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Abstract—Electrostatic parallel-plate actuators are a common
way of actuating microelectromechanical systems, both statically
and dynamically. In the static case, the stable actuation voltages
are limited by the static pull-in condition, which indicates that
the travel range is approximately limited to 1/3 of the initial
actuation gap. Under dynamic actuation conditions, however,
the stable voltages are reduced, whereas the travel range can
be much extended. This is the case with the dynamic pull-in
and the resonant pull-in conditions (RPCs). Using energy analysis,
this paper extends the study of pull-in instability to the reso-
nant case and derives the analytical RPC. This condition pre-
dicts snapping or pull-in of the structure for a given domain of
dc and ac actuation voltages versus quality factor, taking into
account the nonlinearities due to large amplitudes of oscillation.
Experimental results are presented to validate the analytically
derived RPC. [2006-0147]

Index Terms—Electrostatic actuation, nonlinear spring,
parallel-plate capacitor, pull-in instability, resonators.
I. INTRODUCTION
ICROELECTROMECHANICAL systems (MEMS)

based on the electrostatic parallel-plate actuation princi-
ple are seemingly simple to fabricate and operate while provi-
ding relatively large forces (Fig. 1). One challenge is the
instability resulting from the nonlinearity of the parallel-plate
electrostatic force that occurs at 2/3 of the initial gap, which is
known as the static pull-in condition [1].

Several techniques have been considered to increase the
stable static range of actuation of parallel-plate actuators. They
can be classified in two distinct approaches.

The first approach is based on modifying the design of
the electromechanical system, either by introducing mechani-
cal nonlinear leverages [2] or by changing the profile of the
electrostatic forces by modifying the design of the capacitor
plates [3], [4].

The second approach is based on control strategies, either
using position feedback control to prevent snapping, as pro-
posed in [5], or using a series inductance or capacitor in the
control circuit [6]. A promising possibility is charge control

Manuscript received July 25, 2006; revised April 17, 2007. Subject
Editor G. Fedder.

A. Fargas-Marques is with the Institute of Industrial and Control Engi-
neering, Technical University of Catalonia, 08028 Barcelona, Spain (e-mail:
andreu.fargas @upc.edu).

J. Casals-Terré is with the Department of Mechanical Engineering, Techni-
cal University of Catalonia, 08222 Terrassa, Spain (e-mail: jasmina.casals@
upc.edu).

A. M. Shkel is with the University of California, Irvine, CA 92697-3975
USA (e-mail: ashkel @uci.edu).

Digital Object Identifier 10.1109/JMEMS.2007.900893

Fig. 1. Beam resonator with parallel-plate electrostatic actuation and sensing.
The design parameters are shown in Table 1. The device was used to experi-
mentally verify the RPC.

strategies [7], which clearly allow to extend the travel range
when compared to voltage-controlled strategies, but they are
also limited by the charge pull-in [8].

In most cases, the objective sought is static positioning of the
capacitor plates, with dynamics usually ignored or treated as
a transient effect. In microrelay applications, where pull-in or
gap closing is the objective, dynamics is basically introduced
as a factor of time response [9]-[11]. In MEMS positioning
studies, dynamics is used as a tool to extend the static travel
range [12].

Dynamics play an important role in MEMS devices. Recent
studies have explicitly dealt with the implications of dynamics
in transient excitation [13] and forced oscillation of MEMS
devices [14], [15]. Specifically, parametric excitation has also
been addressed [16], [17].

Moreover, in many MEMS applications, the devices are
operated at resonant frequencies. This is the case in resonant
force sensors [18], accelerometers [19], and gyroscopes [20].
In these applications, large amplitudes of motion are needed
to improve sensing capabilities. Consequently, nonlinear spring
effects add up to the electrostatic nonlinear forces, leading to
reduced stable driving voltages.

The issue of stability limitations in oscillatory excitation
was first presented in [21] for double-sided actuated gyro-
scopes. The study included experimental results. Since then,
theoretical and simulation analysis of the nonlinear oscillation
behavior and the study of the mechanisms that lead to dynamic
pull-in have been presented in [22] for primary-resonance
excitation and in [23] for subharmonic and superharmonic
excitations. These studies have led to propose using resonant
pull-in as a way of reducing voltage excitation in radio fre-
quency MEMS switches [24]. At the same time, a method
to increase the dynamic pull-in voltage (DPV) using optimal
control has been discussed in [25].

