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ABSTRACT
Our previous work demonstrated the advantages of MEMS

vibratory gyroscopes with 1 degree of freedom (DOF) drive and
2-DOF sense modes which were shown to be robust to tempera-
ture drifts. These devices were designed with frequencies below
1 kHz; many applications, however, require gyroscopes with op-
erational frequencies above 1 kHz for the rejection of ambient
vibrations. This paper discusses the design trade-offs associated
with increasing the frequency of the 3-DOF gyroscope design
concept. Lumped parameter models were used to simulate the
effects of frequency increases on the device, focusing on the 2-
DOF sense mode. The simulations showed that the sense mode
peak spacing increases with frequency which ultimately causes a
decrease in sensitivity. A series of 3-DOF gyroscope prototypes
with different operational frequencies ranging from 0.7 kHz to
5.1 kHz were designed, fabricated, and characterized.

INTRODUCTION
All vibratory micromachined gyroscopes integrate two high

precision subsystems – a self tuned oscillator, called the drive
mode, and a micro-g accelerometer, called the sense mode [1,2].
The operation of the device depends on a transfer of energy be-
tween these modes which is detected and processed to produce
the device output [1]. While these subsystems are generally de-
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signed to have their own independent vibration characteristics,
the complete sensor dynamics are sensitive to the relative loca-
tion of the drive and sense resonant frequencies [3].

Conventional micromachined vibratory gyroscopes gener-
ally use a single degree of freedom for both the drive and sense
mode, forming a 2-DOF dynamic system [2, 3]. For these types
of devices, the sensor gain can be increased by mode matching,
where the drive and sense natural frequencies are designed to be
equal. The increased gain comes at the cost of robustness as fluc-
tuations in the operational parameters can cause large changes in
amplitude due to the instability of resonance [3]. Because of this,
conventional devices are generally designed with a few percent
mismatch in frequencies.

The 3-DOF micromachined gyroscope is a novel design con-
cept introduced in [4]. The difference of this design from con-
ventional devices is the addition of a second sense mass, form-
ing a coupled 2-DOF sense mode. This alters the frequency re-
sponse so that a region of magnitude and phase stability is formed
between the two coupled resonant frequencies. Using low fre-
quency prototypes, it was demonstrated that this design approach
yields angular rate sensors robust to fabrication imperfections
and environmental conditions [4]. However, the 3-DOF design
approach has been shown to have drawbacks associated with in-
creases in operational frequencies, where increases in peak spac-
ings can cause a drop in sensor gain [5].

This paper investigates the effects of increasing the oper-
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Figure 1. SCHEMATIC DEPICTING A MASS SUSPENDED IN A RO-
TATING COORDINATE FRAME

ational frequency of MEMS vibratory gyroscopes with 2-DOF
sense modes. Modeling results of the trade-offs associated with
these increases are presented here. In order to show the feasibil-
ity of increased frequency 3-DOF gyroscopes, a redesign of the
device with a smaller mass ratio was fabricated and character-
ized. Rate response characterizations of micromachined 3-DOF
gyroscopes with various operational frequencies are presented.

GYROSCOPE DYNAMICS
Vibratory rate gyroscopes take advantage of the Coriolis ef-

fect, where a moving object in a rotating coordinate system expe-
riences rotation induced accelerations perpendicular to both the
rotation and its motion. For micromachined implementations,
this is typically a suspended proof mass that is free to move in
two directions, as shown schematically in Fig. 1. If the position
of this mass is defined relative to a coordinate frame attached to
its anchors and this coordinate frame is rotating, the acceleration
of the mass can be expressed in vector form as

~A = ~̈R+~̈r + ~̇Ω×~r +~Ω×
(
~Ω×~r

)
+2~Ω×~̇r (1)

where ~̈R is the acceleration of the coordinate frame {x,y} relative
to an inertial frame {X,Y},~̈r is the acceleration of the mass in the
rotating frame {x,y}, and ~Ω is its angular velocity vector. Since
most gyroscopes are typically designed to be sensitive to a single
axis of rotation, it is assumed that ~Ω contains only one non-zero
component of rotation, Ωz, corresponding to in-plane rotations.

