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Abstract—This paper’s focus is a theoretical comparison of
Nuclear Magnetic Resonance Gyroscope (NMRG) and Whole-
Angle (WA) Coriolis Vibratory Gyroscopes (CVG) dynamics,
showing the parallels in structure of basic equations and deriving
performance scaling laws. The comparison relies on the method
of averaging to derive the linearized equations of motion and
analytical solutions for both types of sensors. While equations for
WA CVG in terms of slow-varying components have been
extensively published in literature, the contribution of this work
is derivation of the linearized equations of motion for NMRG
using the method of averaging, as well as its comparison to the
WA CVG dynamics. Finally, the paper identifies "optimization
knobs' for the two types of sensors (e.g., ring-down time for
CVG and relaxation time for NMRG) and discusses similarities
and dissimilarities in their dynamics.
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L INTRODUCTION

To address the challenges associated with the long-term drift
of chip-scale inertial sensors, fusion of sensors with dissimilar,
but complementary physics was recently proposed [1]. In this
context, Nuclear Magnetic Resonance Gyroscopes (NMRGs)
[2] and Whole-Angle (WA) Coriolis Vibratory Gyroscopes
(CVGs) [3,4] exhibit complementary dynamics, making these
sensors attractive for comparative analysis. Toward this goal,
an in-depth analysis of their dynamics and performance
scaling laws are presented in this paper.

The comparison relies on the method averaging to derive
the linearized equations of motion and analytical solutions for
both types of sensors. The WA mode of CVG operation was
chosen for the comparison with NRMG since in this case the
output of both sensors is the angle. While equations for WA
CVG in terms of slow-varying components have been
published in literature [4], the contribution of this work is
derivation of the linearized equations of motion for NMRG
using method of averaging, followed by comparative analysis.

II.

NMRG measures angle or angular rate by observing the
response of the hyperpolarized noble gas to the rotation. Here
we focus on the NMRG operated in an angle-output mode, — a
realization implemented in [2] (rate output is possible when
NMRG is operated in force-to-rebalance mode). The dynamics
of the noble gas nuclei spin is described by Bloch equations in
terms of magnetization components M,, M,, and M., Table 1.
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TABLE I. NMRG DYNAMICS FOR ANGLE OUTPUT MODE
Equations of motion:
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Steady-state solution (for oy >> /T )

M, = L w cos[a)ot _Ide[ + 90]
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M,  y component of magnetization M.  z component of magnetization
T, longitudinal relaxation time T, transverse relaxation time
wy  Larmor frequency M, M, equilibrium value
B,  z-axis constant magnetic field B, x-axis magnetic field, B;=kp-M,
o  observed frequency: kp  feedback gain
0= +Q, =0, +Q, & initial phase
y  gyromagnetic ratio Q. angular rate

TABLE II. CVG DYNAMICS FOR WHOLE-ANGLE MODE
Equations of motion [4]:
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Steady-state solution for an ideal case (f, =/, = 0, @ = o« =0,, &= ,—> ®):
xX=a, cos(—k]| Q_dt)cos(wt + @)

y = a, sin(—k ] Q_dr) cos(t + ).

x  x-axis (drive-mode) displacement y  y-axis (sense-mode) displacement

7. x-axis ring-down time constant 7, y-axis ring-down time constant

o, drive-mode natural frequency o, sense-mode natural frequency
f. amplitude force along x-axis f, amplitude force along y-axis
ay  drive-mode amplitude ¢  initial phase
k  angular gain factor Q. angular rate
Ae frequency mismatch A(1/7, damping mismatch
0, angle of principal axis of damping ¢, principal axis of elasticity angle

To sustain oscillations (nuclei spin precession) in NMRG,
the output signal M, is fed back to x-axis magnetic coils with a
proportional gain kp, i.e. B, = kp-M, (in addition to constant z-
axis field By), so that equations of motion can be written in the
form shown in Table I. To draw a parallel with the WA CVG
(Table II), the Bloch equations are represented in the form of
first- and second-order differential equations (as opposed to
the system of first-order equations). Despite the apparent non-
linearity, the form of the equations reveals that the solution is
periodic, and the method of averaging [5] can be applied to
derive the analytical solution. Using the method of averaging
[5] presented for CVG [4], we derive linearized equations for
NRMG in a similar fashion.