This paper examines the problem of resonant stability and
derives for the first time the constructive analytical resonant

1057-7157/$25.00 © 2007 IEEE
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Fig. 2. Schematics of an electromechanical system with parallel-plate actu-
ation. In the linear spring case (K3 = 0), the static pull-in occurs when the
distance between plates is 2/3 of the initial gap. In the dynamic case, we are
studying the maximum achievable amplitude of oscillation y beyond the static
snapping condition.

pull-in condition (RPC). The presented analysis takes into
account energy storage, transfer, and power dissipation in
steady-state response of electrostatically actuated dynamic
MEMS structures. The derived stability limits represent upper
limits to the dynamic pull-in, beyond which no stable motion
can exist. There are also other factors that affect the stability,
which are related to transient response or jumps in the evolution
of vibratory motion [22]; however, these factors are not the
subject of this paper. This paper is an extension of [26] and [27],
which were previously published by this group.

In Section II, the model used in [26] is extended to ac-
count for the nonlinear spring effect that appears with large
amplitudes of oscillation. Using this model, the static, dynamic,
and resonant pull-in are analyzed in Section III. Specifically,
the analytical expression derived in [28] to calculate the static
pull-in as a function of the nonlinear spring is extended to the
dynamic pull-in case.

Following this analysis, in Section IV, the RPC is calculated
for the nonlinear spring model case. The result of the calcu-
lation shows that the RPC derived in [27] is applicable to the
case of the nonlinear spring. Finally, new experimental results
are presented in Section V that validate the proposed approach.
Results and conclusions are summarized in Section VI.

II. NONLINEAR ACTUATOR ENERGY MODEL

We study the issue of dynamic instability using a
concentrated-parameter mass—spring—damper model (Fig. 2),
with the commonly used assumption of voltage-controlled
actuation [2]-[6]. This is a good first-order representation of
a wide variety of MEMS devices, including electrostatically
actuated rigid bodies on an elastic beam suspension, as shown
in Fig. 1.

To describe the phenomena, we consider the energy ex-
change that exists in electrostatically driven MEMS beam
resonators.

The kinetic energy T that is associated with a moving
mass M is

T = My (1)
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Fig. 3. Basic scheme of a deflected beam with electrostatic parallel-plate ac-
tuation as the ones used for testing. Using the Galerkin method, the deformation
of the beam is studied as the lumped mass—spring—damper system in Fig. 2.

where ¢ is the velocity along the y-direction. In a general
case of oscillation of elastic beams (Fig. 3), this kinetic energy
depends on the oscillation amplitude w(z, ), i.e.,

bh [ [ 0w\?
_ pon ow
T= 2 (875) de @

where p is the density of the beam, h and b are the width
and thickness of the beam, respectively, and L is the length of
the beam.

To obtain the concentrated-parameter mass constant M from
the distributed-parameter formulation (2), the Galerkin method
is usually applied [29]. The method assumes that the beam re-
sponse is composed of an infinite number of oscillation modes
w(x,t) =", qi(t)¢i(x), where g;(t) is the time-dependent
modal displacement for the oscillation mode i, and ¢;(x) is
the position-dependent modal shape. Using this approach, the
equivalent mass for each mode of oscillation ¢ can be obtained
[29], i.e.,

L
Meq i = pbh / P2 dz. 3)
0

If a parallel plate is attached to the center of the beam, as in
the case of Fig. 3, the equivalent mass has to be corrected with
the mass of the driving plate [29] to capture all dynamic effects,
and the corrected equivalent mass is

L
Meq,i = pbh/cf)?dm + mpqﬁi(xp)Q %)
0

where m,, is the plate mass, and x, is the position of the
geometric center.

The potential energy stored in a deformed suspension
(or spring) can be defined, in concentrated parameters, as

1 1
Ui = 5Ky + S Kay' )

where K is the linear spring constant of the suspension, and
K3 is the coefficient corresponding to the nonlinear cubic
component of the nonlinear spring.

