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ABSTRACT

This paper describes a technique for detection of anisoelasticities in rate integrating gyroscopes as part of a self-
calibrative control architecture. In contrast to laser trimming typically done in post processing to compensate for
structural imperfections, the on-chip control architecture uses feedforward voltage control to tune the nonlinear
negative spring effects inherent in parallel plate electrodes in order to electrostatically “ trim ” the structural
non-idealities. As the first steps toward the feedforward control realization, we present three different algorithms
that can be implemented on-chip for identification of structural anisoelasticities. The first technique utilizes the
results of measured static deflections, requiring precise knowledge of the displacements and applied forces. The
second technique involves solving for the non-ideal stiffness parameters using Principal Component Analysis
and Fourier transforms of the dynamic system response. The last technique embellishes on the second by
the addition of an energy compensation control to overcome damping effects in low Q systems. Finally, the
implementation of this algorithm in the electrostatic “ trimming ” of structural imperfections is discussed.

Keywords: Anisoelasticity, Rate Integrating Gyroscopes, Feedforward Control, Smart MEMS, Electrostatic
Trimming

1. INTRODUCTION

With the successful application of solid-state sensors in the market, there is a high demand for devices with
increased durability, precision, and robustness. In its current maturity, fabrication technologies fall below the
tolerancing required for high precision devices, requiring active feedback control or post processing such as laser
trimming to achieve design goals. This demand gives rise to devices with enhanced capabilities, such as structural
compensation, integration of signal processing, and self-calibration functionality. To operate with the highest
precision, vibratory rate gyroscopes1, 2 typically include on-board electronics implementing a feedback control
strategy to compensate for structural anisoelasticities that are a consequence of fabrication imperfections. This
strategy suffices as long as the perturbation forces caused by the imperfections are comparable to the Coriolis
force. However, preliminary observations on a prototype rate integrating gyroscope5 show large frequency
mismatches and coupling due to fabrication imperfections (Figure 1). When imperfections are large compared
to the Coriolis force, compensation cannot be achieved with a purely feedback control without influencing the
Coriolis measurements. For example, in angle sensing gyroscopes, feedback forces on the order of the Coriolis
force tend to disrupt the precession used to detect the angular position.

An alternative to a purely feedback control architecture is to implement a “ smart ” MEMS gyroscope4 with
self-calibration capabilities that enable the device to identify its own system characteristics such as stiffness
and damping utilizing an on-chip self-test algorithm. A “ smart ” MEMS gyroscope of this type would be able
to identify large structural imperfections due to manufacturing variations and compensate for them with a
feedforward type of control architecture (Figure 2) (i.e. electronic “ trimming ”). The feedforward control works
in unison with a feedback control used to compensate for small perturbations that may arise during the normal
operation of the device. This paper discusses several strategies for determining large anisoelasticites in order to
design the feedforward portion of the two-stage control architecture.

The first part of this paper presents the ideal and non-ideal dynamics of a studied rate integrating gyroscope,
showing the effects of implementing a purely feedback control. The second part of this paper discusses the

Further author information: (Send correspondence to C.C.P.)
C.C.P.: E-mail: cpainter@uci.edu, Telephone: (949) 824-6314, Address: 4200 Engineering Gateway; Irvine, CA 92697
A.M.S.: E-mail: ashkel@uci.edu, Telephone: (949) 824-3843
Web: http://mems.eng.uci.edu



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Magnitude of Stiffness Along In-Plane Directions in an Ideal Gyroscope

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Magnitude of Stiffness Along In-Plane Directions in Experimental Gyroscope

(a) (b) (c)

Figure 1. (a) A prototype surface machined rate integrating gyroscope was fabricated using JDS Uniphase’s MUMPS
process. (b) In an ideal gyroscope, the stiffness would be identical along any arbitrary direction (kr (θ)=constant). (c) In
the prototype gyroscope, the stiffness along the two drive axes and two sense axes is estimated by observing the natural
frequency along each direction and knowing the ideal mass of the system. The plot of stiffness magnitude along the
four directions shows large frequency mismatches (K1-K2 = 1.6) and coupling (rotation of the stiffness axes by angle
α = 45).

