stripped away.

A 2.0 �m phosphosilicate glass (PSG) sacri�cial layer is then deposited by LPCVD. This

sacri�cial layer of PSG, known as the Oxide layer, is removed at the end of the process to

free the �rst mechanical layer of polysilicon. The sacri�cial layer is lithographically patterned

with the dimples mask and the dimples are transferred into the sacri�cial PSG layer by RIE.

The wafers are then patterned with the third mask layer, the anchor mask, and reactive ion

etched. This step provides anchor holes that will be �lled by the second polysilicon layer

(Poly1). After etching anchors, the second structural layer of polysilicon is deposited. This

structural layer has a thickness of 2.0 �m, and the moving structures including the proof

mass, suspension system and the capacitors are formed in this layer. The polysilicon is
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lithographically patterned using a mask designed to form the second structural layer POLY1.

After etching the polysilicon, the photoresist is stripped.

Figure 3.16: Cross-section of a device fabricated using the �rst two structural layers of MUMPs

micromachining process [19].

The same procedure is followed to form the second sacri�cial layer Oxide2 and the third

structural layer Poly2. Throughout these steps, appropriate masks are used to form Anchor2

and Poly1-Poly2-Via structures. Finally, the wafer is diced, and the structures are released in

HF Solution. Design rules to guarantee an error-free design, including minimum feature sizes,

minimum gaps and etching hole speci�cations are available in the MUMPs Design Handbook

by Cronos/JDS Uniphase [19].

3.4.2 Design Implementation Using MUMPs Technology

In the presented design, the proof masses and the exures are formed in Poly1 with a 2�m

thickness. The total footstep areas of the proof masses were calculated to achieve the required

mass assuming a structural thickness of 2�m and a density of 2:33� 103kg=m3:m1 = A1t�

m2 = A2t�; (3.19)

where A1 and A2 are the footstep areas of the massesm1 andm2, respectively, t is the structural

thickness, and � is the density of Polysilicon. Since the �rst sacri�cial layer, Oxide1, has a

thickness of 2�m, the masses are suspended over the substrate with a 2�m clearance.

Interdigitated comb-drives structures which are used to drive the �rst mass into oscillations

in the drive direction are formed in Poly1 (Figure 3.17).

The air-gap capacitors which are used to sense the response of the second mass in the

sense direction are also formed in Poly1. The SEM photograph of the air-gap capacitor array

built around the second mass is given in Figure 3.18. Parallel-plate capacitors are used to

tune the response of the system, which are also formed in Poly1. The comb-drives, the air-

gap capacitors, the parallel-plate capacitors, and the anchors grounding the proof masses are

connected to the bonding-pads by connection lines formed in Poly0.
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Figure 3.17: Scanning Electron Microscope (SEM) photograph of the comb-drives.

Figure 3.18: Scanning Electron Microscope photograph of the air-gap capacitors.

3.5 Conclusion

In this chapter, a MEMS implementation of the conceptual design was presented. The sus-

pension system, damping e�ects, electrostatic actuation components, and capacitive sensing

components were analyzed. The issue of achieving dynamic ampli�cation in the drive mode

was addressed, as well. Furthermore, MUMPs surface micromachining process, which was

selected for fabrication of the prototypes was reviewed; and the design of the prototypes

fabricated in the Cronos MUMPs 39 run was presented.
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Figure 3.19: The layout of the dual-mass z-axis gyroscope.
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(a)

Figure 3.20: (a) The detailed view of the dual-mass z-axis gyroscope layout. (b) The Scanning

Electron Microscope (SEM) photograph of the gyroscope prototype.
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(a)

(b)

Figure 3.21: (a) The microscope photographs of the gyroscope prototype.
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Chapter 4

Parametric Sensitivity Analysis

In this chapter, sensitivity analysis of the proposed micromachined gyroscope design is pre-

sented. Speci�cally, the sensitivity of the system response to realistic variations in system

parameters, including fabrication, pressure, thermal, and residual stress e�ects, are investi-

gated. In the analysis, the robustness of the proposed system against the parameter variations

is compared to a conventional design with a similar geometry.

4.1 Fabrication Variations

Fabrication variations a�ect the parameters of gyroscopes directly. For micromachining pro-

cesses, the dimensions of the suspension beam elements are uncertain for di�erent reasons.

The length of the beams are determined solely by lithography, and are extremely accurate.

However, the thickness is determined by deposition process, and the width set by lithography

is a�ected by etching process. Thus, these parameters are less accurate, and can vary by 1%

from wafer to wafer.

In conventional gyroscopes, fabrication variations result in resonant frequency shifts, re-

quiring compensation by sophisticated control electronics. Yet, for the proposed system, a

0.05 �m deviation from 2 �m nominal beam width due to etching conditions results in less

than 1% error in the gain (Fig. 4.3a). A 0.1 �m deviation from 2 �m nominal structure

thickness due to deposition variations causes about 0.8% error in the gain (Fig. 4.3b).

Moreover, a variation in deposition conditions that a�ect the Young's Modulus of the

gyroscopes structure by 10 GPa causes less than 0.5% error in the gain (Fig. 4.3c). The same

parameter variations in a conventional micromachined gyroscope without compensation by

control electronics result in over 10% error.

4.2 Pressure Fluctuations

Pressure uctuations can have signi�cant e�ects on resonance dependent conventional gyro-

scopes. In contrast, since the proposed device utilizes dynamic ampli�cation of mechanical
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(a)

(b)

Figure 4.1: Fabrication variations can a�ect the geometry of the device by varying thickness of the

structure or the width of the suspension beam elements. The proposed design illustrated in (b) is

demonstrated to be more robust against these variations than the conventional approach illustrated

in (a).
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(a) (b)

(c)

Figure 4.2: Change in the response due to: (a)0:05�m variation in the width of suspension beams,

(b)0:1�m variation in thickness of the structure, (c) 10 GPa variation in Young's Modulus.
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motion, and does not operate in resonance, the response is almost insensitive to damping

changes in the operation region.

For a possible vacuum leakage from 100 militorrs to 500 militorrs, for example due to

package sealing degradation over the operation time of the device, the response gain reduces

by less than 2% (Fig. 4.3a). When the e�ect of same pressure variation on a conventional

gyroscope design is analyzed, over 60% gain reduction is observed (Fig. 4.3b).

(a) (b)

Figure 4.3: (a) Ambient pressure change form 100 militorrs to 500 militorrs results in 2% gain

reduction for the proposed gyroscope design, (b) The same pressure change causes over 60% gain

reduction for a conventional gyroscope design with similar geometry.