In the case of deformation of a beam suspension (Fig. 3),
the associated potential energy has three main components.
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The potential energy generated due to deformation of the beam
is proportional to its curvature 9%w/dz2, i.e.,

BI [ (0Pw)?
w
Uger = 2/(3332) dz (6)
0

where FE is the Young’s modulus, and 7 is the moment of inertia
of the beam cross section. The energy term that comprises the
deformation generated by external axial forces /N on the beam
(e.g., residual stresses) is

N [ (ow\?
w
0

which is proportional to the axial force. Finally, the energy of
the deformation due to self-stretching is

L 5 2
jey]
0

which appears in the case of large oscillation amplitude [14].
Consequently, the total potential energy associated with the
beam is

bhE

Uin = 5T
8L

Uk: = Udef + UN + Uint~ (9)

Again, the Galerkin method can be used to calculate the
concentrated-parameter equivalent spring constants K and K3
for each oscillation mode 7. Thus

7 92 \° ’ 06\
Keq’i:EI/(axQ) da:—i—N/(ax) dr  (10)
0 0
L 2

[ (%)
0

These expressions indicate that in the case of large amplitude
of oscillation, the beam behaves not only as a linear spring but
also as a nonlinear cubic spring [2].

Finally, the electrostatic potential energy associated with the
actuator capacitor is

bhE
2L

(1)

3,eq,i —

U, = _Eﬂxﬂ

0-3)

12)

where

Co = 5‘;216 (1 + 0.65%)

is the capacitance at rest using a first-order fringing field
correction [30], € is the dielectric constant, g is the initial gap
between the plates, b is the device thickness, A, is the area of
the plates, and V' is the applied voltage between the electrodes.
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Using the previous definitions, the energy of the whole
system E can be defined as

E=T+U,+U,. (13)

Assuming, as usual, that the system behavior is suffi-
ciently captured by the first mode of oscillation, the dynamic
response of the beam in Fig. 3 can be modeled by the
lumped mass—spring—damper in Fig. 2, given that ¢ (t) ~ y(t),
Meg1 =~ M, Keq1 ~ K, and K3 oy ; ~ K3. The consideration
of higher order modes would improve the accuracy of the
model, as shown in [31], but at the expense of the complexity
of the mathematical tools to be used.

Consequently, the dynamics of the system are derived using
Lagrange’s formulation, introducing the damping force [30]
F; = —By as the only nonconservative force contributing to
the work W of the system, i.e.,

1
Mij+ Ky + Kgy® — = V2 =

2 v \?
90(1—?0)

This is the dynamics equation of a concentrated-parameter
mass—spring—damper with parallel-plate electrostatic actuation
and a nonlinear spring.

—Bj. (14

III. PULL-IN ANALYSIS

Consider the lumped model (14) derived in the previous
section. With the usual assumption of voltage-controlled actua-
tion, the pull-in instability is the main limitation to the position
of the capacitor plates in the gap.

The analysis of the evolution of the energy of the system (13)
is used to determine the equilibrium positions of the system, as
well as the regions of instability. Dynamics are studied as an
important factor affecting the stability of the system.

A. Static Case

In static equilibrium ¢ =y = 0, the energy of the system
(13) consists only of potential energy terms. Thus
1.5 1 s 1 Cy
9o
As a result, the distribution of the system energy along the gap
between the electrodes is constant and unique for each voltage
applied, as can be observed in Fig. 4.

For low voltages, the energy profile is composed of a stable
equilibrium position near the initial position of the system and
an unstable equilibrium position near the opposing capacitor
plate (e.g., 10-50 V in Fig. 4). As the voltage increases, both
equilibrium positions migrate until they merge into an inflection
point of the energy curve (e.g., 91.69 V in Fig. 4). Once this
voltage limit is reached, no equilibrium positions exist. The
limiting condition for the existence of a stable equilibrium is the
presence of an inflection point in (13) defined by d°E/dy? = 0.
This condition provides the analytical value for the maximum
static stable displacement from the initial equilibrium (yspv)
and the voltage needed to reach this position. This voltage limit

