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Abstract— We present the detailed analysis of the orbital tra-
jectory of Frequency Modulated (FM) gyroscopes, and the impact
of this on the differential frequency output. The FM approach is
based on tracking the resonant frequency split between two, high
Q-factor mechanical modes of a Rate Integrating Gyroscope, for
the purpose of producing a frequency-based measurement of the
input angular rate. We show that the output of FM gyroscopes
have a strong dependency on the orbital trajectory. For some or-
bital trajectories, FM gyroscopes provide inherent self-calibration
against common-mode influences, such as temperature and stress,
while for other trajectories the gyroscope loses these advantages.

I. INTRODUCTION

Commercial MEMS Coriolis Vibratory Gyroscopes (CVG)
rely on Amplitude Modulation (AM) of the input stimulus,
where the inertial input produces a proportional change in the
sensor’s output voltage [1]. In this approach, the output analog
voltage of a sensor is proportional to the true input stimulus,
as well as device parameters, which include stiffness of the
springs, gain of pick-off electronics, and other parameters.
Variation of these parameters due to changing environmental
conditions produces unpredictable drifts in the sensor output.

In contrast to conventional AM MEMS inertial sensors,
there is an alternative approach - FM operation. This approach
tracks the resonant frequency split between two X-Y modes of
vibration in a CVG type II [1], and provides a frequency-based
measurement of the input angular rate. As we demonstrated
previously in [2], MEMS gyroscopes with mechanical FM
operation could eliminate the gain-bandwidth product and
dynamic range limitations of conventional AM gyroscopes
as well as enable signal-to-noise ratio improvements without
limiting the measurement bandwidth. In addition, FM sen-
sor architectures are robust against mechanical and electro-
magnetic interferences. But the most important advantage of
gyroscopes with mechanical FM operation is inherent immu-
nity to variations in temperature, enabled by the real-time self-
calibrating differential frequency detection. Here we utilize the
phenomenon that each mode of the gyroscope (X-mode and
Y-mode) is a superposition of two harmonics with frequencies
A1 = wp +Q and Ay = wy — (2, while the output FM signal of
the gyroscope is Ay — Ao = 2Q2. Thus, the FM output of the
gyroscope is independent of the natural frequency, wg, which is
susceptible to a number of factors which include temperature,
stress, and aging of the device.

It is important to note, however, that the degree of self-
calibration varies with the nominal orbital trajectory of the
device. Should this trajectory be chosen incorrectly or poorly
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controlled, little to no self-calibration features will be pre-
served.

In this paper, we derive and analyze the impact of the
orbital trajectory on the differential output of FM gyroscopes.
In addition, recommendations are provided for choosing the
optimal orbital trajectory to achieve the highest degree of self-
compensation.

II. THEORETICAL MODEL FOR CLASS II CVG

Assuming negligible damping, free vibration of a mode-
matched device is governed by

—kQy + 7+ (wi — KO?) x — 2kQY = 0,

: ey
KQx + § + (wg — HQQ) y+ 2601 =0,

where wg is the mechanical natural frequency for 2 = 0
input, & is the angular gain defined by the geometric structure
of the gyroscope, and in further studies we set x = 1. The
equations (1) are written with respect to a non-inertial frame of
reference, attached to the gyroscope die. In the inertial frame,
the governing equations can be represented as follows:

E+wier =0, ij+wly=0. )

Depending on the initial conditions, the solution of (2)
corresponds to an orbital trajectory in the form of either a
line, an ellipse, or a circle. This pattern remains stationary in
the inertial space (for the case when x < 1 the pattern rotates
in the inertial space with a rate (1—#)$2(t)). This phenomenon
can be used for realization of a whole angle gyroscope [3] or
a FM rate gyroscope [2]. The solution of (2) for a normalized
amplitude is

¢ = sin(wot), 7 = sin(wot + ¢), 3)

where the initial phase, ¢, defines the orbital trajectory in the
inertial space: for ¢ = 0, £180° — line, for ¢ = £90° — circle,
and an ellipse for any other value of ¢.

Mapping solution (3) back to the non-inertial reference
frame attached to the gyroscope die

sin(wot) cos(Qt) + sin(wot + ¢) sin(2t),
— sin(wot) sin(Qt) + sin(wot + @) cos(Q),

Tr =

y:

“

following the trigonometric transformation of the solution (4),
it can be re-written as:
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Expressions for z and y in (5) define the gyroscope dy-
namics with respect to a rotating frame of reference attached
to the gyroscope die as a superposition of two sinusoids with
frequencies wg + §2 and wg — €. Thus, the amplitudes of each
sinusoid (6) defines the orbital trajectory through parameter
¢. When Q # 0, the phases in (5) are wot + fo t)dt + @,,
while the instantaneous frequencies, which are deﬁned by the
time derivative of the phase, remain as wg + 2.

Fig. 1 shows the value of the amplitudes A, and A,_q
which corresponds to the frequencies wg + © and w — €,
respectively. Depending on the initial phase, ¢, we can see
three distinct gyro orbital trajectories: line, ellipse or circle:

1) ¢ =0 or ¢ = £180°. Orbital trajectory is a line. The
amplitudes of each sinusoid are equal, A,+0 = Au,—q.
In this mode the gyroscope provides fully differential
operation, with the greatest factor of inherent self-
calibration.

¢ > 0 and ¢ < 180°. Orbital trajectory is an ellipse with
clockwise vibration. The amplitudes of each sinusoid are
not equal A 10 < Au—_q-

¢ < 0 and ¢ > —180°. Orbital trajectory is an ellipse
with counter-clockwise vibration. The amplitudes of
each sinusoid are not equal A, 1q > Aw—_q-

¢ = £90°. Orbital trajectory is a circle with clockwise
(counter-clockwise for ¢ = —90°) vibration. Amplitude
of the sinusoid with frequency w + € is equal to zero,
A,+q = 0. Not differential mode.

2)

3)

4)

The most beneficial orbital trajectories for the FM gyro-
scope is when the orbit collapses to a line. In this scenario,
we can take full advantage of the differential output signal,
providing the greatest degree of inherent self-calibration [2].

In the case when the orbital trajectories is an ellipse,
the gyroscope provides a partial differential operation, still
preserving the benefits of self-calibration.

When the orbital trajectories is a circle (the last case),
the gyroscope is no longer differential and completely looses
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(b) Experimental characterization using Quadruple Mass Gyroscope [2].

Fig. 1. Amplitude vs. Orbital Trajectories of FM Gyroscope.

its inherent self-calibration against changes in resonance fre-
quency. In this scenario, the gyroscope remains sensitive to
temperature fluctuations and stress, as shown in [4].

III. CONCLUSION

We presented a unified analysis of FM gyroscopes. We
demonstrated that orbital trajectory in the form of a line takes
full advantage of the differential FM output signal, providing
the greatest degree of inherent self-calibration, as shown in [2].
In contrast, when pattern is a circle, the FM gyroscope had
only one output frequency, loosing its self-calibration features
and becoming highly sensitive to temperature fluctuations [4].
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