Figure 2. A Smart MEMS device would be capable of using the results of self-calibration for large error compensation
using a feedforward and structural off-set type of control architecture. A feedback control would work in tandem to
compensate for small perturbations arising during operation of the device.

fundamentals of three algorithms proposed for identifying the structural anisoelasticities in the system. The
algorithm suite consists of a static deflection algorithm, a dynamic measurement algorithm, and a dynamic
measurement with energy compensation algorithm. The third part of the paper presents the results of numerical
simulation utilizing each of the three algorithms. Finally, we discuss implementation of the algorithm results in
a feedforward control consisting of electrostatic tuning using parallel plate electrodes.

2. GYROSCOPE DYNAMICS AND FEEDBACK CONTROL

The studied gyroscope3 consists of a two degree of freedom lumped mass-spring system which uses electrostatic
parallel plates for drive and sense (Figure 3a). The six interconnected ring suspension around the perimeter
of the device provides necessary stiffness isotropy required for the successful operation of the device.5 The
lumped mass-spring dynamics of this system are expressed by6

ẍ + ω2
nx − 2mΩẏ = 0

ÿ + ω2
ny + 2mΩẋ = 0 (1)

where ωn is the natural frequency, Ω is the input angular velocity, and we are assuming that the system is
initially freely vibrating. Over time, the line of oscillation will precess by an angle φ (Figure 3b), which can be
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Figure 3. (a) The studied rate integrating gyroscope3 consists of a freely vibrating proof mass attached to a concentric
six ring suspension. Stationary electrodes interwoven throughout the mass along the drive axes help sustain motion while
electrodes along the sense axes sense deflection and velocity used to calculate the Coriolis induced deflection angle. (b)
In ideal operation, Coriolis force causes the line of oscillation initially aligned with the horizontal axis attached to the
rotating frame to precess by an angle φ.

Figure 4. In the ideal gyroscope, the principal axes of elasticity have equal stiffness and coincide with the x-y coordinate
system. In the presence of imperfections, there is a mismatch in the principal stiffness values, 2h = (K1 − K2) and an
angular mismatch of the principal axes from the x-y coordinate system by an angle α.

calculated by

tan φ =
2
(
ω2

nxy + ẋẏ
)

ω2
n (x2 − y2) + (ẋ2 − ẏ2)

(2)

However, anisoelasticities due to fabrication imperfections disrupt isotropy of the suspension, causing frequency
mismatch and mode coupling. The non-ideal dynamics of the gyroscope, assuming no damping, can then be
expressed by

mẍ + kxxx + kxyy − 2Ωẏ = Fx

mÿ + kyyy + kyxx + 2Ωẋ = Fy
(3)

where m is the lumped mass approximation for the gyroscope, kxx, kyy, kxy, and kyx are the non-ideal stiffness
terms, and Fx and Fy are applied forces. The non-ideal stiffness terms can also be expressed in terms of the
principal stiffness values, K1 and K2, and the angular mismatch angle, α, of the principal axes of elasticity with
the x-y coordinate system (Figure 4)7

kxx =
K1 + K2

2
+

K1 − K2

2
cos (2α)

kyy =
K1 + K2

2
− K1 − K2

2
cos (2α) (4)
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Figure 5. (a) Anisoelasticities result in quadrature error which manifests as a developing elliptical pattern during
precession of the straight line of oscillation. (b) With the use of feedback control, these imperfections can be compensated
for while preserving the angle of precession φ. Here the angle of misalignment is 10 degrees and the principal axes stiffness
mismatch is 1% of the ideal isotropic stiffness (c) Larger errors result in more erratic oscillation patterns, but can still
be compensated for using the same feedback control. (d) However, the feedback control disrupts the line of oscillation,
reducing the precession angle from the ideal angle φ to γ. Here the angle of misalignment is 10 degrees and the principal
axis stiffness mismatch is 5% of the ideal isotropic stiffness

kxy = kyx =
K1 − K2

2
sin (2α)

In the ideal gyroscope, it is necessary for the stiffness along the principal axes, and thus along any arbitrary
axis, to be identical. Then we can express Equation (4) as perturbations from an ideal isotropic stiffness kn

kxx = kn + h cos (2α)
kyy = kn − h cos (2α)
kxy = kyx = h sin (2α)

(5)

where 2kn = (K1 + K2) and h is proportional to the stiffness mismatch between the principal axes, 2h =
(K1 − K2). An appropriate feedback control which will compensate for anisoelasticity while not interfering
with the Coriolis force is of the form6

{
Fx

Fy

}
= −γ1 · P · ST ·

{
x
y

}
(6)

where γ1 is a constant gain, S is a 2×2 skew symmetric matrix, and P is quadrature defined as