V2. (15)
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Fig. 4. Potential energy of the system versus normalized displacement for
different applied voltages are displayed (10, 30, 50, 69.45, 75.61, 84.41, and
91.69 V), including the SPV and the DPV of the example for the linear case
(75.61 and 69.45 V) and nonlinear case (91.69 and 84.41 V). The difference
between the energy profiles of the linear and nonlinear cases for the same
applied voltage shows the importance of the nonlinear spring effect as the
actuator moves far away from the rest position.

is the static pull-in voltage (SPV). The values can be obtained
analytically using the following formulas [28]:

w0, [56+1 53° — 202+ B
Yspv =g 90 o8 25
1
56—1[58+1 /53 —-232+48]| °
T8 | 7125 25 (16)
2K 2 2 2
SPV = | 2290 UseV (1 + ySP;’) (1 - yspv) )
Co 9o B9 9o

In these expressions, 3 = K/(K3g3). The importance of the
introduction of the nonlinear spring K3 can be observed in
Fig. 4, where the potential energy curves using a linear stiffness
model and nonlinear stiffness model are plotted. For small
displacements from the rest position, the influence is negligible,
but as the displacement is increased, the effect becomes impor-
tant. In the example, pull-in instability occurs when the moving
plate reaches to 47% of the total gap displacement, which is
farther than the usual 1/3 value.

For the case of linear spring assumption K3 = 0, the result-
ing value is the classical SPV and its corresponding displace-
ment, i.e.,

8 Kgj

SPV =
27 Cy

g
Yyspy = 30. (18)

The study of (16) and (17) reveals that the maximum dis-
placement is obtained when the spring is completely non-
linear (K = 0), and this maximum displacement is 3/5 of
the initial gap [28]. This can be observed in Fig. 5, where
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Fig.5. Influence of (3 factor on the value of the static pull-in displacement and

the dynamic pull-in displacement. As can be observed, for values of 3 smaller
than 20, the nonlinear constant begins to influence the result. For values of 3
smaller than 2, the nonlinear constant cannot be neglected.
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Fig. 6. Influence of [ factor on the value of the SPV and the DPV for one
of the fabricated resonators. To calculate the values, the linear parameters are
used, and the nonlinear spring is increased to observe the effect on the pull-in
voltages.

it is shown that the nonlinearity is important for values of 3
smaller than 20. The same evolution appears for the SPV
values, as shown in Fig. 6. Increasing the nonlinearity in the
mechanical spring increases the SPV.

B. Dynamic Case

The derivations for the static case neglect the transient effects
that occur in the system when the voltage is applied. In some
cases, such approximation is correct, for example, if the voltage
is slowly applied or the system is highly damped. However,
for low damping, e.g., in a vacuum environment, the transient
dynamics must be taken into account.
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Fig. 7. Evolution of system’s energy when a 40-V step function is applied.

In the example, the quality factor is 7. The initial energy corresponds to the
potential energy (mechanical and electrostatic). When the motion begins, the
potential energy is converted to kinetic energy and dissipation due to damping
forces. The system’s energy descends until reaching the stable equilibrium
position.

The energy analysis can be expanded to account for the
transient dynamics of the system when an actuation voltage is

applied.
The time derivative of the system energy as defined in (13),
dE/dt = —Bj?, indicates that, unless energy is continuously

pumped into the system, the energy decreases with time from
its initial energy value until it reaches an equilibrium state,
dE/dt = 0. According to the model, the only factor that defines
the pattern of the energy decay is the damping B of the system.

As can be observed in Fig. 7, the maximum amplitude of
displacement of the moving plate is limited by the potential
energy bound. If the voltage is increased, at some point, the
initial energy of the system and the energy at the unstable peak
have the same magnitude (Fig. 4). Assuming that the system has
no damping, the total energy of the system remains constant,
which implies that when applying a higher voltage, the system
will move until it overshoots the unstable equilibrium ¥,ps,
and the electrodes will collide. This voltage limit is called the
dynamic pull-in voltage (DPV). Any voltage lower than DPV
magnitude cannot produce snapping.

