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Abstract— Electrostatic parallel-plate actuators are a common
way of actuating MEMS devices, both statically and dynamically.
In the static case, the actuation range is limited to 1/3 of the
initial actuation gap, known as the static pull-in condition. Under
dynamic actuation conditions, however, the travel range can
be much extended. This paper extends the analysis of pull-
in instability to the dynamic case and derives the analytical
AC Dynamic Pull-in Condition. This condition predicts snapping
or pull-in of the structure for a given domain of DC and
AC actuation voltages versus Quality factor. Analytical and
experimental results are presented to validate the dynamic pull-in
condition.

I. INTRODUCTION

MEMS sensors based on electrostatic parallel-plate actua-
tion principle are seemingly simple to fabricate and operate
while providing relatively large forces. However, it is well-
known the instability resulting from the non-linearity of the
parallel-plate electrostatic force that happens at 2/3 of the
initial gap, known as the Static Pull-in Condition.

Few comprehensive studies analyze the effect of dynamics
on the stability of the parallel-plate electrostatic actuation,
even though the effects have been identified as important for
such devices as electrostatically actuated microrelays [1] or
rate integrating gyroscopes [2]. This paper attempts to fulfill
this gap in the literature.
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Fig. 1.  Schematic of the electromechanical system with parallel plate
actuation. The static pull-in occurs when the distance between plates is
2/3 of the initial gap. In the dynamic case, we are interested in expanding
the maximum achievable amplitude of oscillation, y, beyond static snapping
condition.
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II. PULL-IN ANALYSIS

Consider a lumped mass-spring-damper model (Fig. 1), with
the usual assumption of voltage-controlled actuation. This is a
common representation of a wide variety of MEMS devices.
We observed that with dynamically moving structures actuated
electrostatically, the well-known static pull-in or snapping
condition is changed. The reason is that the kinetic energy
and the dissipation of energy are now playing an important
role in defining the snapping condition.
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Fig. 2. The Potential Energy level of the analyzed system depends on
the position relative to the gap. In this example, energy of the system
versus normalized displacement for different applied voltages are displayed,
including the Static Pull-in Voltage (60.34 V) and the Dynamic Pull-in Voltage
(55.43 V).

To explain the phenomena, consider the energy of the
electro-mechanical system
1 o 1 5 1 gA
E=E.+E,+U 2My +2Ky 3o —1)
which is composed of the kinetic energy (E}), the potential en-
ergy stored in the spring (F,), and the potential energy stored
in the parallel plate capacitor (U). The study of the evolution of
the energy can be used to determine the equilibrium positions
of the system, as well as the regions of instability.
In the static equilibrium, § = y = 0, the energy of the
system (1) consists only of the potential energy terms. As
a result, the distribution of the system energy along the gap
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between the electrodes is constant and unique for each voltage
applied (Fig. 2).

Analyzing the energy profile at its equilibrium points, the
limiting condition for existence of a stable equilibrium is
the presence of an inflection point in (1). This condition
provides the analytical value for the maximum static stable
displacement from the initial equilibrium and the voltage
needed to reach this position
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This voltage is called the Static Pull-in Voltage (SPV).
The energy analysis can be expanded to account for the
transient dynamics of the system when an actuation voltage is

applied.
The time derivative of the system energy defined in
(1),‘% = —B 92, indicates that if energy is not continuously

pumped into the system, the energy decreases with time from
its initial energy value until it reaches an equilibrium state,
% = 0. According to the model, the only factor that defines
the pattern of the energy decay is the damping, B, of the
system.
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Fig. 3. Evolution of system’s energy when a 30 V step-function is applied.
The Quality Factor in this example is 30. The initial energy corresponds to the
potential energy (mechanical and electrostatic). When the motion begins, the
potential energy is converted to kinetic energy and dissipated due to damping
forces. The system’s energy descends until it reaches the stable equilibrium
position.