P = π (xẏ − yẋ) (7)

The feedback controller is sufficient to compensate for imperfections while not interfering with the Coriolis force
as long as the imperfections are sufficiently small (e.g. α = 10 degrees and h is 1% of the ideal stiffness) (Figure
5a,b). However, typically the imperfections are large (see Figure 1, α = 45 and h = 50% of the ideal stiffness)
and while the controller will still compensate for the errors, it will interfere with the measured precession
angle (Figure 5c,d). Therefore, it is necessary to implement a feedforward control to compensate for large
anisoelasticities while retaining a feedback control to correct for small errors that develop during operation of
the device.



3. ANISOELASTICITY ALGORITHMS

The first step in developing the feedforward control is to develop algorithms used to determine the structural
imperfections in the system as part of a self-calibration diagnostic test. Here we present three different algorithms
for obtaining the non-ideal stiffness parameters for the gyroscope. The relative merits of each algorithm are
described.

3.1. Static Deflections

In the absence of rotation and assuming a constant input force and symmetric stiffness matrix (kyx = kxy),
Equation (3) simplifies to the static equation[

kxx kxy

kxy kyy

]{
x
y

}
=

{
Fx

Fy

}
(8)

In the presence of the off-diagonal elements kxy, a static force applied in one direction will result not only in
deflection along the direction of applied force, but also a deflection component orthogonal to the applied force.
By measuring the deflection in the direction of the applied force and the resulting orthogonal deflection, we can
calculate both the on-diagonal and off-diagonal stiffness values.

We first apply a static force along the y axis (Fx = 0, Fy = F ) and measure the deflection along both x (δ1)
and y (δ2). Next, we apply the same static force along the x axis (Fx = F, Fy = 0) and again measure the x
(δ3) and y deflections (δ4). Solving for the deflections in all three cases gives

δ1

F
= − kxy

kxxkyy − k2
xy

δ3

F
=

kyy

kxxkyy − k2
xy

(9)

δ2

F
=

kxx

kxxkyy − k2
xy

δ4

F
= − kxy

kxxkyy − k2
xy

Noting that δ1 = δ4 because of symmetry of the stiffness matrix, we disregard the δ4 equation which gives
redundant information. With the remaining deflection equations, we solve for the elements of the stiffness
matrix

kxx =
Fδ1

δ1δ3 − δ2
2

kyy =
Fδ3

δ1δ3 − δ2
2

(10)

kxy = ± Fδ2

δ1δ3 − δ2
2

Here, the sign of the kxy term is dependent on the mismatch and orientation of the principal axes of elasticity.
In order to find the sign, it is necessary to first make an initial guess of kxy and substitute this value back into
the δ2 deflection equation of Equation (10). If the sign of the right hand side matches the sign of the measured
deflection, then the initial guess is correct. If the sign is different, then it is necessary to reverse the sign of the
guessed kxy value.

The advantages of using this kind of detection scheme is its inherent simplicity. The disadvantages of such
a technique is that it is limited by the accuracy of measuring deflections and applying forces. Accurate sensing
of the deflection is limited by the sense electronics in the form of thermal and electronic noise while accurate
application of forces relies on good understanding of the nature of the applied force. This can be a difficult
task in drive schemes utilizing nonlinear or position dependent forces, such as electrostatically driven parallel
plate devices. The issues of precision detection of positions and forces can be solved by considering the dynamic
response of the system and using techniques that take advantage of all the data through averaging. These
techniques are discussed next.



3.2. Unforced Dynamic Detection
Substituting Equation(5) into Equation (3) and solving for x and y assuming no angular rotation (Ω = 0), no
damping, and an initial deflection of x0 and y0 yields

{
x
y

}
=

[
1 + cos 2α sin 2α

sin 2α 1 − cos 2α

] {
x0

y0

}
cos

√(
ω2

n +
h

m

)
t + (11)

[
1 − cos 2α − sin 2α
− sin 2α 1 + cos 2α

] {
x0

y0

}
cos

√(
ω2

n − h

m

)
t

or in non-matrix form as

x (t) = 1
2 (G (α) + x0) cos

(√(
ω2

n + h
m

)
t

)
− 1

2 (G (α) − x0) cos
(√(

ω2
n − h

m

)
t

)

y (t) = 1
2 (H (α) + y0) cos

(√(
ω2

n + h
m

)
t

)
− 1

2 (H (α) − y0) cos
(√(

ω2
n − h

m

)
t

) (12)