Equation (1) can now be simplified to the following

Ax = Ẍ + ẍ− Ω̇zy−Ω2
z x−2Ωzẏ (2)

Ay = Ÿ + ÿ+ Ω̇zx−Ω2
z y+2Ωzẋ (3)

where Ẍ and Ÿ represent the acceleration of the moving coordi-
nate system {x,y} with respect to the inertial frame {X,Y}, ẍ and
ÿ represent the acceleration of the mass with respect to the mov-
ing frame {x,y}, Ω̇zy and Ω̇zx are the angular acceleration terms,
Ω2

z x and Ω2
z y are the centrifugal acceleration terms, and Ωzẏ and

Ωzẋ are the Coriolis acceleration terms.
The Coriolis terms in Eqn. (2) and (3) cause a transfer of en-

ergy from x to y (and consequently from y to x) proportional to
the angular rate while the other terms act to corrupt this informa-
tion. Vibratory gyroscopes, however, are often used to measure
a small range of rotations, typically ± 300 deg/sec, therefore,
the angular acceleration terms proportional to Ω2

z are generally
small compared to device frequencies and can be neglected. If
the sensor is restricted to measure constant or near constant an-
gular rates, the centrifugal terms proportional to Ω̇z can also be
neglected.

Using the model in Fig. 1 and the accelerations in Eqn. (2)
and (3) without the neglected terms, the equations of motion for
the mass can be expressed as

Mẍ+ cxẋ+ kxx = Fx−Max +2MΩzẏ (4)
Mÿ+ cyẏ+ kyy = Fy−May−2MΩzẋ (5)

where ax and ay are any external accelerations while Fx and Fy are
any external forces applied to the mass. Even though the effect of
acceleration loads on vibratory gyroscopes is a topic of interest,
it is beyond the scope of this paper. Therefore the acceleration
terms are assumed to be compensated by signal processing and
will be neglected.

Equation (4) and (5) define the dynamic system that is the
basis for vibratory rate gyroscopes. The next sections will ex-
pand these equations for both conventional and 3-DOF imple-
mentations.

Conventional Implementation
Conventional vibratory rate gyroscopes consist of a single

degree of freedom drive and sense mode, much like the system
defined by Eqn. (4) and (5). Most micromachined implemen-
tations, however, utilize mechanical mode decoupling between
drive and sense. This is accomplished by suspending a sense
mass inside of a decoupling frame as shown in Fig. 2. The de-
coupling frame is constrained so that it only oscillates in the drive
direction, while the sense mass is suspended so that it moves only
in the sense direction relative to the frame. The dynamic system
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Figure 2. LUMPED PARAMETER MODEL OF A CONVENTIONAL GY-
ROSCOPE WITH MECHANICAL MODE DECOUPLING

can then be represented by the following equations:

(m f +ms) ẍ+ cd ẋ+ kdx = Fd (6)
msÿ+ csẏ+ ksy =−2msΩzẋ (7)

where the drive direction is assumed to be along the x axis, the
sense direction is along the y axis, m f is the mass of the de-
coupling frame, ms is the mass of the sense mass, cd is the total
damping coefficient between both masses and the substrate along
the drive direction, cs is the total damping coefficient between the
sense mass and the substrate in the sense direction, kd is the drive
mode stiffness, ks is the sense mode stiffness, Fd is the applied
driving force, and Ωz is the angular rate.

The drive mode is represented by Eqn. (6) and consists of
both the decoupling frame and sense mass moving together in the
drive direction due to a forcing input on the frame. The natural
frequency of this mode is determined by the total mass, Md =
m f + ms, and the decoupling frame stiffness, kd . The Coriolis
term has been neglected by assuming there is an active control
for keeping the drive mode amplitude constant. The sense mode
response is represented by Eqn. (7). It also has a single degree
of freedom and its natural frequency is determined by the sense
mass, ms, and the sense mode stiffness, ks. It is only forced into
vibration when the system is subject to an input angular rate, Ωz.