4.3 Thermal Fluctuations

Variations in the temperature of the structure can perturb the dynamical system parameters

by three means: due to the inherent temperature dependence of Young's Modulus, due to

changes in suspension geometry because of thermal expansion, and due to the thermally

induced localized stress e�ects. Young's modulus of the structure at a given temperature can

be calculated as [10]

E0ÆC+�T = E0ÆCTCE�T + E0ÆC ; (4.1)

where E0ÆC is the Young's modulus for �ne-grained polysilicon at 0 ÆC (assumed 169 GPa),

TCE is the temperature coeÆcient of Young's modulus for polysilicon (assumed -75 ppm/ÆC

[10]), and �T is the temperature change. To reect the e�ects of temperature dependent

elastic modulus and thermal expansion on the resonant frequency of linear microresonators

with folded-beam suspensions, the temperature coeÆcient of the resonance frequency can be

determined as [10]
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TCf =
1

2
(TCE � TCh); (4.2)

where TCE is the temperature coeÆcient of the Young's modulus, and TCh is the temperature

coeÆcient of thermal expansion, which is assumed 2.5 ppm/ÆC; leading to a perturbed resonant

frequency of

!n0ÆC+�T = !n0ÆCTCf�T + !n0ÆC : (4.3)

However, for the proposed suspension system, more accurate results can be found conduct-

ing �nite element analysis of the system. To be able to capture parameter changes due to the

temperature dependence of Young's Modulus, due to thermal expansion generated alteration

in suspension geometry, and due to thermally induced stresses; a �nite element model of the

device was created using the �nite element analysis software package ANSYS. First, a uni-

form temperature loading of 100ÆC was applied to each surface, and the thermally induced

localized stresses were observed. The results of the thermal �nite element simulation indi-

cated that a stress of 82 MPa was induced only in the drive-direction beam elements of active

mass, e�ecting only k1x. The other beam elements of the suspension system were observed

stress-free (Figure 4.5a). Then, static structural analysis of the thermally loaded system with

the modi�ed Young's modulus was performed to calculate each of the four spring rates (k1x,

k1y, k2x, and k2y) in the dynamical system shown in Figure 2.1. The same procedure was

also carried out for a uniform temperature loading of �100ÆC. The simulation of the dynam-

ical system with the perturbed parameters due to thermal loading indicated a deviation of

less than 0.9% in the gain. Finite element analysis of a conventional gyroscope with similar

geometry demonstrated about 7% gain error for the same thermal loading.

4.4 Residual Stresses

Accumulation of residual stresses in the structure directly a�ect the properties of the dynami-

cal system. In the presence of residual stresses, the beam sti�ness values, and thus the overall

system spring rates change. Axial residual stresses in the x-direction e�ect only the y-direction

spring rates (k1y and k2y) of the suspension, while axial residual stresses in y direction e�ect

only the x-direction spring rates (k1x and k2x).

Thus, for the suspension system with an x-direction axial residual stress of "x and a y-

direction axial residual stress of "y, the spring rate values become [3]

k1x =
Etw�y

2

12L1x

[1� 2w

�1xL1x

cosh(
�yL1x
w

)� 1

sinh(
�yL1x
w

)
]�1 (4.4)

k1y =
Etw�x

2

12L1y

[1� 2w

�1yL1y

cosh(
�xL1y
w

)� 1

sinh(
�xL1y
w

)
]�1 (4.5)

34



(a) (b)

(c) (d)

Figure 4.4: (a) Finite element simulation of the device with a uniform temperature loading of 100ÆC.

Thermally induced localized stresses were observed only in the drive-direction beam elements of

active mass, e�ecting only k1x. (b) Static �nite element analysis of the thermally loaded system with

the modi�ed Young's modulus. (c) Finite element analysis of a conventional gyroscope with similar

geometry, under the same thermal loading. (d) Static analysis of the conventional design indicate the

localized stresses leading to frequency mismatch between the drive and the sense resonant frequencies.
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(a) (b)

Figure 4.5: (a) Simulation of the proposed design's dynamical system with the perturbed parameters

due to thermal loading was performed, indicating less than 0.9% gain deviation. (b) Simulation of

the conventional design with the perturbed parameters indicates 7% gain error for the same thermal

loading.

k2x =
Etw�y

2

12L2x

[1� 2w

�2xL2x

cosh(
�yL2x
w

)� 1

sinh(
�yL2x
w

)
]�1 (4.6)

k2y =
Etw�x

2

12L2y

[1� 2w

�2yL2y

cosh(
�xL2y
w

)� 1

sinh(
�xL2y
w

)
]�1: (4.7)

where �x =
p
12"x, �y =

p
12"y are the dimensionless strain factors for beam bending, and

�1x =
L1xw
�y

, �1y =
L1yt

�x
, �2x =

L2xw
�y

, �2y =
L2yt

�x
.

(a) (b)

Figure 4.6: E�ect of residual stresses (a) in x-direction, (b) in y-direction.

However, an axial residual stress "x in the x direction e�ects the sense-direction spring

rates (k1y and k2y) of the same order, and an axial residual stress "y in the y direction e�ects

the drive-direction spring rates (k1x and k2x) of the same order as well. In result, the overall

system response is less sensitive to residual stresses (Fig. 4.6). To compare the sensitivity
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of the proposed device to the conventional approach, the designed system and a single mass

gyroscope with the same geometry of the isolated active mass-spring system were simulated

with a 10 MPa compression residual stress. The single-mass system experienced approximately

2.5% gain reduction, while the proposed device experienced less than 0.2% deviation in the

gain.

4.5 Conclusion

In this section, sensitivity analysis of the proposed design was studied. The e�ects of realis-

tic parameter variations on the system response are investigated, and the robustness of the

proposed system against these variations is compared to the conventional designs. Sensitivity

analysis revealed that, for the same thermal loading, the device produces 87% less error than

conventional gyroscopes. Moreover, the proposed design was shown to be approximately 12

times less sensitive to residual stresses, and 20 times less sensitive to fabrication variations

than conventional gyroscopes.
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Chapter 5

Conclusion and Future Work

With the advances in micromachining technologies, low cost inertial micro-sensors on-a-chip

are beginning to enter the market. Derived from the conventional Integrated Circuit (IC)

fabrication technologies, micromachining processes allow mass-production of microstructures

with moving parts on a chip controlled by electronics integrated on the same chip. Optimistic

projections predict that in a near future, expensive and bulky conventional inertial sensors

will be replaced by their low-cost and micro-sized counterparts without any compromise in

performance. Micromachined gyroscopes could potentially provide high accuracy rotation

measurements leading to a wide range of applications including navigation and guidance sys-

tems, automotive safety systems, and consumer electronics. However, truly low-cost and

high-performance devices are not on the market yet, and the current state of the art micro-

machined gyroscopes require an order of magnitude improvement in performance, stability,

and robustness.

5.1 Contribution

In this thesis, a novel micromachined vibratory rate gyroscope design approach was developed

to overcome the limitations of the existing micromachined gyroscope designs. The proposed

design concept suggests the use of two coupled independently vibrating proof masses to form a

4-DOF dynamical system. Computer modeling of the proposed design indicates over 15 times

increase in the bandwidth of the system as compared to the conventional gyroscopes. In ad-

dition, signi�cantly reduced sensitivity of the gyroscope to structural and thermal parameter

uctuations and damping is demonstrated. By utilizing the disturbance-rejection capability of

the inertial system, improved robustness is achieved without further sophistication in control

electronics. All these advantages of the presented design might relax strict fabrication tol-

erances and packaging requirements, reducing production cost of micromachined gyroscopes

without compromising performance.

38



5.2 Future Work

The design concept was demonstrated by computer modeling to provide improved robustness

by investigating the e�ects of realistic parameter variations on the system response, and

comparing the sensitivity of the proposed system to the conventional designs. However, these

results have not been veri�ed experimentally yet. Thus, the �rst step of future work will

involve experimental evaluation of performance of the fabricated prototype gyroscopes. The

next step will be to develop the control strategies which will provide the highest possible

performance.

5.2.1 Experimental Evaluation of the Prototype Designs

To evaluate the performance of the fabricated prototype gyroscope designs, �rst balanced

comb-drive strategy will be employed to drive the system into oscillations in the drive-mode.

This driving scheme can be realized using the setup illustrated in Figure 5.1.

Figure 5.1: Experimental setup for experimental evaluation of prototype gyroscopes.