G (α) = sin (2α) y0 + cos (2α) x0

H (α) = − cos (2α) y0 + sin (2α) x0

ω2
n =

kn

m

We see that each position is comprised of the summation of two different sinusoidal functions due to the stiffness
coupling. A plot of the time response of the system is a family of Lissajous figures (Figure 6). Over time, it can
be seen that the Lissajous figures will have trajectories bounded by a rectangle whose size is defined by h and
which is oriented at the angle α from the coordinate axis. To determine the orientation of the principal axes,
we employ the statistical method of principal component analysis (PCA).

Here we will discuss the applications of PCA as it pertains to this study; a more general explanation can be
found in.8 In our case, we have two variables of interest, the x position and y position. Now consider a 2 × 1
vector V = (x, y). We will assume that x and y have zero mean (centered about the origin) and that we have
experimentally acquired covariances between x and y. A covariance matrix S can be expressed by

S =
[

s2
x sxy

sxy s2
y

]
(13)

where s2
x and s2

y are the variances of x and y and the covariance between x and y is

sxy =
n

n∑
k=1

xkyk −
n∑

k=1

xk

n∑
k=1

yk

[n (n − 1)]
(14)

with the index of summation, k, going over the entire sample size, n. The covariance matrix is a numerical
measure of the coupling between variables and in the case when S is diagonal, the vectors of V are uncorrelated,
i.e. the x position has no influence on the y position. Notice, when there is coupling through the stiffness
matrix between the x and y position, the covariance matrix will also have coupling. Thus, a transformation
that diagonalizes the covariance matrix will also diagonalize the stiffness matrix. We now introduce a coordinate
transformation ζ = UTV where U is a constant matrix of transformation. It can be shown that there exists
such an orthogonal transformation U such that the covariance matrix S̃ of this new coordinate system is8

S̃ = E
(
ζζT

)
= UTSU (15)

We will assume that the transformation U is a unity gain rotation and so UT = U−1. With this assumption,
we see that by choosing the columns of U to be the eigenvectors (e1 and e2) of the covariance matrix, we will
achieve a diagonal form, thus the eigenvectors designate the basis vectors for the uncoupled space. Since S is
Grammian, we are guaranteed of the these eigenvectors being orthogonal. From Equation (5), we can see that
a rotation transformation of the form{

x
y

}
=

[
cos α − sin α
sinα cos α

] {
q1

q2

}
(16)
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Figure 6. (a) In the absence of damping, the trajectory of the gyroscope will form into elliptical type Lissajous figures.
These figures will be bound by a rectangle oriented at an angle α. A Principal Component Analysis (PCA) is used
to determine the principal axes of elasticity, designated as X̄ and Ȳ . (b) The Fourier transform of the x component
of the data reveals two peaks due to off diagonal coupling of the stiffness matrix. From this plot, the h parameter of
the system can be extracted as 2h = m

(
ω2

1 − ω2
2

)
where ω1 and ω2 correspond to the frequencies of the maximum and

second maximum peaks, respectively.

will uncouple the dynamic system to the uncorrelated principal axis coordinate system. It is necessary that this
transformation must be equivalent to UT and so one expression for the eigenvectors representing the principal
axes is (Figure 6a)

e1 = (cos α) êx − (sin α) êy

e2 = (sin α) êx + (cos α) êy
(17)

We then directly calculate the angle α from the second eigenvector

α = tan−1

(
e2,x

e2,y

)
(18)

where e2,x and e2,y are the x and y components of the second eigenvector.

Based off the dynamic system in Equation (12), if we restrict the initial conditions to only an x deflection (y0

= 0), then we are guaranteed of the system oscillating within a rectangle oriented in the boundary π
4 > α > −π

4 .
Taking a Fourier transform of Equation (12) while considering only the x position yields

X (ω) =
1
2

(G (α) + x0) πδ (ω − ω1) +
1
2

(G (α) − x0) πδ (ω − ω2) (19)

ω2
1 = ω2

n +
h

m

ω2
2 = ω2

n − h

m

From Equation (19), assuming the initial y deflection is zero, the ratio of the amplitudes of the two frequency
components are ∣∣∣∣X (ω1)

X (ω2)

∣∣∣∣ = x0
cos (2α) + 1
cos (2α) − 1

(20)

In this case, the highest peak in the frequency plot corresponds to the ω1 term and the second highest peak
corresponds to ω2 term (Figure 6b). Parameter h and the ideal isotropic stiffness kn are calculated as 2h =
m

(
ω2

1 − ω2
2

)
and 2kn = m

(
ω2

1 + ω2
2

)
, respectively. If ω1 < ω2, then h < 0.



