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ABSTRACT

This paper describes the analysis of a novel isotropic
suspension designed for use in a Micro Electro Mechani-
cal System (MEMS) z-axis angular gyroscope. The sus-
pension, consisting of six concentric interconnected rings
rigidly attached to an anchored frame, supports a res-
onating proof mass whose line of oscillation precesses in
the presence of rotation induced Coriolis force. The pa-
per demonstrates that the studied suspension is robust
to quadrature errors and minimizes structural energy
losses. Using a strain energy method, a closed form so-
lution for the effective stiffness is developed, which is
confirmed using finite element modeling. A parametric
analysis is used to verify the necessity of thick structural
layers in the fabrication of the suspension in order to
separate desirable and undesirable modes of vibration.
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1 INTRODUCTION

A MEMS angular gyroscope is a dynamic device that
relies on resonance oscillation and the Foucault prin-
ciple to measure angular displacements (Figure 1) [1].
While previous designs operated on the principle of vi-
brating shells [2], the studied device utilizes a vibra-
tional “lumped mass system” with increased sense ca-
pacitance through the use of sense combs that are inter-
woven between the comb fingers of the proof mass.

The device operates by driving a proof mass into res-
onance along two orthogonal drive axes. Upon reaching
the desired amplitude, the drive force is removed and
the energy of the system is maintained using a specially
designed control architecture [1], [3]. Rotation induced
Coriolis force causes the line of oscillation to precess and
the precession angle provides a direct measure of the de-
vice’s angular displacement [4].

In the ideal operation of the gyroscope, the line of
oscillation precesses (Figure 2a). This requires a suspen-
sion with equal stiffness along the principle axes of elas-
ticity, or isotropic suspension. Operation of the gyro-
scope with a non-isotropic suspension results in quadra-
ture error manifested as an elliptical oscillation pattern
during precession (Figure 2b). This results in degraded
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Figure 1: A MEMS angular gyroscope relies on reso-
nance oscillation and the Foucault principle to measure
angular displacements. A proposed suspension design
consisting of six interconnected rings provides necessary
isotropy required for the operation of this device.

performance of the gyroscope. In order to satisfy the
isotropic condition, a novel concentric ring suspension
consisting of six interconnected rings rigidly attached to
an anchored frame [1] was studied.

The suspension is analyzed by utilizing strain energy
methods to find a closed form expression for the stiffness
of a single ring. The overall equivalent stiffness for the
system is found through the superposition of each ring’s
stiffness in series. A finite element simulation of the sus-
pension is then used to confirm the analytically obtained
result. Finally, a parametric analysis of the suspension
demonstrates the necessity for thick structural layers in
order to prevent low frequency undesirable modes of op-
eration.

2 ISOTROPY VERIFICATION

This section develops an analytical model to estimate
the stiffness of the device’s suspension system. The re-
sults are verified using finite element modeling.

2.1 Analytical Calculation

The system consists of a proof mass suspended above
the substrate using six concentric rings (Figure 3a). The
rings are interconnected at 90 degree increments and the
outer ring is rigidly attached to an anchored frame. By
calculating the deflection of the proof mass in response
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Figure 2: (a) An isotropic suspension allows the line of
oscillation to precess. (b) A non-isotropic suspension
results in quadrature error manifested as an elliptical
oscillation pattern.

to a known arbitrary force F at an arbitrary angle «,
an expression for the stiffness is found. The total deflec-
tion of the proof mass is then calculated by summing the
contributions of each individual ring through superpo-
sition, assuming each ring interconnect is rigid.

We first find the deflection contribution of the inner
ring. The inner ring is fixed at its connection points to
the second ring and the rigid connection of the proof
mass is modeled using constraint forces (A1, A2, Az, A\q)
(Figure 3b). Due to symmetry, this model can be further
decomposed to a quadrant of the ring (Figure 4) where
the fixed end conditions at ends A and B are modeled
using reaction forces and moments (R;,R,,M). My rep-
resents the moment constraint assuming that the proof
mass undergoes no angular deflection.

The corresponding reactions are calculated [5] as func-
tions of the constraints and applied force and are used
to find the total strain energy U of the curved member.
If the radius r; is large compared to the thickness of the
ring t, i.e. “t > 10, the bending energy dominates the
strain energy [5], and U can be expressed as
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Figure 3: (a) The gyroscope is modeled as a proof mass
suspended on a six interconnected ring suspension sys-
tem. (b) The deflection of the proof mass due to a force
F can be decomposed into the contributions of the inner
ring and reactions from the subsequent rings.