Then the response of the gyroscope to input angular rate has to be sensed. Since the

deection of the second mass due to the Coriolis force is converted into capacitance change by

the sense capacitors, this capacitive signal should be converted into an output voltage signal

with enough amplitude. The basic task of the sense electronics is to provide this conversion.

Small changes in capacitance due to deection result in a displacement current that ows

through the sense capacitors. This current can be sensed employing an integrator in a sense

ampli�er con�guration [2].
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Figure 5.2: The implementation of the integrator for capacitive sensing.

5.2.2 Control Issues

Since the Coriolis response of the second mass in the sense direction is directly correlated

to the drive oscillation amplitude, it is crucial that the second mass is driven into forced

oscillation in drive direction with a known constant amplitude. Thus, the primary task of the

control electronics will be to assure constant amplitude oscillation for the second mass with

the required driving frequency.

Moreover, an ideal gyroscope should be sensitive to only the input angular rate. However,

in practice, micromachined gyroscopes are sensitive not only to the measured angular rate,

but also to fabrication imperfections and undesirable excitations. This de�nes another major

task of the control system as compensation for these imperfections.

Control of Oscillations in Drive Mode

The Coriolis force which excites the second mass in the sense direction is described by
FCoriolis = 2m2
 _x2: (5.1)

Since the Coriolis force is proportional to the linear velocity of the second mass, it is also

proportional to the oscillation amplitude. To assure an accurate angular rate measurement,

the drive mode oscillation amplitude of the second mass should be kept constant by the drive

electronics.

Employing balanced comb-drive strategy to drive the system is the simplest solution from

the implementation aspect. However, since it is vital to have a known drive-direction oscilla-

tion amplitude of the second mass for accurate rate measurement, the error in the oscillation

amplitude should be minimized. When the gyroscope is driven using an open-loop control,

any change in system parameters will cause errors in the oscillation amplitude, leading to

erroneous rate measurement. Thus, it is necessary to have feedback control to achieve the

desired oscillation amplitude.

To provide the feedback signal for the control system, comb structures have to be built in

the second mass (Figure 5.3), and a trans-resistance ampli�er has to be incorporated into the

control loop to convert the displacement current generated by the oscillating second mass to
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Figure 5.3: Closed-loop driving scheme of the dual-mass gyroscope.

an output feedback voltage. Then, the control law has to be de�ned to drive the error signal,

which is the di�erence of the output voltage of the trans-resistance ampli�er and a reference

voltage determining the desired oscillation amplitude [18].

Compensation of Fabrication Imperfections

An ideal gyroscope should be sensitive only to the input angular rate. However, in practice,

micromachined vibratory gyroscopes are sensitive not only to the measured angular rate, but

also to fabrication imperfections. Due to lack of perfect alignment of the intended and the

actual principle axes of oscillation, anisoelasticity in the gyroscope structure occurs, causing

dynamic cross-coupling between the drive and sense directions.

The resulting dynamic cross-coupling sti�ness and damping terms are the major factors that

limit the performance of the gyroscope. Thus, the control system should eliminate the e�ects

of the fabrication imperfections, and render the gyroscope sensitive only to the input angular

rate. Consequently, the next step in the control system design will be the development of a

controller that will compensate for the cross-coupling between the drive and sense directions.
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Figure 5.4: Modeling of anisoelasticity, the mis-alignment of the intended and the actual principle

axes of oscillation.
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Appendix A

Gyroscope Simulation MATLAB

Codes

A.1 gyroparameters.m

%Gyro Su i t e . Module 1
%Gyroscope Parameter I n i t i a l i z a t i o n
%gyroparamete r s .m
%

c l e a r a l l ; c l c ;

wz = 1 � ( 2 � pi /360) %measured angu la r ra te = 1 deg / sec
p = 150 e�3 %Operat ion Pr e s su r e [ t o r r ]
mu vis = 3 .7 e�4�p ; %Air V i s c o s i t y
dens = 2 .33 e3 ; %Density of P o l y s i l i c o n
E = 170 e9 ; %PolySi Young ' s Modulus [ Pa ]
th = 2 e �6; %St ru c tu r e t h i c k n e s s
z0 = 2 e �6; %E l eva t i on of s t r u c t u r e

% Mass 1 paramete r s :
Amass1= 37968 e �12 �2 ; %Area of Mass1 [ m2]
m1=Amass1� th � dens %Mass of Mass1 [ kg ]

% Mass 2 paramete r s :
Amass2= 95962 e �12 �2 ; %Area of Mass2 [ m2]
m2=Amass2� th � dens %Mass of Mass2 [ kg ]

% Spring S t r u c t u r e s :
wspr ing = 2 e �6; %sp r i ng width
L1x = 137 e �6; %sp r i ng l ength , M1, d r i v e [ m]
L1y = 129 e �6; %sp r i ng l ength , M1, sense [ m]
L2x = 137 e �6; %sp r i ng l ength , M2, d r i v e [ m]
L2y = 38 e �6; %sp r i ng l ength , M2, sense [ m]

k1x = 4�E� th �wspring ^3 / L1x ^3 %sp r i ng cons t . M1, d r i v e [ N/m]
k1y = 4�E� th �wspring ^3 / L1y ^3 %sp r i ng cons t . M1, s ense [ N/m]
k2x = 4�E� th �wspring ^3 / L2x ^3 %sp r i ng cons t . M2, d r i v e [ N/m]
k2y = 4�E� th �wspring ^3 / L2y ^3 %sp r i ng cons t . M2, s ense [ N/m]

% Rat io s :
beta = m2/m1; %Mass r a t i o
s i gy = k2y / k1y ; %y sp r i ng cons t . r a t i o
s i gx = k2x / k1x ; %x sp r i ng cons t . r a t i o

%Comb Drive P r op e r t i e s :
ncomb = 31�2�6 + 21�4 + 18�4 ; %t o t a l 5 28 f i n g e r s
ncomb one = ncomb /2 ; %264 f i n g e r s in one d i r e c t i o n

wcomb = 2 e �6; %comb f i n g e r width
ycomb = 2 e �6; %d i s t an c e between combs
lcomb = 20 e�6; %comb f i n g e r t o t a l l ength
Acomb = wcomb� lcomb ; %f o o t s t e p area per f i n g e r
Acomb tot = ncomb�wcomb� lcomb ; %t o t a l f o o t s t e p area of combs
m comb = Acomb tot � th � dens ; %t o t a l mass of combs

lcomb ov = 15 e �6; %comb f i n g e r ov e r l ap l ength
Acomb ov = th � lcomb � 2 ; %ove r l ap area per f i n g e r ( 2 s i d e s )
Acomb tot ov = Acomb ov �ncomb ; %t o t a l ov e r l ap area of combs ( 2 s i d e s )
r m1 mcomb = m comb / m1; %mass r a t i o of Combs/m1

%Air�Gap Capac i to r P r o p e r t i e s :
ncap = ( 1 2 � 4 + 20 � 2 ) � 2 ; %t o t a l 1 76 caps f o r gyro2
wcap = 3 e �6; %c ap a c i t o r width
ycap = 2 e �6; %d i s t an c e between combs
l cap = 130 e�6; %c ap a c i t o r t o t a l l ength
Acap = wcap� l cap ; %f o o t s t e p area per f i n g e r
Acap tot = wcap� l cap ; %t o t a l f o o t s t e p area of c a p a c i t o r s
m cap = Acap tot � th � dens ; %t o t a l mass of c a p a c i t o r s
r m2 mcap = m cap / m2; %mass r a t i o of Capac i t o r s /m2

l c ap ov = 120 e �6; %c ap a c i t o r ov e r l ap l ength
Acap ov = th � l cap � 2 ; %ove r l ap area per f i n g e r ( 2 s i d e s )
Acap tot ov = Acap� ncap ; %t o t a l ov e r l ap area of caps ( 2 s i d e s )