As can be observed in Fig. 3, the maximum amplitude of
displacement of the moving plate is limited by the potential
energy bound. If the voltage is increased, at some point the
initial energy of the system and the energy at the unstable peak
have the same magnitude (Fig. 2). Assuming that the system
has no damping forces, the total energy of the system remains
constant, what implies that applying a higher voltage, the
system will move until it overshoots the unstable equilibrium,
and the electrodes will collide. This voltage limit is called
Dynamic Pull-in Voltage (DPV). Any voltage lower than DPV
magnitude cannot produce snapping. Analytically, the voltage
limit has the unstable equilibrium at the center of the gap and
is described by the following expression
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Analysis of the pull-in voltage against quality factor shows
that in over-damped systems the value needed to produce
snapping corresponds to the Static Pull-in Voltage and that
this value decreases with the increase of the Quality Factor
(Q) until it settles at the Dynamic Pull-in Voltage. Similar
results were presented in [3], where the numerical simulation
was confirmed with experimental results.

III. AC DYNAMIC PULL-IN CONDITION

In those cases where the system is dynamically actuated,
as in resonators, accelerometers or gyroscopes, the stability
analysis becomes more complex. Under forced oscillation, the
voltage varies with time, V(t) = Vpc + Vac(t), meaning
that the energy equilibrium points given by % are changing
continuously
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Fig. 4. The potential energy curves bound the system oscillation. In (a)
a stable oscillation is obtained with 19 Vpc bias voltage and a 7 Vo
amplitude while in (b) the oscillation is unstable with 20 Vpc and 7 V4.
Beginning from the static initial position, the amplitude of oscillation increases
until it reaches the unstable equilibrium point at Vpo + V¢, resulting in
snapping.

As in the dynamic case, the potential energy curves bound
the evolution of the total energy of the system. Consequently,
their analysis allow to determine the maximum amplitude of
oscillation that can be achieved without reaching the pull-in
zone (Fig. 4). Equation (4) provides the condition for the
extreme points of the energy function. Solving the equation
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for V(t) = Vp + Vac, and discriminating maximum and
minimum points using the second derivative, we can define
Yuns as the unstable equilibrium (maximum) of the Vp 4+ Ve
potential energy curve. Amplitudes smaller than y,,s are
stable, while larger amplitudes lead to pull-in [4].

Consequently, once the maximum stable amplitude is deter-
mined, the next step is to predict if the chosen driving voltage,
V(t) = Vpe + Vac(t), will drive the system to pull-in or a
stable oscillation loop will exist.

If the alternating voltage V4¢ is considered to be a square-
function (without lost of generality the case can be extended to
other driving functions), at each half period the system behaves
like in the dynamic case when a constant load is applied. When
the voltage changes, the energy of the system jumps to the
other energy region (Fig. 4).

During the oscillating loop, the energy decay is controlled
by the damping constant (B). Assuming that the oscillation is
sinusoidal, y(t) = yasin(wt), the energy lost due to damping
forces at each half period would be
™

Elost = _Byiw 2
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where y 4 is the amplitude of oscillation and w is the resonant
frequency of oscillation of the system.

Consequently, the stability of oscillation will depend on the
energy balance between the gained energy due to V(t) =
Vbe+Vace(t) actuation and the energy losses due to damping
[5].

In an energy oscillation loop, four energy terms are con-
sidered: E1, FEs, 5, E4 (Fig. 5). The initially gained energy
(E£1), when moving from Vpc + Vac curve to Vpo — Vac
curve is

1 €0 A(VDC - VAC)2
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_ 2€0AVDC VAC (6)
(90 — Yst — yA)

where Yy, is the position displacement of the electrode due
to the Vpe bias. In this expression, ys: + y4 represents the
effective position in the gap.

The energy losses due to damping during the Vpeo — Vo
half-period (F>) and the Vpo + Vac half-period (Fy)

By = —Byiwg DBy = —Bijg %
And the energy reduction when moving from Vpo — Vae
curve to Vpo + Vac curve, obtained in a similar way as in
(6)
20 AVpe V.
By — — €oAVpcVac (8)
(90 — Yst +ya)
If the system could be actuated at a stable resonant fre-
quency, there must exist an amplitude of oscillation where the
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Fig. 5. AC Dynamic Pull-in calculation. In the plot, the actuation voltage
is stable and generates a stable loop. The energy injected by the actuation is
balanced with the damping losses creating a stable oscillation loop.

energy balance of the loop must be zero.