The algorithm for determining h and kn is dependent on differentiating the two peaks in the X frequency
domain. As the errors tend to grow smaller, it becomes impossible to distinguish the two peaks and any
numerical peak finding algorithm may result in erroneous results. A more accurate method for determining h
and kn requires the calculated α from the PCA analysis. Using the transformation from Equation (16), the
equations in the transformed principal coordinate space are

q1 (t) = (2x0 cos α + 2y0 sin α) cos
(√(

ω2
n + h

m

)
t

)

q2 (t) = (−2x0 sinα + 2y0 cos α) cos
(√(

ω2
n − h

m

)
t

) (21)

Thus, if we transform our data in this way and then take the Fourier transform, we see that there will be one
peak for q1 and q2 at frequencies ωq1 and ωq2, respectively. These frequencies are

ω2
q1 = ω2

n + h
m

ω2
q2 = ω2

n − h
m

(22)

Then, h and kn are calculated simply as 2h = m
(
ω2

q1 − ω2
q2

)
and 2kn = m

(
ω2

q1 + ω2
q2

)
, respectively. This result

makes it easier to identify smaller errors since it is only necessary to identify the largest peak in each frequency
spectrum rather than the largest two.

The benefits of this algorithm is since the PCA and Fourier transforms take advantage of all the data,
it is not necessary to have precise deflection information. This is especially advantageous in systems where
small deflections are difficult to resolve due to noise in the sensing electronics. One of the shortcomings of
this algorithm is that systems with high damping reduce the amount of data points, resulting in erroneous
results. A solution to highly damped systems is vacuum packaging of the device and also to employ an energy
compensating controller. The implementation of this controller is considered in the final part of this section.

3.2.1. Ambiguity of the algorithm

In our derivation of the angle α from Equation (17), we initially neglected the fact that the eigenvectors are
interchangeable in the transformation matrix. Thus, another possible rotation angle is

α2 = cot−1

(−e1,x

e1,y

)
(23)

where α2 is the angle calculated if we were to use the first eigenvector rather than the second. Here α2 is related
to the α calculated from Equation (18) by α2 = α − sign {α} (

π
2

)
. Since the output from the PCA analysis

is numerical values for the eigenvectors, it is impossible to tell e1 and e2 apart, thus the output PCA angle is
either α or α − sign {α} (

π
2

)
. However, we will show that even with this ambiguity in the angle, we will still

arrive at an equivalent solution.

From Equation (19), if we make the substitution α = α − sign {α} (
π
2

)
, then the equation becomes∣∣∣∣X (ω1)

X (ω2)

∣∣∣∣ = x0
cos (2α) − 1
cos (2α) + 1

(24)

We see that the conditions are changed and now ω2 corresponds to the first maximum peak and ω1 corresponds
to the second maximum peak. Now the algorithm will calculate −h rather than h. If we substitute the two
angle and h combinations of (α, h) and (α − sign {α} (

π
2

)
, -h) into Equation (5), we will arrive at equivalent

solutions. Thus, as long as the guess for α is between −π
4 and π

4 , the algorithm will correctly identify the
structural non-idealities whether the initial guess for α was correct or if it was actually α − sign {α} (

π
2

)
.

3.3. Forced Dynamic Detection

In the previous section we were assuming no damping, letting the system to run indefinitely, allowing for an
infinite amount of data. In reality, viscous damping will eventually deplete the energy of the system, resulting
in a finite number of cycles from which to obtain data. In relatively high Q systems (Q > 100), there is sufficient
energy to obtain enough data before the oscillation pattern dies out. However, in cases of low Q (Q < 100),
there are not enough cycles to obtain an accurate calculation of the anisoelasticities. For example, such Q
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Figure 7. With the implementation of an energy compensating controller, the systems tends towards the principal axis
with the lowest stiffness. In both these cases, α is the same, but the mismatch in the principal axis stiffness values is
different: (a) h > 0 (b) h < 0

values are indicative of operating microstructures in an ambient atmosphere.9 In these cases, a controller to
compensate for energy losses is required. In the angular gyroscope, a controller of the form6{