To obtain the DPV, the potential energy at rest must be
equated to the energy at the unstable equilibrium. This will
give the maximum amplitude that can be reached during the
step evolution (yuns) and the maximum voltage that can be
applied (DPV). Using the same terminology as in (16), the
displacement expression is

1
_ 90, 86+1 /76803 — 10842 + 1623 |°
yuns—4 9o 64 144
_1
168 — 3 | 86+1 76833 —-10832+1628 | °
g, 168318041 /7685510857 11628 | © o
48 64 144
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Fig. 8. Comparison of the evolution of the pull-in voltage as a function of the
quality factor, depending on the nonlinear factor 8. Simulation is carried out
to determine the exact pull-in voltage at which snapping is produced when a
voltage step is applied. The values are normalized for better comparison, by
dividing the calculated pull-in voltage by the SPV. For high-Q) environments,
the pull-in voltage corresponds to the calculated DPV. For low-(Q environments,
the pull-in voltage corresponds to the calculated SPV. The evolution is similar
regardless of the nonlinear component.

and the corresponding DPV is

PV — o | 2508 — 16K Y2, + 20K yunsgo + 3Kay2s0?
320,
(20)

Again, if a linear spring is used, the analytical expression has
a simplified form. In this case, the voltage limit has always the
unstable equilibrium at the center of the gap and is described by
the following expression [32]:

90 1 Kg3
s = X DPV = |- =50
4 2 1°C,

As can be observed, the expressions have some similarities
with the static case. Figs. 5 and 6 show the evolution of the
static and dynamic pull-in parameters with the variation of the
nonlinear factor . Static and dynamic parameters behave in
the same manner. Values of § higher than 20 indicate the suit-
ability of a linear model. Values of § smaller than 2 indicate that
the nonlinearities are predominant. In the case of the dynamic
pull-in displacement, the maximum displacement during the
evolution reaches up to 3/4 of the gap in the case of a completely
nonlinear spring.

Consequently, (19) and (20) expand prior DPV formulations
to the whole range of values of nonlinear springs.

Another important aspect is the relationship between the SPV
and DPV. Fig. 8 shows the analysis of the pull-in voltage as
a function of the damping of the system ¢ and the nonlinear
factor 3. The quality factor Q = (M K)'/?/B = 1/2( is intro-
duced as a usual parameter to evaluate the damping. As can
be observed, in highly damped systems (Q = 0), the voltage
needed to produce snapping corresponds to the SPV. As the

21
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Fig. 9. Potential energy curves bound the system oscillation. (a) Stable
oscillation is obtained with a 75-V4. bias voltage and a 7-V, amplitude.
(b) Oscillation is unstable with 75 V4. and 8 V. Beginning from the static
initial position, the amplitude of oscillation increases until it reaches the
unstable equilibrium point at V3. + Vac, resulting in snapping.

quality factor increases, the voltage value decreases until it
reaches the DPV. This happens for the whole range of spring
values, from the linear case to the completely nonlinear case,
and with the same pattern.

C. Resonant Case

In those cases where the system is dynamically actuated
at resonance, as in oscillators, vibratory accelerometers, or
gyroscopes, the stability analysis becomes more complex.

Under forced oscillation, the voltage varies with time, i.e.,
V(t) = Ve + Vac(t), which means that the energy equilibrium
points given by dE/dy are changing continuously. Thus,

dE 1 C,
—t)=K-y+Ks-y°—= L V() =o.

dy 2 % (1 _ g%) (22)
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Fig. 10. Resonant pull-in algorithm. The energy evolution presented for the
actuation voltage is stable as it generates a closed loop. The energy injected by
the actuation is balanced with the damping losses.

As in the dynamic case, the potential energy curves bound
the evolution of the total energy of the system. Consequently,
their analysis allows to determine the maximum amplitude of
oscillation that can be achieved without reaching the pull-in
zone (Fig. 9). Equation (22) provides the condition for the
extreme points of the energy function. Solving the equation for
V(t) = Vp + Viac, and discriminating maximum and minimum
points using the second derivative, we can define yy,s as the
unstable equilibrium (maximum) of the Vp + V,. potential
energy curve. Oscillations smaller than y,,,,5 are stable, whereas
larger oscillations lead to pull-in [26].

In the resonant case, energy is continuously pumped into the
system trying to reach the resonant frequency. Then, conceptu-
ally, stable actuation occurs while the energy of the system is
confined in the valley of the potential energy.