Assuming the solution M, is periodic, M, = A4-cos(At + 6)
with amplitude 4, phase 6 and frequency A= () + 1T,
the equations of motion for NMRG in Table I transforms to:

: 2 A
A=- =, M, |Z,
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=LA+ —(M,-M)),
> T( o —M.,)

1

M,
LT /IMZ+LMZ -Q,
24 T,
which constitute a system of three first-order equations for
slow-varying variables A, 6, and M., describing the closed-
loop NMRG dynamics. The steady-state solution (dA/dt=
= dM,/dt = 0) of the first two equations of system (1) is:

A:L Z(MO}/kPT'Z_z) M = 2 .
7o | 1T, kT,

The stability analysis shows that the solution (2) corresponds
to stable harmonic oscillations (self-resonance) as long as:

2
otkp <0,
2

which can be satisfied by choosing a proper feedback gain kp.
Substituting solution (2) into the last equation of system (1)
and assuming @,” >> 1/T,’ (valid for typical relaxation time
T, =30 s and Larmor frequency @, =300 Hz-2-1), we obtain:
0 =—[Qdt+6,, 4
showing that the NMRG is a rate integrating gyroscope with a
scale factor of 1. As can be seen from (1), the angle drift in

NMRG could be caused by the instability in M, (e.g. caused
by z-axis B, field fluctuation), inseparable from the true angle.
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III.

Although the dynamics of CVG in terms of slow-varying
components is presented in [4], we summarize the main results
to perform comparative analysis of NMRG and WA CVG.
The solution of equations in Table II is periodic, and it can be
represented in terms of slow-varying components c;, ¢, S, 5,

x =c, cos(at +¢@)+s,_ sin(ar + @), (5)
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y=c, cos(arf +¢)+s, sin(wr +¢@).
By substituting (6) into the equations of motion in Table 11
and using method of averaging, the steady-state solution is [4]:
¢, =acosb, (6)

O]

where a, q, 6, ¢ are amplitude, quadrature, precession angle,
phase error, respectively. In ideal case a >> g, op << 1 we get:
0 =—k [ it +,, ®)
showing that WA CVG is a rate integrating gyroscope with a
scale factor of k. In presence of demodulation phase error ¢
the angle @is derived using combination of c,, ¢, sy, 5, [4]:
2(c.c, +s,5,) 1 sin 260 iy
- cos260

c, = asing,

s, =acos@dp —qsind, s, =asinfop +qcos b,
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* In practice, the bandwidth of NRMG is limited by the bandwidth of the
magnetic field readout system, e.g. the alkali magnetometer.
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Despite the fact that WA CVG is independent of the phase
error, it is still susceptible to damping/stiffness mismatch [4]:

0= _kQ+%A(l)sm2(9—@)+chosZ(@—H,)g, (10)
7 a

showing angle drift for CVG (notations explained in Table II).

IV. COMPARATIVE ANALYSIS: PERFOMANCE SCALING LAWS

Besides dissimilar noise mechanisms, the parallels can be
drawn between NRMG and WA CVG. Both sensors rely on
phase measurements for inertial rotation detection. They
exhibit theoretically unlimited input rate range and wide
measurement bandwidth [4,6]. Specifically, bandwidth and
range are limited by the natural frequency for WA CVG [4],
and by Xenon Larmor frequency for NMRG* [6]. The key
parameters defining the AWN and ARW for WA CVG are Q-
factor and ring-down time [4], and a transverse relaxation time
constants for NMRG [6]. The mass for CVG and the number of
polarized atoms for NMRG define the SNR [6]. Finally, the
short-term noise limit is defined by SNR for both NMRG and
WA CVG.

V.

The analysis based on method of averaging revealed that
both NMRG and WA CVGs are phase modulated gyroscopes,
i.e. the phase of their output signals is a measure of the rotation
angle. The error analysis of NMRG showed that the instability
of a z-axis component of magnetization vector is a primary
source of angle drift (for particular feedback system presented
here). The error analysis of WA CVG showed that the angle
readout method is robust to variations between the gyroscope
phase and the phase of an external clock (PLL), but susceptible
to the frequency and damping mismatches, which, in turn,
contribute to the angle drift. Finally, we theoretically
demonstrated that both types of sensors exhibiting different but
complementary strengths and weaknesses in terms of
bandwidth, range, and sensitivity, but having dissimilar angle
drift mechanisms.

CONCLUSIONS
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