3-DOF Implementation
The mechanical structure of the 3-DOF gyroscope consists

of a single degree of freedom drive mode and a 2-DOF sense
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Figure 3. LUMPED PARAMETER MODEL OF A 3-DOF GYROSCOPE
WITH MECHANICAL MODE DECOUPLING

mode. It also uses mechanical mode decoupling where the two
sense masses are suspended inside of a decoupling frame as
shown in Fig. 3. The decoupling frame is constrained so that
it only oscillates in the drive direction while the sense masses are
constrained to vibrate only in the sense direction relative to the
frame. Thus, the ideal system can be represented by the follow-
ing simplified equations:

(m f +m1 +m2) ẍ+ cd ẋ+ kdx = Fd (8)
m1ÿ1 + c1ẏ1 +(k1 + k2)y1− k2y2 =−2ẋm1Ωz (9)

m2ÿ2 + c2ẏ2 + k2y2− k2y1 =−2ẋm2Ωz (10)

where the drive direction is assumed to be along the x axis, the
sense direction is along the y axis, m f is the mass of the de-
coupling frame, m1 is the mass of sense mass 1, m2 is the mass
of sense mass 2, cd is the total damping coefficient between all
masses and the substrate along the drive direction, c1 is the total
damping coefficient between sense mass 1 and the substrate in
the sense direction, c2 is the total damping coefficient between
sense mass 2 and the substrate in the sense direction, kd is the
drive mode stiffness, k1 is the stiffness between the frame and
sense mass 1, k2 is the stiffness between sense mass 1 and sense
mass 2, Fd is the applied driving force, and Ωz is the angular rate.

The drive mode is represented by Eqn. (8) which consists of
the decoupling frame and both sense masses moving in unison
in the drive direction due to a harmonic forcing applied to the
frame. This is identical to the conventional drive mode defined
in Eqn. (6) with the exception of the additional sense mass. The
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sense mode dynamics are represented by Eqn. (9) and (10) in
terms of the displacements of both sense masses, y1 and y2, in
the sense direction. They form a 2-DOF coupled system where
both masses are forced into vibration when subject to an input
angular rate.

Since the drive mode is a conventional resonator, the focus
will now shift to the 2-DOF sense system defined by Eqn. (9)
and (10). In order to determine the resonant frequencies of the
coupled system in terms of the model parameters, the following
quantities are defined:

ω2
1 = k1+k2

m1
(11)

ω2
2 = k2

m2
(12)

µ2 = m2
m1

(13)

where Eqn. (11) corresponds to the uncoupled natural frequency
of sense mass 1, Eqn. (12) corresponds to the uncoupled natural
frequency of sense mass 2, and Eqn. (13) defines the mass ra-
tio. Substituting these expressions in Eqn. (9) and (10) yields the
following representation of the sense mode dynamics:

ÿ1 + c1
m1

ẏ1 +ω2
1y1−µ2ω2

2y2 =−2ẋΩz (14)

ÿ2 + c2
m2

ẏ2 +ω2
2y2−ω2

2y1 =−2ẋΩz (15)

Since this is a coupled system, the natural frequencies defined
in Eqn. (11) and (12) do not correspond to the actual resonant
frequencies that would be seen in the frequency response. From a
design point of view, it is easier to start with the sense mode peak
locations, ωc1 and ωc2, which can then be used to determine the
layout parameters needed to achieve the desired system. Using
Eqn. (14) and (15), the following equations can be found,

ω
2
1 =

ω2
c2
2

+
ω2

c1
2

+

√(
ω2

c2
2
−

ω2
c1
2

)2

−µ2ω4
2 (16)

ω
2
2 =

ω2
c2
2

+
ω2

c1
2
−

√(
ω2

c2
2
−

ω2
c1
2

)2

−µ2ω4
2 (17)

which defines the relationship between the uncoupled natural fre-
quencies, ω1, ω2, the actual sense mode resonant peaks ωc1, ωc2,
and mass ratio, µ2. When solving Eqn. (17) for the uncoupled
natural frequency ω2

2, a condition on the mass ratio is revealed in
order to have a valid physical system. This condition is given by

µ2 < µ2
c =

ω4
c2−2ω2

c2ω2
c1 +ω4

c1

4ω2
c2ω2

c1
(18)

where ωc1, ωc2 are the desired sense mode resonant frequencies
and µ2

c is the critical mass ratio. Thus, given any two desired
peak locations, the maximum mass ratio required to achieve this
design can be determined from Eqn. (18). A system with a mass
ratio lower than the critical mass ratio for a given peak spacing
is physically achievable while designing a system for this peak
spacing with a larger mass ratio is impossible.