If the alternating voltage V,(t) is considered to be a square
function (without loss of generality, the analysis can be ex-
tended to other driving functions), at each half-period, the
system behaves like in the dynamic case when a constant load
is applied. When the voltage changes, the energy of the system
jumps to the other energy region (Fig. 9).

As shown in Fig. 10, using the resonant pull-in algorithm
[26], an oscillating loop in the energy domain close to the
maximum amplitude can be generated to analyze the stability
of the oscillation. For a complete driving voltage time period,
an oscillating loop is constructed, estimating the energy decay
from the value of the quality factor of the system. When the
loop is closed, amplitude increase determines that the system is
unstable, whereas amplitude decrease indicates that the system
is stable.

IV. RESONANT PULL-IN CONDITION

The RPC can be derived using the energy evolution in a
steady-state oscillation loop presented in the previous section.
The energy decay during the oscillation is controlled by
the damping constant B. Assuming that the oscillation is
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sinusoidal, i.e., y(t) = yasin(wt), the value of the energy
losses due to damping forces at each half-period can be
estimated as

(23)

where g 4 is the amplitude of oscillation, and w is the resonant
frequency of oscillation of the system. The resonant frequency
is usually different from the natural frequency of the mechani-
cal system, i.e., w, = (K/M)'/2.

Consequently, the stability of oscillation will depend on the
energy balance between the energy gained due to V () = Vg, +
Viac(t) actuation and the energy lost due to damping [21].

In the energy oscillation loop, four energy terms are consid-
ered: E1, Ey, E3, and E4 (Fig. 10). The initially gained energy
E1, when moving from V. 4 V. curve to Vg, — V. curve, is

1 1
E, = [2K(yst +ya)? + ZKS(yst +ya)?

o 1 C’O(Vdc — Vac)2 ]
2 (1~ (yst +ya)/g0)

1 1
- [QK(yst +ya)? + ZKS(yst +ya)?

_ 1 C10(‘/de + Vac)2 :|
2

(1= (yst +va)/90)
2C10Vdc‘/ac

= 0= (g + 94)/50) &9

where ys¢ is the position displacement of the electrode due
to the V. bias. In this expression, ys; + y4 represents the
effective maximum position in the gap.

The energy losses due to damping during the V. — V. half-
period (E3) are

E; = —Byiwg.

(25)
The energy reduction when moving from Vg, — V,. curve to
Ve + Vae curve, which is obtained in a similar way as in
(24), is

2 C'0 Vdc Vac

Bs = (1= (yst —ya)/90)

(26)

where ysy — y4 represents the effective minimum amplitude
position in the gap.

Finally, the energy losses due to damping during the Vg, +
Viac half-period (E,) are

E, = —Bylwr. 27)

2

If the system has been actuated at a stable resonant fre-
quency, there must exist an amplitude of oscillation where the
energy balance of the loop is zero. Consequently, the following
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equation has to be satisfied:

4Cog0VacVacya

Ei+E;+Es+Es= (o —vo)? — 12

— Byjwr = 0.
(28)

Rearranging terms in (28), the amplitude of oscillation y4 of
the stable loop can be obtained from the following equation:

40090 Vdcvac

=0.
Bwm

Ya — (90 = ¥st) ya + (29)
The equation can be solved analytically. However, to predict
the existence of stable oscillation, we only need to know the
type of solutions of (29). This analysis can be done through the

third-order polynomial discriminant D

1

D= _7(90 - yst)G +

AC3 93 Ve Vi
27 '

B2w2n?

(30)

In a cubic polynomial, D = 0 identifies the transition be-
tween all-real solutions and the existence of complex solutions.
Applied to the parallel-plate system, this equation leads to

BWTF(QO - yst)3
6v/3Cog0

which provides the maximum value of the product Vi V.
producing stable oscillation.

Once the Vj. load applied to the system is defined, the static
displacement yg; can be calculated, and accordingly, the real
resonant frequency w can be estimated, for example, using the
voltage-corrected frequency

RPC = V4 Ve = (€28

(32)

We =

Consequently, the RPC defines a constructive domain of Vg,
and V. actuation voltages versus quality factor, preserving the
stability of the parallel-plate actuation.