A.2 resonant freq.m

%Gyro Su i t e . Module 2
%Gyroscope Resonant Frequency Ca l cu l a t o r
%r e s o n a n t f r e q .m
%

w1x = sq r t ( k1x /m1) ; %res . f r e q . M1, d r i v e [ rad / sec ]
w1y = sq r t ( k1y /m1) ; %res . f r e q . M1, sense [ rad / sec ]
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w2x = sq r t ( k2x /m2) ; %res . f r e q . M2, d r i v e [ rad / sec ]
w2y = sq r t ( k2y /m2) ; %res . f r e q . M2, sense [ rad / sec ]

f1x = w1x /(2� pi )/1000 %res . f r e q . M1, d r i v e [ kHz ]
f1y = w1y /(2� pi )/1000 %res . f r e q . M1, sense [ kHz ]
f2x = w2x /(2� pi )/1000 %res . f r e q . M2, d r i v e [ kHz ]
f2y = w2y /(2� pi )/1000 %res . f r e q . M2, sense [ kHz ]

% Dual Mass System Peak Loca t i on s :
gamx=f2x / f1x ;
gamy=f2y / f1y ;

c f l x = sq r t ( ( 1 / gamx^2 + (1+ beta ) + sq r t ( (1/ gamx^2 + (1+ beta ) )^2 � 4/ gamx ^ 2 ) ) / 2 ) ;
c fhx = sq r t ( ( 1 / gamx^2 + (1+ beta ) � s q r t ( (1/ gamx^2 + (1+ beta ) )^2 � 4/ gamx ^ 2 ) ) / 2 ) ;

c f l y = sq r t ( ( 1 / gamy^2 + (1+ beta ) + sq r t ( (1/ gamy^2 + (1+ beta ) )^2 � 4/ gamy ^ 2 ) ) / 2 ) ;
c fhy = sq r t ( ( 1 / gamy^2 + (1+ beta ) � s q r t ( (1/ gamy^2 + (1+ beta ) )^2 � 4/ gamy ^ 2 ) ) / 2 ) ;

f o l x = f2x � c f l x
f oh x = f2x � c fhx
f o l y = f2y � c f l y ;
f oh y = f2y � c fhy ;

A.3 gyrodamping.m

%Gyro Su i t e . Module 3
%Damping Est imat ions of the Dual Mass Gyro
%gyrodamping .m
%

% Mass 1
%coue t t e f low between M1 and s ub s t r a t e :
bm1 subst = mu vis � Amass1/ z0 ;

%coue t t e f low between comb dr i v e f i n g e r s :
bm1 comb = mu vis � Acomb tot ov / ycomb ;

% Total damping f o r M1 in Drive d i r :
bm1 = bm1 subst + bm1 comb ;
c1x = bm1;

% Mass 2
%coue t t e f low between M2 and s ub s t r a t e :
bm2 subst = mu vis � Amass2/ z0 ;

%coue t t e f low between c a p a c i t o r f i n g e r s :
bm2 cap couet t e = mu vis � Acap tot ov / ycap ;

%Squeeze f i lm damping between c a p a c i t o r f i n g e r s :
Acap to t ov sq = Acap tot ov / 2 ;
bm2 cap squeeze = ( 7 � mu vis � Acap to t ov sq � th ^ 2 ) / ycap ^2 ;

% Total damping f o r M2 in Drive d i r :
bm2 drive = bm2 subst + bm2 cap couet t e ;
c2x = bm2 drive ;

% Total damping f o r M2 in Sense d i r :
bm2 sense = bm2 subst + bm2 cap squeeze ;
c2y = bm2 sense ;

%Damping r a t i o in d r i v e d i r e c t i o n :
mu = c2x / c1x ;

% Q f a c t o r s :
Q1x = w1x�m1/bm1;
Q2x = w2x�m2/ bm2 drive ;
Q2y = w2y�m2/ bm2 sense ;

Q1xnew p = w1x � dens / 3 . 7 e�4 / (1/ z0 + 2� r m1 mcomb/wcomb ) ;
Q1xnew =Q1xnew p � p ;
%c1x=w1x�m1/Q1xnew

A.4 electronic interface.m

%Gyro Su i t e . Module 4
%Dual Mass Gyroscope E l e c t r o n i c I n t e r f a c e Model
%e l e c t r o n i c i n t e r f a c e .m
%

eo =8.854 e�12;
Vdc=5; %DC Bias Voltage Magnitude
vac =5; %AC Al t e rna t i ng Voltage Magnitude

%D i f f e r e n t i a l Comb Drive Scheme :
F0= 4� eo � th / ycomb � Vdc � vac � ncomb one ;

%One D i r e c t i on Comb Drive Scheme :
%F= 1/2� eo � t /d � Vdc ^2 � N

A.5 single gyro two dof.m

% Gyro Su i t e . Module 5
% S ing l e �Mass 2�DOF Gyroscope State�Space form :
% X : d r i v e , Y : Sense
% s i n g l e g y r o tw o d o f .m
%
c1x=c1x � 1 . 5 ;
%k1x=k1x � 1 . 1 ;

m = m1; kx = k1x ; ky = k1x ;
cx = c1x ; cy = c1x ;

wn = sq r t ( ky /m) ; %sense d i r nat . f r e q .
fn = wn/2000/ pi % kHz
ze ta = cx /(2�m�wn)
fd = fn ; % Forc ing Freq : F= Fo s in ( omega t ) ; kHz
omega = fd �2000� pi ;

%d i f f e r e n t i a l combs :
eo =8.854 e�12;
th=2e�6;
d=2e�6;
Vdc=10;
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v=5;
N=270;
Fo= 4� eo � th /d � Vdc � v � N;

wx = sq r t ( kx /m) ;
wy = sq r t ( ky /m) ;
lam=wx/wy;
Qx=m�wx/ cx ;
Qy=m�wy/ cy ;

xm=Fo�Qx/kx �1 e6 %magnitude of x at re sonance [ um]
ym= 2�m�wz�wx�xm/ky / sq r t ((1� lam ^2)^2+ lam^2) % output at re sonance
yma= 2�Fo�m/wx/ cx / cy �wz�1 e6
ymaa= wz�xm/wx/ ze ta

% State�Space :
a = [ 0 0 1 0 ; 0 0 0 1 ;

�kx /m 0 � cx /m 0 ;
0 �ky /m �2�wz � cy /m] ;

b = [ 0 0 Fo/m 0 ] ' ;

c = [ 0 1 0 0 ] ; % output : y
c = [ 1 0 0 0 ] ; % output : x
d = [ 0 ] ;

sys = ss ( a , b , c , d ) ;
t =0 : 0 . 0 0 0 0 0 5 : . 0 0 2 ;
u=s in ( omega� t ) ;

f i g u r e ( 1 ) ; c l f
l s im ( sys , u , t ) ;

i =0;
f o r a l f a =0 . 8 : . 0 0 1 : 1 . 2
i =i +1;
f d r i v e ( i ) = fd � a l f a ; % Forc ing Freq : F= Fo s in ( omega t ) ; kHz
omega = f d r i v e ( i )�2000� pi ;
u=s in ( omega� t ) ;