Design Comparison
The difference between a conventional and a 3-DOF ap-

proach can be seen by examining the typical frequency responses
of both systems. Figure 4(a) conceptually shows the magni-
tude plot of a mode mismatched conventional gyroscope. As
expected, there are two resonant peaks corresponding to the two
1-DOF systems.

Figure 4(b) conceptually shows the magnitude plot of a 3-
DOF gyroscope. There are three curves corresponding to the
drive mode and both sense masses. The single DOF drive mode
results in a single resonance peak, while the coupling of the two
masses in the sense mode results in two resonant frequencies,
and thus two peaks in the frequency response. This coupling also
creates a region of relatively constant gain between the peaks for
the smaller sense mass 2. By designing the drive mode resonant
frequency to be in this region and detecting the Coriolis signal
from the smaller sense mass, m2, one takes advantage of the non-
resonant sense mode amplitude which is stable in both magnitude
and phase over a wide frequency range.

This flat region in the frequency response provides the 3-
DOF gyroscope with improved robustness by design. Fabrica-
tion imperfections and environmental changes can cause shifts in
the desired resonant frequencies of the device. For conventional
devices, a mismatch between the drive and sense resonant fre-
quencies helps to improve robustness by moving away from the
sense mode resonance to a more stable location in the frequency
response, but it comes at the cost of lower sensitivity due to the
reduction in amplitude [3]. The constant gain region between
the peaks of the 3-DOF gyroscope accomplishes the same goal
of non-resonant stability, however the reduction in amplitude can
be minimized by controlling the sense mode peak spacing.

SIMULATION RESULTS
1-DOF Sense Mode

The conventional sense mode equation of motion given by
Eqn. (7) was simulated to determine the effects of increasing the
operational frequency on the system. Figure 5 shows the fre-
quency response for three different sense mode natural frequen-
cies for constant forcing, mass, and damping coefficients. As
the natural frequency is increased, the overall amplitude drops
resulting in nearly two orders of magnitude difference from 700
Hz to 5.1 kHz. This can be attributed to the increases in stiffness
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Figure 4. TYPICAL FREQUENCY RESPONSE PLOTS FOR A CON-
VENTIONAL MODE MISMATCHED AND 3-DOF GYROSCOPE

required for the larger frequencies and will also be observed in
2-DOF sense systems.

2-DOF Sense Mode
The 2-DOF sense mode given in Eqn. (14) and (15) was ex-

amined to determine how increasing the operational frequency
affects the dynamic system. Figure 6 shows the magnitude of
the frequency response at three different frequencies for con-
stant forcing, mass ratio, and damping coefficients. Much like
the conventional sense mode, increasing the frequency results in
an overall drop in amplitude. A more interesting result is that
the peak spacing also increases with frequency which results in
a decrease of the sense mode amplitude in the operating region
between the peaks. This is a direct result of Eqn. (18), where in-
creases in ω1 for constant mass ratios result in larger ω2 values.

The observed drop in sense mode amplitude between the
peaks has a direct effect on the sensor output. Figure 7 shows
simulated rate response plots for the three operational frequen-
cies with increasing peak spacings. As the peak spacings get
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larger for constant forcing, the sensitivity decreases. In order
to restore the sensitivity, larger actuation voltages are required
which results in increased noise.

One way to alleviate the increase in peak spacing for increas-
ing frequencies is to not only adjust stiffnesses, but also lower the
mass ratio. Figure 8 plots the critical mass ratio versus frequency
for various peak spacings. For high frequencies and small spac-
ings, the mass ratios needed correspond to at least 3-4 orders
of magnitude difference in mass. This requires systems with a
much larger sense mass 1 than smaller sense mass 2, meaning ei-
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ther very large device sizes or fewer Coriolis sensing capacitors.

EXPERIMENTAL RESULTS
Fabrication

Several 3-DOF devices were designed, fabricated, and char-
acterized. The fabrication was done using a wafer level SOI pro-
cess. SOI wafers with a conductive 75 µm thick device layer
were used. Shipley 1827 photo-resist was spin-coated onto the

Sense Mass 1

Sense Mass 2

Decoupling Frame

Drive Combs

Sense Plates

Figure 9. SEM IMAGE OF A FABRICATED 3-DOF GYROSCOPE PRO-
TOTYPE

wafers and patterned using a chrome-on-glass photo-mask and
a Karl Suss MA6 exposure system. After photo-resist develop-
ment, the wafers were subjected to a timed Deep Reactive Ion
Etching (DRIE) using a Surface Technology Systems (STS) tool.
The minimum feature of the process was 8 µm. Figure 9 shows
an SEM image of a fabricated 3-DOF gyroscope. The drive mode
decoupling frame utilizes lateral comb drive capacitors and the
motion of the smaller sense mass is detected using parallel plate
capacitors.