As can be observed, the introduction of the nonlinear spring
in the model does not change the RPC, which is equal to that
derived in the linear spring case [27].

In the case of only V,. actuation, two-sided push—pull
actuation is needed with square-function voltages, and (31)
transforms to

Buwrg?

V27Co

as presented in [21]. Again, the derivation holds even consider-
ing large amplitudes and nonlinear spring behavior.

It is important to notice that at resonant frequency, the
maximum amplitude of oscillation is limited. In [21], it was
indicated that in two-sided actuation, the maximum amplitude
of oscillation is

RPC =V, =

(33)

90

?JAZ\/g

which corresponds to the maximum displacement in the gap.

(34)
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TABLE 1
STRUCTURAL PARAMETERS OF THE FABRICATED DEVICES
[ | 1500-Model \ 2500-Model |

Stiffness K 2.066 N/m 1.766 N/m
Nonlinear Stiffness K3 4.678 - 1010 N/m3 | 4.463 - 1019 N/m3
Mass M 6.753-10"10 Kg | 3.830-10"9 Kg
Initial gap go 11.4 pm 11.3 ym
Parallel-plate actuator A 800 - 15 um? 800 - 75 um?
Beam length L 1500 p 2500 p
Beam width h 5.6 5.3 1
Device thickness b 15 p 70 u
Nominal frequency f, 8.804 kHz 3.41 kHz
3 coefficient 0.34 0.31

In the case of V. + V.. actuation, this limitation
translates to
go — Y
Yya = Tﬁ (35)

which is obtained by substitution of the RPC in (29). Conse-
quently, the maximum displacement in the capacitive gap is

9o — Yst

NG (36)

Ymax = Yst +

V. EXPERIMENTAL RESULTS

A family of silicon-on-insulator (SOI) resonators was
fabricated (Fig. 1) to experimentally validate the RPC. The
structures were fabricated in the Centro Nacional de Micro-
electronica, Barcelona, using a one-mask bulk-micromachining
process that is based on deep reactive-ion etching through the
15- or 70-pm device layer of SOI wafers [33]. In Table I, the
main parameters of two of the resonators used for experiments
are summarized. The parameters have been obtained from the
initial fabrication designs and corrected taking into account the
observed fabrication imperfections.

In the case of the 1500-Model (Table 1), the classical pull-
in analysis defines that the static instability (18) occurs at
75.61 V, when the gap becomes approximately 7.6 pm. Intro-
duction of the existing nonlinear effects allows to conclude that
the allowed driving voltage (17) is in fact larger, i.e., 91.69 V,
and the final remaining gap is much smaller, i.e., 6.01 pm (16).
No equilibrium points exist at smaller gap for voltages higher
than the SPV, as can be observed in Fig. 4.

The analysis can be extended introducing an actuation
voltage as a nonsmooth function of time, as it would be if
the voltage were applied as a step function. In this case, the
dynamics of the system play their role in defining the maxi-
mum driving voltages. Again, the classical DPV formulation
(21) gives 69.45 V as the minimum voltage that can produce
dynamic snapping. In this paper, it has been shown that the
introduction of the nonlinear spring constant has its effect
on the DPV. Using (20), it can be observed that the DPV
increases up to 84.41 V due to the nonlinear forces. In this
case, the minimum gap during the evolution would be 4.15 pym
from (19). The snapping for voltages higher than this value
will depend on the damping of the system, which is directly
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Fixed actuator plate  (3)

Movable actuator plate

Fixed actuator plate (b)

47 um1

Movable actuator plate

Fixed actuator plate (9)

Movable actuator plate

Fig. 11. Set of pictures presenting evolution of the amplitude of oscillation of
the resonator in Fig. 1 due to changes in ac—dc driving voltages; The pictures
show a close-up of the parallel-plate electrodes. The SPV is 91.69 V, and
the DPV is 84.41 V. (a) Beam at rest. (b) Beam oscillating with 75 V4. and
6.8 Vac. (c) Beam snapped after applying a combination of 75-Vg.
and 6.9-V 5 drive voltages.

proportional to the air pressure of packaged microdevices. For
low-pressure or vacuum conditions, voltages higher than DPV
would imply snapping (Fig. 8).