[ Y, T]= l s im ( sys , u , t ) ;
sy=s i z e (Y) ; syup=c e i l ( sy �6/10 ) ; s y l o =c e i l ( sy �9/10 ) ;
gainm ( i )=max( abs (Y( syup : s y l o ) ) )�1 e6 ; % output in um
end

f i g u r e ( 2 ) ;
%c l f ;
hold on
p lo t ( f d r i v e , gainm )
t i t l e ( ' S i ng l e mass 2� dof System ' )
x l a b e l ( ' Dr iv ing Frequency [ kHz ] ' )
y l a b e l ( ' Sense Mode gain [ um] ' )

A.6 dual drive oscillator.m

%Gyro Su i t e . Module 6
%Dual Mass Gyroscope Drive D i r e c t i on O s c i l l a t o r Model
%d u a l d r i v e o s c i l l a t o r .m
%
Adrive = [ 0 0 1 0 ; 0 0 0 1 ;

�(k1x+k2x )/m1 k2x /m1 � c1x /m1 0 ;
k2x /m2 �k2x /m2 0 � c2x /m2] ;

Bdr ive =[0 0 F0/m1 0 ] ' ;
Cdrive m2 = [ 0 1 0 0 ] ;
Cdrive m1 = [ 1 0 0 0 ] ;
Ddrive = [ 0 ] ;
SYSdrive m2 = ss ( Adrive , Bdr ive , Cdrive m2 , Ddrive ) ;
SYSdrive m1 = ss ( Adrive , Bdr ive , Cdrive m1 , Ddrive ) ;

%State�Space of S i ng l e M2 system :
As ing l e = [ 0 1 ;

�k2x /m2 � c2x /m2] ;
B s i ng l e =[0 F0/m2 ] ' ;
C s i ng l e = [ 1 0 ] ;
Ds ing l e = [ 0 ] ;
SYSs ing l e = ss ( As ing l e , B s i ng l e , C s i ng l e , Ds ing l e ) ;

om=1�2000� pi : 1�200� pi : 35�2000� pi ;
f rq =om/2000/ pi ; % Frequency array [ kHz ]

x1=f r e q r e s p ( SYSdrive m1 , om) ;
x1abs=abs ( x1 ) ;
x1ang=ang l e ( x1 ) ;

x2=f r e q r e s p ( SYSdrive m2 , om) ;
x2abs=abs ( x2 ) ;
x2ang=ang l e ( x2 ) ;

x s i n g l e =f r e q r e s p ( SYSs ing l e , om) ;
x s i n g l e a b s =abs ( x s i n g l e ) ;
x s i ng l e ang =ang l e ( x s i n g l e ) ;

s i z e x =s i z e ( x1 ) ;
f o r i =1: s i z e x (3 )

x1abs i ( i )=x1abs ( : , : , i )�1 e6 ;
x2abs i ( i )=x2abs ( : , : , i )�1 e6 ;
x s i n g l e a b s i ( i )= x s i n g l e a b s ( : , : , i )�1 e6 ;

x1angi ( i )=x2ang ( : , : , i ) ;
x2angi ( i )=x1ang ( : , : , i ) ;

r a t ( i )= x2abs i ( i )/ x1abs i ( i ) ;
end

f i g u r e ( 1 ) ; c l f ; hold on ;
p lo t ( f rq , x2abs i ) ;
p lo t ( f rq , x1abs i , ' r ' ) ;
%p lo t ( f rq , x s i n g l e a b s i , ' g ' ) ;
t i t l e ( ' Dual Mass O s c i l l a t o r , x1 and x2 Magnitude ' ) ;
x l a b e l ( ' Dr iv ing Fr . [ kHz ] ' ) ; y l a b e l ( ' Magnitude [ um ] ' ) ;

f i g u r e ( 2 ) ; c l f ; hold on ;
p lo t ( f rq , x2angi ) ;
p lo t ( f rq , x1angi , ' r ' ) ;
t i t l e ( ' Dual Mass O s c i l l a t o r , x1 and x2 Phase ' ) ;
x l a b e l ( ' Dr iv ing Fr . [ kHz ] ' ) ; y l a b e l ( ' Phase ' ) ;

f i g u r e ( 3 ) ; c l f ;
s emi logx ( f rq , ra t ) ;
t i t l e ( ' Dual Mass O s c i l l a t o r , x1 and x2 Magnitude Rat io ' ) ;
x l a b e l ( ' Dr iv ing Fr . [ kHz ] ' ) ; y l a b e l ( ' Magnitude Rat io ' ) ;
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f i g u r e ( 4 ) ; c l f ;
t =0 : 0 . 0 0 0 0 1 : . 0 5 ;
fd =10; % ave . Forc ing Frequency ; kHz
a l f a =1;
f d r i v e = fd � a l f a ; % Forc ing Frequency ; kHz
omega = f d r i v e �2000� pi ;
u=[ s in ( omega� t ) ] ;
l s im ( SYSs ing l e , u , t ) ;
t i t l e ( ' S i ng l e Mass O s c i l l a t o r ' ) ;

A.7 dual drive osc volt.m

%Gyro Su i t e . Module 7
%Dual Mass Gyroscope Drive D i r e c t i on O s c i l l a t o r Model

%Voltage�Amplitude a n a l y s i s
%d u a l d r i v e o s c v o l t .m
%

% Vdc i n c r e a s e d , vac = 5V

i =0;
f o r Vdc =5 : 2 : 1 00 ; %DC Bias Voltage Magnitude

i=i +1;
Vi ( i )=Vdc ;
F0= 4� eo � th / ycomb � Vdc � vac � ncomb one ;

Adrive = [ 0 0 1 0 ; 0 0 0 1 ;
�(k1x+k2x )/m1 k2x /m1 � c1x /m1 0 ;
k2x /m2 �k2x /m2 0 � c2x /m2] ;

Bdr ive =[0 0 F0/m1 0 ] ' ;
Cdrive m2 = [ 0 1 0 0 ] ;
Cdrive m1 = [ 1 0 0 0 ] ;
Ddrive = [ 0 ] ;
SYSdrive m2 = ss ( Adrive , Bdr ive , Cdrive m2 , Ddrive ) ;
SYSdrive m1 = ss ( Adrive , Bdr ive , Cdrive m1 , Ddrive ) ;

x1v=f r e q r e s p ( SYSdrive m1 , w2x ) ;
x1absv=abs ( x1v ) ;

x2v=f r e q r e s p ( SYSdrive m2 , w2x ) ;
x2absv=abs ( x2v ) ;

x1abs iv ( i )=x1absv ( : , : , 1 ) � 1 e6 ;
x2abs iv ( i )=x2absv ( : , : , 1 ) � 1 e6 ;
end

f i g u r e ( 1 ) ; c l f ; hold on ;
p lo t ( Vi , x2abs iv ) ;
p lo t ( Vi , x1abs iv , ' r ' ) ;
t i t l e ( ' Dual Mass O s c i l l a t o r , x1 and x2 Magnitude ' ) ;
x l a b e l ( ' Bias Voltage [ V ] ' ) ; y l a b e l ( ' Magnitude [ um] ' ) ;

% Vdc and vac are i n c r e a s e d , Vdc = vac

i =0;
f o r Vdc =5 : 0 . 5 : 2 5 ; %DC Bias Voltage Magnitude

i=i +1;
V2i ( i )=Vdc ;
F0= 4� eo � th / ycomb � Vdc ^2 � ncomb one ;

Adrive = [ 0 0 1 0 ; 0 0 0 1 ;
�(k1x+k2x )/m1 k2x /m1 � c1x /m1 0 ;
k2x /m2 �k2x /m2 0 � c2x /m2] ;