Experimental Setup
Figure 10 shows a schematic of the actuation and detection

scheme used to characterize the gyroscopes. A combination of a
DC bias with a driving AC voltage is applied to the fixed driving
electrode; vibration of the drive mode decoupling frame is ex-
cited at the frequency of the driving AC voltage. The driving AC
voltage also causes a flow of parasitic current that contributes to
the total pick-up current used for motion detection. Electrome-
chanical Amplitude Modulation (EAM) was used to detect the
motion of the sense mass. EAM uses a carrier AC voltage across
the sense capacitor, which results in the Amplitude Modulation
(AM) of the variable sense capacitance. This elevates the mo-
tional signal away from parasitic feed-through of the drive volt-
age [6]. Two stage demodulation was used to extract the motional
signal from the total EAM pick-up signal. Each demodulation
block consists of a reference harmonic phase shift, mixing, and
band-pass filtering.

For this work, two AMETEK Advanced Measurement Tech-
nology Signal Recovery Model 7265 digital lock-in amplifiers
were used to generate the drive and the carrier AC voltages and
perform the two stages of demodulation. An HP 35665A Dy-
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chrome-on-glass mask and a Karl Suss MA6 exposure system.
After photo-resist development, the wafers were subjected to
a timed Deep Reactive Ion Etching (DRIE) using a Surface
Technology Systems (STS) tool. Minimum feature of the
process was 8 µm. Figure 4 shows an SEM micrograph of
a fabricated capacitive MEMS 3-DOF gyroscope. Drive mode
decoupling frame utilizes the lateral comb drive capacitors,
and the motion of the smaller sense mass is detected using
parallel plate sense capacitors. The fabricated SOI wafers
were diced, and individual devices were packaged using DIP
packages and wirebonded, Figure 5.

B. Experimental Setup

Figure 6 shows schematics of the actuation and detection
used to characterize performance of the gyroscopes. A combi-
nation of a DC bias with a driving AC voltage is applied to the
fixed driving electrode; vibration of the drive mode decoupling
frame is excited at the frequency of the driving AC voltage.
The driving AC voltage also causes a flow of parasitic current,
which contributes to the total pick-up current, used for motion
detection. Electromechanical Amplitude Modulation (EAM)

Demodulated Coriolis Signal

90°

~

Vdc

V (t)d

x

~ V (t)c

x
Auto Phase

-
+

LPF

BPF

D
ri

v
e

V
+

V
(t

)
d

c
d

Sense

Lock-In Amp. #2 Lock-In Amp. #1

Trans-Z
Amp.

MEMS Gyroscope
1-DOF Drive, 2-DOF Sense

Amp

Parasitic Circuit

Fig. 6. Schematics of the 3-DOF MEMS gyroscope with open loop actuation
and EAM-based detection of sense mode motion.

was used to detect the motion of the sense mass. EAM uses a
carrier AC voltage across the sense capacitor, which results
in the Amplitude Modulation (AM) of the variable sense
capacitance, and hence displacement. This allows to elevate
the frequency of the motional signal away from parasitic feed-
through of the drive voltage [5]. Two stage demodulation was
used to extract the motional signal from the total EAM pick-
up signal. Each demodulation block consists of a reference
harmonic phase shift, mixing, and band-pass filtering. Detailed
description of the signal processing can be found, for example,
in [6]. In this work, two AMETEK Advanced Measurement
Technology Signal Recovery Model 7265 digital lock-in am-
plifiers were used to generate the drive and the carrier AC
voltages and perform the two stages of demodulation. An HP
35665A Dynamic Signal Analyzer was used to collect two
data channels – the demodulated output of the gyroscope, and
the angular rate reference signal, produced by the rate table.
For simplicity, in all described experiments the detection was
done using a single sensing capacitor. However, all devices are
designed for balanced differential detection. Implementation of
a complete differential detection electronics is expected to im-
prove reported performance figures by an order of magnitude.