As can be observed, calculation of SPV and DPV are very
much dependent on the nonlinearities of the system (Figs. 5
and 6). In the resonator considered in this example, the [ factor
is 0.34, which translates to the increases of the needed voltage
by 20%. This conclusion is important as it extends the stable
range for nonsnapping applications. On the contrary, it is a
drawback for applications where pull-in is desired, showing that
higher voltages are needed than those classically predicted.

These results show the importance of dynamics and nonlin-
earities when studying the stability of MEMS devices. They
play an important role when the structure is dynamically
actuated to its resonant frequency. In resonant devices, the
instability (or snapping) occurs at much smaller voltages. In the
example presented in Fig. 11, snapping occurred with a 75-V 4.
bias and a 6.9-V,. peak amplitude. (The sum of the voltages is
smaller than DPV = 84.41 V.) During oscillation, large stable
amplitudes have been reached, or equivalently smaller gaps,
approximately 4.7 um in our case (60% gap reduction). As
can be observed, significantly larger amplitude of actuation can
be achieved when dynamic actuation is used. The “overshoot”
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1500-Model Resonant Pull-in Voltage Comparison
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Fig. 12. Maximum combinations of V4. and V;c voltages for the different
values of the quality factor Q for the /1500-Model. Values estimated with the
RPC are presented with the experimental data in air. The trend of experimental
values agrees with predictions.

effect of the static equilibrium is explained by the gained kinetic
energy of the system, which allows it to return to the stable
region of actuation.

This dynamic behavior can be predicted using the RPC.
With resonant devices, it plays the same role as the SPV in
positioning applications or the DPV in switching applications.

The experimental snapping values obtained for the
1500-Model in air are presented in Fig. 12. In the same plot,
calculations of the RPC are used to produce the combination
of maximum allowed Vg, and V,. voltages for values of
the quality factor ranging from 4 to 6, which correspond
to the range of @ of the device in air. As can be observed,
experimental data are consistent with the analytically derived
regions of instability.

Furthermore, the same experimental testing was done for the
2500-Model (Fig. 13). In this comparison, results of resonant
pull-in voltage that were obtained via direct time integration of
the system equations (14) at the testing environment conditions
(Q =2 for the 2500-Model) are also provided. As can be
observed, RPC predictions show good agreement with exper-
imental data.

The results in Fig. 13 also show that RPC predictions are
close to the values obtained via numerical time integration of
the system equations (14). This is important because within the
RPC calculation, the resonant frequency is approximated by the
voltage-corrected frequency (32). Fig. 13 illustrates that this
approximation has a small effect (5% error) in predicting the
snapping values.

VI. CONCLUSION

Operation of electrostatically actuated MEMS with ampli-
tudes much higher than 1/3 of the initial actuation gap can be
achieved with appropriate selection of actuation voltages. The
kinetic energy of the system gained during actuation allows the
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2500-Model Resonant Pull-in Voltage Comparison
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Fig. 13. Maximum combinations of V. and V;c voltages for the different
values of the quality factor ) for the 2500-Model. RPC values are presented
together with experimental data obtained in air and data from the numerical
time integration of system equations for () = 2. The three curves show good
agreement.

system to travel beyond the static equilibrium, reaching large
amplitudes of oscillation without snapping.

Energy analysis has been used to derive the RPC, which
provides the combination of maximum V. and V,. voltages
that can be used to actuate the system without producing
snapping at resonance frequency.

RPC has been shown to predict snapping in fabricated
MEMS devices actuated at resonance. However, it is known that
transient response can affect the nonlinear dynamic behavior of
the system and lead the system to pull-in at lower voltages [22].

RPC can be a useful tool to design dynamic MEMS, along
with the estimation of the SPV and the DPV. The derived
stability limits represent upper limits to the dynamic pull-in,
beyond which no stable motion can exist.

RPC can also be used as the first-order solution for iterative
numerical simulation analysis or for prediction of the voltages
needed for resonant switching applications.

It has also been shown that the RPC can deal with nonlinear
spring models, expanding the previously reported formulations.
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