Fx

Fy

}
= −γ2 · ∆E ·

{
ẋ
ẏ

}
(25)

is implemented into Equation (3) that guarantees to maintain the energy of the system without interfering with
the identification of anisoelasticities. Here, γ2 is a constant gain, ẋ and ẏ are the velocities along the x and y
directions, and ∆E is the change in system energy given as

∆E = E0 −
ω2

n

(
x2 + y2

)
+

(
ẋ2 + ẏ2

)
2

(26)

where E0 denotes nominal energy of the system normalized with respect to the effective mass. In using the
controller, we have assumed isotropic damping with no coupling. This controller is based on small parameter
variations10 and in order for the controller not to interfere with the measured parameters, the gain (γ2) must
be sufficiently small.

With the implementation of this controller, the oscillation of the system tends to propagate towards the
principal axis with the smallest stiffness (Figure 7). We will assume that this is the x̄ axis (see Figure 4), which is
misaligned from the x-axis by the angle α and is guaranteed of being oriented in the range of −π

2 < α < π
2 . Now,

we consider the dynamics in the transformed principal axis coordinate system from Equation (21). Taking the
Fourier transform of q1 and q2 yields one peak for each at frequencies ωq1 and ωq2 respectively. From Equation
(22), h is given as 2h = m

(
ω2

q1 − ω2
q2

)
and kn is calculated by 2kn = m

(
ω2

q1 + ω2
q2

)
. The difference between this

and the algorithm of the previous section is that we are assuming that q1 is always the axis with the smallest
stiffness. Thus, ω2

q1 is always less than ω2
q2, so h is limited to being always less than zero. However, with the

new limits of α from −π
2 and π

2 , we have compensated for this restriction on h and the algorithms will still
correctly calculate the stiffness non-idealities when substituting into Equation (5).

The advantages of this methodology are the same as the previous algorithm with the addition of energy
compensation. As a result, systems with low Q can still be analyzed to determine the structural anisoelasticities.
In addition, no initial deflection is required and the controller will tend to drive the system to a pre-determined
energy level. The caveat to this method is that the chosen gain of the energy compensation controller must be
sufficiently small to avoid interfering with the measurement of the anisoelasticity.

4. NUMERICAL SIMULATION
All simulation parameters are based off a realistic implementation of a surface micromachined rate integrating
gyroscope (Figure 1). The mass used is 4.10 × 10−10kg and the isotropic stiffness kn is 1.55 N/m, giving a



(a) (b)

Figure 8. (a) In the case of the unforced dynamic detection, the algorithm can detect errors with a precision of .001
(the numerically acquired h/kn = the theoretical h/kn ± .001) over the range of the theoretical h, making it suitable to
detect anisoelasticity ranging from 100% > |h/kn| > 10% with over 99% accuracy and 10% > |h/kn| > 1% with over 90%
accuracy. (b) As |h/kn| continues to decrease, the accuracy of the algorithm also continues to diminish. A fundamental
lower limit is reached when |h/kn| = .1% where the algorithm can no longer accurately detect errors.

natural frequency of 9.8 kHz for the system.

4.1. Static Deflection
This simulation is done using MATLAB where a known force of 1 µN is applied sequentially in the y direction
and then in the x direction with the x and y deflections being measured in both cases. In the gyroscope, this
applied force corresponds to a DC drive voltage of 13.8V, with a drive and sense capacitance of .021 pF. The
Q is assumed to be 1000 in order to obtain a stable static deflection. Prior to running the simulation, errors
are introduced into the stiffness matrix using the formulation from Equation (5) and then the simulation is run
multiple times while varying α and h. Numerically, the algorithm can calculate stiffness non-idealities as small
as .001% of the ideal stiffness.

4.2. Unforced Dynamic Deflection
The same MATLAB simulation is run, this time assuming an initial x deflection and no applied force. Using
deflection data acquired from the dynamic system response, the eigenvectors corresponding to the principal
axes orientation are determined using the MATLAB’s PCA toolbox, which are then used to calculate the angle
α. Parameter α is then used to transform the data into the principal coordinate frame and a Fourier transform
of the principal coordinate deflections is obtained. A peak finding algorithm is then used to determine the
frequencies of the two peaks and h and kn are calculated based off the frequency difference and summation,
respectively. Since h is the dominating factor in the formation of the structural non-idealities, there is negligible
anisoelasticity when h is small, even if α is very large. Thus we restrict our analysis to cases of varying h and
a small value of α (α = .01 degrees). With this value for α, structural imperfections can be detected with a
precision of .001 (the numerically acquired h/kn = the theoretical h/kn ± .001) over the range of the theoretical
h, making it suitable to detect anisoelasticity ranging from 100% > |h/kn| > 10% with over 99% accuracy and
10% > |h/kn| > 1% with over 90% accuracy. A fundamental lower limit is reached when |h/kn| = .1% where
the algorithm can no longer accurately detect errors (Figure 8).