Ei+E+E3+Ey =
4e90 AVpc 'V,
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Rearranging terms in (9), the amplitude of oscillation, y4, of
the stable loop can be obtained from the following equation

4eqg AVpe Vac
Bwm

Y34 — (90 — yst)?ya + —0 (10

The equation can be solved analytically. However, to predict
the existence of stable oscillation, we only need to know
the type of solutions of equation (10). This analysis can be
done through the 3rd order polynomial discriminant, D, of
the equation

1 4e2 A2VE V2
D =90 —yst)’ + —0 5 254S (D)
In a cubic polynomial, D = 0 identifies the transition between
all-real solutions and the existence of complex solutions.
Applied to the parallel-plate system, this equation leads to

the AC Dynamic Pull-in Condition (ACPC)

Bwr(go — yst)®
6 \/§60 A
that provides the maximum value of the product Vpc Vac

producing stable oscillation.

The AC Dynamic Pull-in Condition defines a constructive
domain of Vpe and V4o actuation voltages versus Quality
factor preserving stability of the parallel-plate actuation.

IV. EXPERIMENTAL RESULTS

As an example, to validate the energy analysis and the AC
Dynamic Pull-in Condition we examined the structure in Fig.
6. The structural parameters are as follow: Stiffness is K =
3.1 N/m, mass is M = 3.76e~12 Kg, initial gap is gy =
2 pm, and area of parallel-plate actuator is A = 228 um?.
For this structure, the static instability (2) occurs at 60.34 V,
when the gap becomes approximately 1.3 um. No equilibrium
points exist at smaller gap for voltages higher than Static Pull-
in Voltage, as can be observed in Fig. 2.

ACPC =Vpe Vac = (12)
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When the actuation voltage is applied as a non-smooth
function of time, as it would be if the voltage were applied as
a step function, the Dynamic Pull-in Voltage is 55.34 V, (3).
As can be observed, the voltage is approximately 8 % lower.
In this case, the snapping for voltages higher than this value
will depend on the damping of the system, which is directly
proportional to the air pressure of packaged micro-devices. For
low pressure or vacuum conditions, voltages higher than DPV
would imply snapping.

Fig. 6. The set of pictures presents an evolution of the amplitude of oscillation
of the resonator due to changes of AC-DC driving voltages; The beam is
oscillated using the parallel plates electrodes, while the lateral combs are
disabled; The Static Pull-in Voltage is 60.34 V. (a) Beam at rest; (b) Beam
oscillating with 15 Vpe and 7 V45 (c) Beam snapped after a combination
20 Vpe and 7 V4 drive voltages are applied .

It should be noted that when the structure is dynamically
actuated to its resonant frequency, the instability (or snapping)
occurs at much smaller voltages. In the example presented,
snapping occurred at 20 Volts DC-bias and 7 Volts pick-to-pick
AC-amplitude, having achieved larger actuation amplitude,
or equivalently smaller gaps, approximately 0.2 pm in our
case (with 2 pum of the nominal gap). As can be observed,
significantly larger amplitude of actuation can be achieved
when dynamic actuation is used. The ’overshoot’ effect of the
static equilibrium is explained by the gained kinetic energy of
the system which allows it to return to the stable region of
actuation.

The experimental values obtained with the system were
used to validate the energy analysis predictions. In Fig. 7, the
AC Dynamic Pull-in Condition has been used to produce the
combination of maximal allowed Vpco and V4¢ voltages for
Quality Factor ranging from 20 to 30. As can be observed, the
analytical predictions are compared with experimental results
for the system in Fig. 6. Experimental data is consistent with
the analytically derived regions of instability.

AC Dynamic Pullin Voltage Comparison
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Fig. 7. Maximum combinations of Vpc and V4 voltages for the different
values of the Quality Factor (Q). Values estimated with the AC Dynamic
Pull-in Algorithm are presented with the experimental data. The trend of
experimental data agrees with the predictions.

V. CONCLUSIONS

Operation of electrostatically actuated MEMS with ampli-
tudes much higher than 1/3 of the initial actuation gap can be
achieved with the appropriate selection of actuation voltages.
The system kinetic energy gained during dynamic actuation
allows the system to travel beyond the static equilibrium,
reaching large amplitudes of oscillation without snapping.

Energy analysis has been used to derive the AC Dynamic
Pull-in Condition which provides the combination of maxi-
mum Vpe and Vyo voltages that can be used to actuate the
system without producing snapping at resonance frequency.
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