Bdr ive =[0 0 F0/m1 0 ] ' ;
Cdrive m2 = [ 0 1 0 0 ] ;
Cdrive m1 = [ 1 0 0 0 ] ;
Ddrive = [ 0 ] ;
SYSdrive m2 = ss ( Adrive , Bdr ive , Cdrive m2 , Ddrive ) ;
SYSdrive m1 = ss ( Adrive , Bdr ive , Cdrive m1 , Ddrive ) ;

x1v2=f r e q r e s p ( SYSdrive m1 , w2x ) ;
x1absv2=abs ( x1v2 ) ;

x2v2=f r e q r e s p ( SYSdrive m2 , w2x ) ;
x2absv2=abs ( x2v2 ) ;

x1abs iv2 ( i )=x1absv2 ( : , : , 1 ) � 1 e6 ;
x2abs iv2 ( i )=x2absv2 ( : , : , 1 ) � 1 e6 ;
end

f i g u r e ( 2 ) ; c l f ; hold on ;
p lo t ( V2i , x2abs iv2 ) ;
p lo t ( V2i , x1abs iv2 , ' r ' ) ;
t i t l e ( ' Dual Mass O s c i l l a t o r , x1 and x2 Magnitude ' ) ;
x l a b e l ( ' Bias and AC Voltage , Vdc = vac [ V] ' ) ; y l a b e l ( ' Magnitude [ um ] ' ) ;

A.8 full three dof ss.m

% Gyro Su i t e . Module 8
% 3 DOF System State�Space form , x1 = xo cos ( omega t )
% X : d r i v e , Y : Sense ( changed s s i g 1 with s i g 2 )
% f u l l t h r e e d o f s s .m
%
c1x=c1x /2 ;
f d r i v e = 10 ; % Forc ing Frequency : x1 = xo cos ( omega t ) ; kHz
omega = f d r i v e �2000� pi ;
xo=1e�6; %Mass 1 d r i v e ampl i tude
%c1x=1e�7
%c2=1e�7

s i g 1 = s i gy ; %y sp r i ng cons t . r a t i o
s i g 2 = s i gx ; %x sp r i ng cons t . r a t i o
wn = w1y ; %sense d i r nat . f r e q .
z e ta = c1x /(2�m1�wn) ;
s = k2x / k2y ;

%zeta =1
% State�Space :
% State : x = [ x2 y1 y2 x2 . y1 . y2 . ]

a = [ 0 0 0 1 0 0 ;
0 0 0 0 1 0 ;
0 0 0 0 0 1 ;
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( wz^2� s i g 2 �wn^2/ beta ) 0 0 0 0 (� 2 � wz ) ;
0 ( wz^2�(1+ s i g 1 )�wn^2 ) ( s i g 1 �wn^2) 0 (�2� ze ta �wn�(1+mu) ) ( 2 � ze ta �wn�mu) ;
0 ( s i g 1 �wn^2/ beta ) ( wz^2� s i g 1 �wn^2/ beta ) ( 2� wz ) ( 2� ze ta �wn�mu/ beta )
(�2� ze ta �wn�mu/ beta ) ] ;

b = [ 0 0 0 ( s i g 2 �wn^2/ beta ) 0 0 ; 0 0 0 0 ( 2 � wz ) 0 ] ' ;

c = [ 0 0 1 0 0 0 ] ; % output : y2
d = [ 0 0 ] ;

sys = ss ( a , b , c , d ) ;

t =0 : 0 . 0 0 0 0 2 : 0 . 0 4 ;

%u=[( xo � cos ( omega� t ) ) ; (� xo �omega� s in ( omega� t ) ) ] ;
%f i g u r e ( 3 ) ; c l f ;
%l s im ( sys , u , t ) ;
%t i t l e ( ' Response y2 at 10 kHz ' ) ;

i =0;
f o r a l f a = 0 . 9 8 : . 0 0 5 : 1 . 2
i =i +1;
f d r i v e ( i ) = 10� a l f a ; % Forc ing Frequency : x1 = xo cos ( omega t ) ; kHz
omega = f d r i v e ( i )�2000� pi ;
u=[( xo � cos ( omega� t ) ) ; (� xo � omega� s in ( omega� t ) ) ] ;

[ Y, T]= l s im ( sys , u , t ) ;
%l s im ( sys , u , t ) ;
%zoom ;
sy=s i z e (Y) ;
syup=c e i l ( sy �6/10 ) ;
s y l o =c e i l ( sy �9/10 ) ;

gainm ( i )=max( abs (Y( syup : s y l o ) ) ) ; %gain [ m]
pgain ( i )=gainm ( i )� omega� ze ta /wz/ xo ;
end

%f i g u r e ( 1 ) ;
%c l f
%hold on ;
%plo t ( f d r i v e , pgain )
%ax i s ( [ 0 1 8 0 1 . 5 e �5 ] ) ;
%t i t l e ( ' D e f l e c t i o n y2 vs . Dr iv ing Freq . ' ) ;
%x l a b e l ( ' Dr iv ing Fr . [ kHz ] ' ) ; y l a b e l ( ' y2 / W' ) ;

f i g u r e ( 2 ) ;
%c l f
hold on ;
p lo t ( f d r i v e , gainm �1 e10 )
ax i s ( [ 9 . 8 0 1 2 0 2 ] ) ;
t i t l e ( ' D e f l e c t i o n y2 vs . Dr iv ing Freq . ' ) ;
x l a b e l ( ' Dr iv ing Fr . [ kHz ] ' ) ; y l a b e l ( ' y2 [ um ] ' ) ;

A.9 full three dof var.m

% Gyro Su i t e . Module 9
% 3 DOF System Ana lyt i c So l u t i on , x1 = xo cos ( omega t )
% X : d r i v e , Y : Sense ( changed s s i g 1 with s i g 2 )
% f u l l t h r e e d o f v a r .m
%

% Fig . 4 of paper "A Novel Vibratory Device f o r Ang . Rate Meas ."
% by Netzer , Porat

% The e f f e c t of change in any parameter can be obse rved by s e l e c t i n g
% the i t e r a t i o n v a r i a b l e and the upper�lower bounds . . . .
y0=1e�6/10;
wn = w1y ;
omz=wz ;
f d r i v e = 10 ; % Forc ing Frequency : x1 = xo cos ( omega t ) ; kHz
omega = f d r i v e �2000� pi ;
z e ta = c1x /(2�m1�wn) ;

a l f a = omz/wn;
r f r q = omega/wn;
s i g 1 = s i gy ; %y sp r i ng cons t . r a t i o
s i g 2 = s i gx ; %x sp r i ng cons t . r a t i o

%Nominal example va l u e s :
%wn= 7000�2� pi ;
%beta =3;
%s i g 1 =40;
%s i g 2 =1;
%zeta =0.1 ;
%a l f a = omz/wn;

%Choose the parameter to i t e r a t e to see the e f f e c t of i t s change :