Figure 7 shows a photograph of the experimental setup.
A packaged MEMS gyroscope is placed inside a metal box,
which contains a PCB with a trans-resistance amplifier. This
test-bed was mounted on an Ideal Aerosmith 1291BR rate
table. The rate table is capable of producing high precision
constant angular rate of rotation, as well as constant angular
acceleration and sinusoidal modes of operation. During opera-

Figure 10. BIASING SCHEMATIC USING OPEN LOOP ACTUATION
AND EAM BASED CORIOLIS DETECTION

namic Signal Analyzer was used to collect two data channels –
the demodulated output of the gyroscope, and the angular rate
reference signal produced by the rate table. For simplicity, in
all described experiments the detection was done using a single
sensing capacitor.

Constant Angular Rate Characterization
Several MEMS implementations of the 3-DOF concept were

tested: a low frequency 700 Hz device with 150 Hz sense mode
spacing, a 3.1 kHz device with sense mode resonant frequency
spacing of 0.4 kHz, and a 5.1 kHz device with a 0.6 kHz sense
spacing. The steady state responses of the gyroscopes were col-
lected for different values of the input angular rate. Figure 11
shows the rate response of a gyroscope with 700 Hz drive mode
resonant frequency and 150 Hz sense mode spacing. The device
shows RMS nonlinearity error of 0.084 % full scale output (FSO)
in the ±1000 deg/s range. This device has the same operational
frequency as the one previously reported in [4], however, it is
redesigned for a 5 times smaller sense mode mass ratio in order
for frequency scaling with closer peak spacing. Figure 12 shows
the response of the 3-DOF gyroscope with 3.1 kHz drive mode
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Figure 11. LOWER FREQUENCY 3-DOF GYROSCOPE RESPONSE
(700 HZ DRIVE, 150 HZ PEAK SPACING)

resonant frequency and 0.4 kHz spacing between the sense mode
resonant frequencies. For this device, the nonlinearity error is
0.38% FSO in the ±1000 deg/s. The response of the 3-DOF de-
vice with 5.1 kHz drive mode resonant frequency and 0.6 kHz
sense mode spacing is shown in Fig. 13. This device has a non-
linearity error of 0.76% FSO in the ±1000 deg/s range.

The operational frequency of the devices presented here
were scaled 4 and 7 times that of the device originally reported
in [4]. An analysis of the measured nonlinearity errors shows that
the performance of 3-DOF gyroscopes degraded proportionally
to the increase of the operational frequency. Drops in the me-
chanical sensitivity of the 2-DOF sense mode and a decrease of
the signal-to-noise ratio caused by larger actuation voltages both
contribute to this observed performance degradation. The prob-
lem of high actuation voltages is addressed by the design and
fabrication of driving capacitors with higher capacitive gradients
while the drop in gain associated with the increased frequency
spacing is a property of the concept and is dictated by the mass
ratio.

CONCLUSIONS
Even though the 3-DOF gyroscope was shown to be ro-

bust to parameter variations, the 2-DOF sense mode mechanical
design has drawbacks when its operational frequencies are in-
creased. Simulations of the sense mode showed that larger peak
spacings were a direct result of increasing frequencies, and that
this caused a drop in both sense mode amplitude and sensitiv-
ity. Smaller mass ratios can be used to maintain peak spacings at
higher operational frequencies, however, this ultimately results

7 Copyright c© 2007 by ASME
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Figure 12. HIGHER FREQUENCY 3-DOF GYROSCOPE RESPONSE
(3.1 KHZ DRIVE, 400 HZ PEAK SPACING)
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Figure 13. HIGHER FREQUENCY 3-DOF GYROSCOPE RESPONSE
(5.1 KHZ DRIVE, 600 HZ PEAK SPACING)

in larger device sizes and smaller sense capacitances. Larger ac-
tuation voltages and detection biases are usually needed for op-
eration which leads to a decrease in both the signal-to-noise ratio
and sensitivity.

Despite the described challenges, the implementation of
the 3-DOF concept with increased operational frequencies was
shown to be feasible. Achieving even higher frequency 3-DOF
gyroscopes is possible with careful mechanical design and im-
proved fabrication resolution for increased capacitance.
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