4.3. Forced Dynamic Deflection
In this simulation, we implemented the feedback energy compensating controller from Equation (25) and re-ran
the same case study as the previous section while letting Q be 30. This Q is based off Couette flow and squeeze
film gas damping models1 for the device in Figure 1. It was found that with a gain of less than .025 (γ2 < .025),
it was possible to accurately extract the structural non-idealities without the controller interfering with the
measurement of anisoelasticities. Higher gains result in interference with the quadrature error, resulting in
erroneous results. Without interference, the limits of the algorithm are the same as the un-forced dynamic case.



Figure 9. We use the inherent non-linearity of the parallel plate electrodes along the x and y direction in order to tune
out the non-ideal stiffness elements.

5. IMPLEMENTATION

5.1. Electrostatic Tuning
Two different physical mechanisms were reported in MEMS for active frequency tuning, electrostatic trimming1

and thermal tuning.11 Since the angular gyroscope utilizes parallel plate electrodes for drive and sense, we
focus on using the inherent non-linearity of the electrostatic forces to tune out the non-ideal components of the
stiffness matrix (Figure 9). For the applied voltages, we use1

Vx,UL = VDC − vxq Vx,UR = VDC + vxq

Vx,LL = VDC + vxq Vx,LR = VDC − vxq

Vy,UL = VDC − vyq Vy,UR = VDC + vyq

Vy,LL = VDC + vyq Vy,LR = VDC − vyq

(27)

where VDC is a constant bias voltage and vxq and vyq are quadrature control voltages. The nonlinearity of
the parallel plate drives leads to a nonlinear electrostatic contribution to the overall system stiffness matrix.
Combining the ideal, non-ideal, and electrostatic contributions together forms the total stiffness realization

K = Kideal + Knonideal + Kelectrostatic (28)

Kideal =
[

kn 0
0 kn

]

Knonideal =
[

h cos (2α) h sin (2α)
h sin (2α) −h cos (2α)

]

Kelectrostatic =
4ε0t

d2

[ − g
d

(
V 2

DC + v2
xq

)
(VDCvxq + VDCvyq)

(VDCvxq + VDCvyq) − g
d

(
V 2

DC + v2
yq

) ]

Here, t is the out-of-plane thickness and x0 and y0 are the electrode overlaps, which we have assumed to be
equal (x0 = y0 = g). We have made a small deflection assumption such that the gap spacings d − x and d − y
are approximately equal to d (see Figure 9). With an arbitrary DC voltage, we can find an appropriate set of
control voltages to cancel the off-diagonal terms of the stiffness matrix and set the on-diagonal stiffness terms
equal to each other (ktuned).

vxq = −1
8

d
(
8 cos (2α)ε0tV 2

DC + gh sin2 (2α)d
)

g sin (2α)ε0tVDC
(29)

vyq = −1
8

d
(−8 cos (2α)ε0tV 2

DC + gh sin2 (2α)d
)

g sin (2α)ε0tVDC
(30)



Because the electrostatic stiffness term is always negative, the tuned on-diagonal stiffness values will always be
less than the original ideal stiffness (ktuned < kn).

6. CONCLUSION

In this paper, we have shown several algorithms for detection of structural anisoelasticities in a MEMS rate
integrating gyroscope. We have shown that while an algorithm using static deflections is advantageous in its
simplicity, it lacks the precision comparable to dynamic detection due to required knowledge of forces and precise
deflections. The dynamic detection shows to be a more optimal method by using PCA and Fourier transforms,
which take advantage of all the acquired data points. We have also shown that this algorithm can be used even
in heavily damped systems by employing an energy compensating controller. The results of these detection
schemes can be used in the feedforward stage of a dual-stage feedback/feedforward control architecture. As an
example, we have shown the implementation of the feedback control using the nonlinear effects of electrostatic
parallel plates.
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