%Set the upper and lower bounds
varmid = zeta ;
varmin =0.05;
varmax =0.15;
varmin =0.5� varmid ;
varmax =1.5� varmid ;
va r i n c =(varmax�varmin ) /4 ;

m=0;
f o r ze ta = varmin : va r i n c : varmax %Se l e c t the parameter
m=m+1 ;
var (m)= zeta ; % fo r mon i to r ing the va l u e s of the parameter

i =0;
f o r r f r q = 0 . 4 : 0 . 0 0 1 : 0 . 7
i =i +1;
B11=�r f r q ^2 � a l f a ^2 + 1 + s i g1 + (2� r f r q � ze ta �(1+mu))� j ;
B12=�s i g 1 � (2� r f r q � ze ta �mu)� j ;
B21=B12 ;
B13=0;
B31=B13 ;
B22= beta � (� r f r q ^2 � a l f a ^2) + s i g 1 + (2� r f r q � ze ta �mu)� j ;
B23= �(2� beta � r f r q � a l f a )� j ;
B32=�B23 ;
B33= beta � (� r f r q ^2 � a l f a ^2) + s i g 2 ;

B= [ B11 B12 B13 ; B21 B22 B23 ; B31 B32 B33 ] ;
W= omz � y0 /( omega� ze ta ) ;

X= inv (B ( 1 : 2 , 1 : 2 ) ) � [ a l f a � r f r q � ze ta � j ; beta � s i g 2 � r f r q � ze ta /B33� j ] � W;
X1= 2� abs (X( 1 ) ) ;
X2= 2� abs (X( 2 ) ) ;
p s i 1 =ang l e (X( 1 ) ) ;
p s i 2 =ang l e (X(2 ) ) ; % in r ad i an s
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X2Wi( i ,m) = X2/W;
r f r q i ( i )= r f r q ;
end
end

f i g u r e ( 1 ) ;
p lo t ( r f r q i , X2Wi ( : , 1 ) , r f r q i , X2Wi ( : , 2 ) , r f r q i , X2Wi ( : , 3 ) , r f r q i , X2Wi ( : , 4 ) ,
r f r q i , X2Wi ( : , 5 ) ) ;
%ax i s ( [ 0 . 4 0 . 7 0 4 0 ] ) ;
t i t l e ( ' Response Gain vs Normal ized Forc ing Freq ' )
x l a b e l ( ' Forc ing Freq / wn ' )
y l a b e l ( ' Resp . Gain : X2 / W' )
gr id ;

var
f i g u r e ( 1 ) ;
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Appendix B

ANSYS Parametric Design Language

(APDL) Codes

B.1 dualgyrofea.inp

Finite Element Model of Dual-Mass Gyroscope, with thermal and modal analysis.

FINISH
/CLEAR
/GRA,POWER
/GST,ON
/PREP7

LX=136
LY=120

LX2=136
LY2=38

W=2
CONW=6
CONL=190

A=(106�20)/2
B=20
C=106
MLS=172
MLL=248
MASSL=106�5

M2W = 27

!MASS:

BLC4,CONW+LY�A,�10, MASSL,10
BLC4,CONW+LY,�10�MLS,2 0 , MLS
BLC4,CONW+LY+C,�10�MLL, 2 0 , MLL
BLC4,CONW+LY+C+C,�10�MLL, 2 0 , MLL
BLC4,CONW+LY+C+C+C,�10�MLL, 2 0 , MLL
BLC4,CONW+LY+C+C+C+C,�10�MLS, 2 0 , MLS

ARSYM,Y, ALL , , , , 0 , 0
AADD, ALL
ASEL, U , , , ALL

! NEGATIVE PART:

! CONNECT
BLC4,0 ,�CONL,CONW,CONL

! X SPRING
BLC4,2 ,�CONL�LX,W, LX

! ANCHOR
BLC4,�6,�CONL�LX�18 ,18 ,18

! Y SPRING
BLC4,CONW,�CONL+4�W, LY,W

ARSYM,Y, ALL , , , , 0 , 0
AADD, ALL
ASEL, U , , , ALL

! POSITIVE PART:

! CONNECT
BLC4,W+CONW�2+MASSL+LY+LY�A�A,�CONL,CONW,CONL

! X SPRING
BLC4,2+W+CONW�2+MASSL+LY+LY�A�A,�CONL�LX,W, LX

! ANCHOR
BLC4,�6+W+CONW�2+MASSL+LY+LY�A�A,�CONL�LX�18 ,18 ,18

! Y SPRING
BLC4,CONW+W+MASSL+LY�A�A�2,�CONL+4�W, LY,W

ARSYM,Y, ALL , , , , 0 , 0
AADD, ALL
ASEL, U , , , ALL

BLC4,CONW+LY+B�2,�10�MLS�LX2 , 2 , LX2
BLC4,CONW+LY+C+C+C+C,�10�MLS�LX2 , 2 , LX2
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BLC4,CONW+LY+B�7,�10�MLS�LX2�CONW, C+C+C+C�B+14,CONW

BLC4,CONW+LY+B�7�LY2,�10�MLS�LX2�CONW+2,LY2,2
BLC4,CONW+LY+7+C+C+C+C,�10�MLS�LX2�CONW+2,LY2,2

BLC4,CONW+LY+B�7�LY2�12,�10�MLS�LX2�CONW�36 ,12 ,40
BLC4,CONW+LY+7+C+C+C+C+LY2,�10�MLS�LX2�CONW�36 ,12 ,40

AADD, ALL
ARSYM,Y, ALL , , , , 0 , 0
ASEL, U , , , ALL

! MASS 2
BLC4,�6�M2W�20,�360�M2W,702+6+2�M2W+2�20,M2W
BLC4,�6�M2W�20,�360,M2W,360
BLC4,702+20,�360 , M2W,360

ARSYM,Y, ALL , , , , 0 , 0
AADD, ALL

ASEL, S , , , ALL
AESIZE , 1 3 , , 1 ! mass1
AESIZE , 1 1 , , 1 ! mass2
AESIZE , 9 , 5 , ! s p r i ng1
AESIZE , 1 0 , 5 , ! s p r i ng1
AESIZE , 8 , 5 , ! s p r i ng2
AESIZE , 1 , 5 , ! s p r i ng2
ASEL, S , , , ALL

! ET, 1 , SHELL63
!KEYOPT, 1 , 1 , 0
!KEYOPT, 1 , 2 , 0
!KEYOPT, 1 , 3 , 0
!RMORE, ,

et , 1 , 4 2 , , , 3 ! Switch to s t r u c t u r a l e lement , PLANE42
! et , 1 , 6 3 , , , 3 ! Switch to s t r u c t u r a l e lement , PLANE42
r , 1 , 2 ! Plane s t r e s s with t h i c k n e s s of po l y t
r e a l , 1

mp, ex , 1 , 1 6 9 e3 ! Modulus of e l a s t i c i t y
mp, nuxy , 1 , 0 . 2 2 ! Po i s son ' s r a t i o
mp, a lpx , 1 , 2 9 e�7 ! C o e f f i c i e n t of thermal expans ion

UIMP, 1 , EX , , , 1 . 5 e5 ,
UIMP, 1 , NUXY, , , . 2 ,
UIMP, 1 , DENS, , , 2 3 3 3 E�18,

/SOLU

DL, 2 6 , , ALL,0
DL, 6 4 , , ALL,0
DL, 7 1 , , ALL,0
DL, 1 0 1 , , ALL,0

! FIX THE ANCHOR NODES
! NSEL, S , , , 1 3 8
! NSEL, A, , , 1 4 2
! NSEL, A, , , 6 7 3
D, ALL , , , , , , ALL
ALLSEL, ALL

/PREP7

! Mass 1 and s p r i n g s

AMESH,9
AMESH,10
AMESH,8
AMESH,1
ESIZE , 0 , 1 ,
AMESH,13
AMESH,11

! Mass1 � Subs t r a t e Spr ing conne c t i on ( mass1 )
NSEL, S , , , 4 7 0
NSEL, A, , , 4 9 4
ESEL, A, , , 4 7 2
CEINTF , , ALL