Figure 4: The deflection of the inner ring can be de-
composed into the contributions of each quadrant. The
N's and My represent constraint forces and a constraint
moment due to the rigid attachment of the proof mass.

where

My =—r1(1—cosy)Rpn — 11 sinyRy 4 + Ma
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M 4 and M p are the reaction induced moments at angles
~ and 6 from fixed ends A and B, respectively (see Figure
4). By Castiliano’s theorem, the deflection of an elastic
member in the direction of the applied force is equal to
the change in strain energy with respect to the applied
force [5],
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A similar solution is arrived at for each of the four quad-
rants, leading to a total of eight unknowns consisting of
the four A constraints and the four My constraints. By
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Figure 5: The uniformity of the suspension is confirmed by modeling the system using the FEM package ANSYS. The
system is modeled using 3D shell elements. The proof mass is subject to the same load in the directions of (a) 0 ,45,
and 60 degrees. The corresponding radial displacements as shown in (b), (c¢), and (d), respectively, are equal, which

confirms the isotropy of the suspension.

assuming zero deformation in the constraints, the un-
knowns are eliminated by

O0x, UR T 0x,LR =0, urR+ I, v =0
Oxng, UL +0xs,0 = Oxg 0L + xR =0
OMo,UR = OMy,LR = OMy, 1L = OMy,uL =0

Here UR, LR, LL and UL designate the upper right,
lower right, lower left, and upper left quadrants of the
inner ring, respectively. Solving the system of equations
simultaneously yields

3
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We now find the contribution of the second ring by mod-
eling it as rigidly attached where it would be connected
to the third ring. The reaction forces of the inner ring
are used as the applied forces on the second ring. Using
the same solution procedure as for the inner ring, with
the simplification that the second ring is unconstrained
(A = My = 0), the deflection of the top and bottom
quadrants of the second ring become

F
OFr, = ﬁ(.O()O?r% cos? a — .0001737; cos® a +

.000173 sin? ) (4)

We invoke a change of variable such that r; = ro — Ar,
where Ar is the spacing between the rings. If the spacing

is sufficiently small compared to the radius (Ar = 0),
then (4) simplifies to

r3

OFr = 7 5 7 (4.0104e™*F) (5)

With this simplification, the same result is found for the
left and right quadrants. Assuming that the bending
moment of inertia (I) and the modulus of elasticity (E)
are identical for all rings, we see that this deflection
varies only with radius when compared to the deflection
of the inner ring (3). By induction, this expression for
the ring deflection will propagate to each subsequent
ring. The generalized stiffness can be approximated by
force divided by deflection

EI
ki (r) = 9957.68— (6)

The total stiffness of the system can be approximated
by summing the stiffness of all the rings in series
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The final solution is not a function of «, so it is con-
cluded that this stiffness is the same regardless of the
angle of the applied force, thus verifying the isotropy of
the suspension.



2.2 Finite Element Modeling

To verify the analytical calculation, a finite element
model was constructed using the ANSYS multiphysics
software package. The suspension and proof mass were
modeled using three dimensional shell elements with a
thickness of two microns (assuming surface microma-
chining technology). The radius of the rings used for
simulation were 303.5, 306.5, 309.5, 312.5, 315.5, and
318.5um and the width of each ring was 2um. A known
force of 4uN was applied at the center of the proof mass
in three varying in-plane directions (0,45, and 60 de-
grees). The in-plane radial deflections of the proof mass
were found to be the same in all three cases (Figure
5). Due to the symmetry of the structure, this demon-
strates that the suspension is uniformly stiff in all radial
directions. The stiffness, calculated as force divided by
deflection, results in a value of 5.24 Z—n]\i The analytical

calculation gives a stiffness of 6.21%, yielding a differ-
ence of 15.6%. This discrepancy can be attributed to
the use of shell elements in the finite element analysis.

3 MODE MATCHING

For the operation of the gyroscope, it is desirable to
design the device where the operational modes are sep-
arated from the undesirable modes. Surface microma-
chining has limitations on the thickness of structural lay-
ers and these restrictions yield a low out-of-plane stiff-
ness, resulting in undesirable low frequency out-of-plane
modes (Figure 6). It is possible to compensate for this
effect by utilizing thicker structural layers.

Figure 6: The use of thin structural layers in the design
of the suspension results in low frequency out-of-plane
modes.

As the thickness of the structural layer is increased,
the in-plane bending moment of inertia, and therefore
the in-plane stiffness of the rings, increases linearly (k, =
f(@)). In comparison, the out-of-plane moment of in-
ertia, and thus the out-of-plane stiffness, increases as
thickness cubed (k, = f(¢3)). If the mass also increases

linearly with thickness, the in-plane natural frequencies

will remain constant (w, = ,/% = const), while the

out-of-plane natural frequencies will increase linearly

(wn = /£ = F(1)).

From a parametric analysis of the suspension, at an
optimal thickness of 20 microns, the out-of-plane stiff-
ness is almost three times greater then the in-plane stiff-
ness, thus providing an appropriate mode separation be-
tween desirable and undesirable modes of operation of
the gyroscope.

4 CONCLUSION

In this paper, we have demonstrated that the pro-
posed six concentric and interconnected ring suspension
provides the necessary isotropy required for the opera-
tion of a MEMS angular gyroscope. We have developed
a close form solution for the stiffness of the suspension,
which is applicable towards any suspension of this type,
given an arbitrary number of rings. It has also been
shown that using a fabrication technology utilizing thick
structural layers shifts the undesirable modes of opera-
tion to a higher frequency range, thus increasing the
immunity of the device to undesirable excitations.
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