NSEL, S , , , 5 9 1
NSEL, A, , , 6 1 5
ESEL, A, , , 4 7 3
CEINTF , , ALL

NSEL, S , , , 3 2 8
NSEL, A, , , 3 0 4
ESEL, A, , , 4 7 6
CEINTF , , ALL

NSEL, S , , , 2 0 7
NSEL, A, , , 1 8 3
ESEL, A, , , 4 7 5
CEINTF , , ALL
ALLSEL, ALL

! Mass1 � Mass2 Spr ing conne c t i on ( mass1 )
NSEL, S , , , 1 3 8 5
NSEL, A, , , 1 3 5 7
ESEL, A, , , 4 7 2
CEINTF , , ALL

NSEL, S , , , 1 0 5 5
NSEL, A, , , 1 0 8 3
ESEL, A, , , 4 7 3
CEINTF , , ALL

NSEL, S , , , 1 5 8 0
NSEL, A, , , 1 2 4 8
ESEL, A, , , 4 7 6
CEINTF , , ALL

NSEL, S , , , 8 6 0
NSEL, A, , , 8 5 9
ESEL, A, , , 4 7 5
CEINTF , , ALL

ALLSEL, ALL

! Mass2 � Mass1 Spr ing conne c t i on ( mass2 )
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! Top element
NSEL, S , , , 1 4 3 5
NSEL, A, , , 1 4 3 6
NSEL, A, , , 1 4 3 7
NSEL, A, , , 1 4 2 7
ESEL, A, , , 9 8 9
CEINTF , , ALL

NSEL, S , , , 1 5 5 6
NSEL, A, , , 1 5 5 7
NSEL, A, , , 1 5 5 8
NSEL, A, , , 1 5 4 8
ESEL, A, , , 9 8 9
CEINTF , , ALL

! Bottom element
NSEL, S , , , 1 0 3 1
NSEL, A, , , 1 0 3 2
NSEL, A, , , 1 0 3 3
NSEL, A, , , 1 0 2 3
ESEL, A, , , 9 9 1
CEINTF , , ALL

NSEL, S , , , 9 0 2
NSEL, A, , , 9 1 1
NSEL, A, , , 9 1 2
NSEL, A, , , 9 1 0
ESEL, A, , , 9 9 1
CEINTF , , ALL

ALLSEL, ALL

/SOLU
!�
ANTYPE,2
!�
MODOPT, SUBSP,6
EQSLV,FRONT
MXPAND, 0 , , , 0
LUMPM,0
PSTRES,0
!�
MODOPT, SUBSP , 6 , 1 0 0 , 1 0 0 0 0 0 , , OFF
RIGID ,
SUBOPT, 8 , 4 , 1 0 , 0 , 0 , ALL
/STATUS, SOLU
SOLVE

/EOF

B.2 singlegyrofea.inp

Finite Element Model of a Conventional Gyroscope, with thermal and modal

analysis.

FINISH
/CLEAR
/GRA,POWER
/GST,ON
/PREP7

LX=136
LY=120
W=2
CONW=6
CONL=190

A=(106�20)/2
B=20
C=106
MLS=172
MLL=248
MASSL=106�5

!MASS:

BLC4,CONW+LY�A,�10, MASSL,10
BLC4,CONW+LY,�10�MLS,2 0 , MLS
BLC4,CONW+LY+C,�10�MLL, 2 0 , MLL
BLC4,CONW+LY+C+C,�10�MLL, 2 0 , MLL
BLC4,CONW+LY+C+C+C,�10�MLL, 2 0 , MLL
BLC4,CONW+LY+C+C+C+C,�10�MLS, 2 0 , MLS

ARSYM,Y, ALL , , , , 0 , 0
AADD, ALL
ASEL, U , , , ALL

! NEGATIVE PART:

! CONNECT
BLC4,0 ,�CONL,CONW,CONL

! X SPRING
BLC4,2 ,�CONL�LX,W, LX

! ANCHOR
BLC4,�6,�CONL�LX�18 ,18 ,18

! Y SPRING
BLC4,CONW,�CONL+4�W, LY,W

ARSYM,Y, ALL , , , , 0 , 0
AADD, ALL
ASEL, U , , , ALL

! POSITIVE PART:

! CONNECT
BLC4,W+CONW�2+MASSL+LY+LY�A�A,�CONL,CONW,CONL

! X SPRING
BLC4,2+W+CONW�2+MASSL+LY+LY�A�A,�CONL�LX,W, LX

! ANCHOR
BLC4,�6+W+CONW�2+MASSL+LY+LY�A�A,�CONL�LX�18 ,18 ,18
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! Y SPRING
BLC4,CONW+W+MASSL+LY�A�A�2,�CONL+4�W, LY,W

ARSYM,Y, ALL , , , , 0 , 0
AADD, ALL

ASEL, S , , , ALL
AESIZE , 1 3 , , 1
AESIZE , 9 , 5 ,
AESIZE , 1 0 , 5 ,
ASEL, S , , , ALL

! ET, 1 , SHELL63
!KEYOPT, 1 , 1 , 0
!RMORE, ,

et , 1 , 4 2 , , , 3 ! Switch to s t r u c t u r a l e lement , PLANE42
r , 1 , 2 ! Plane s t r e s s with t h i c k n e s s of po l y t
r e a l , 1

mp, ex , 1 , 1 6 9 e3 ! Modulus of e l a s t i c i t y
mp, nuxy , 1 , 0 . 2 2 ! Po i s son ' s r a t i o
mp, a lpx , 1 , 2 9 e�7 ! C o e f f i c i e n t of thermal expans ion

UIMP, 1 , EX , , , 1 . 5 e5 ,
UIMP, 1 , NUXY, , , . 2 ,
UIMP, 1 , DENS, , , 2 3 3 3 E�18,

/SOLU
DL, 2 6 , , ALL,0
DL, 6 4 , , ALL,0
DL, 7 1 , , ALL,0
DL, 1 0 1 , , ALL,0

/PREP7

AMESH,9
AMESH,10
ESIZE , 0 , 1 ,
AMESH,13

NSEL, S , , , 4 7 0
! NSEL, A, , , 9 0 2
NSEL, A, , , 4 9 4
ESEL, A, , , 4 7 2
! CP, , ALL, ALL
CEINTF , , ALL

NSEL, S , , , 5 9 1
NSEL, A, , , 6 1 5
! NSEL, A, , , 8 9 6
ESEL, A, , , 4 7 3
! CP, , ALL, ALL
CEINTF , , ALL

NSEL, S , , , 3 2 8
NSEL, A, , , 3 0 4
! NSEL, A, , , 8 7 3
ESEL, A, , , 4 7 6
! CP, , ALL, ALL
CEINTF , , ALL

NSEL, S , , , 2 0 7
NSEL, A, , , 1 8 3
! NSEL, A, , , 8 7 9
ESEL, A, , , 4 7 5
! CP, , ALL, ALL
CEINTF , , ALL

ALLSEL, ALL

/SOLU
!�
ANTYPE,2
!�
MODOPT, SUBSP,6
EQSLV,FRONT
MXPAND, 0 , , , 0
LUMPM,0
PSTRES,0
!�
MODOPT, SUBSP , 6 , 1 0 0 , 1 0 0 0 0 0 , , OFF
RIGID ,
SUBOPT, 8 , 4 , 1 0 , 0 , 0 , ALL
/STATUS, SOLU
SOLVE
/EOF
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