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ABSTRACT

A novel micromachined rate integrating gyroscope
using a dual mass architecture is proposed which is ca-
pable of measuring angular positions rather than an-
gular rates. The proposed device decouples drive and
sense modes of operation by using an active mass exclu-
sively for drive and control and a second, passive mass,
exclusively for sense. Additionally, the passive mass is
made to vibrate at large amplitudes of motion, fascilitat-
ing high sense capabilities, while the drive mass retains
small amplitudes of motion, operating in a linear ca-
pacitive region. In this paper, we present the principles
of operation of the device and a novel control architec-
ture which allows the device to work in rate integration
mode while simultaneously achieving dynamic amplifi-
cation. Simulations based off parameters of a fabricated
device demonstrate the angle sensing capabilities.

Keywords: Rate Integrating Gyroscopes, MEMS, Dy-
namic Amplification, Dual Mass

1 INTRODUCTION

As MEMS based inertial sensors have been slowly
proliferating into the market over the past decades, the
challenge for MEMS gyroscope designers has been to
create sensors with both high performance and low cost.
There is a lack of low cost, MEMS based gyroscopes on
the market capable of navigation grade inertial sensing,
mainly due to inadequate drift and noise performance.
Thus, one potential source of large attitude errors arises
from integration of the rate signal to obtain orienta-
tion. One proposed solution addressing this problem
is the development of MEMS based gyroscopes capable
of directly sensing orientation, or rate integrating gyro-
scopes. MEMS rate integrating gyroscopes based on vi-
brating rings [1] and vibrating masses [2] have been ear-
lier proposed, which both require nonlinear electrostatic
parallel plates for actuation and sensing. The challenge
in these devices is that large amplitudes of motion are
desirable for larger amplitudes of sensing, which at the
same time result in a higher degree of nonlinearity, mak-
ing it difficult to apply control algorithms for drive and
error suppression. Our solution to this challenge is a
dual mass system where an active mass is used exclu-

sively for drive and control and the second coupled, pas-
sive mass is used exclusively for sensing motion. With
an appropriate choice of geometry, the actively driven
mass can operate with a small range of motion so as to
maintain a linear operating regime while dynamically
amplifying the motion of the passive mass to increase
sensing capabilities.

Previous work in MEMS under the principles of dy-
namic amplification has been done in micromachined
dual mass rate gyroscopes [3], and more generally in
a dual mass resonator device using parallel plate elec-
trodes [4]. However each of these devices uses a one
dimensional control, where they need only sustain os-
cillation along one axis of motion. What separates the
proposed device from these designs is that rate integrat-
ing gyroscopes start with a line of oscillation initially
along one direction, but this line of oscillation must be
allowed to precess in the presence of Coriolis force. As
a result, the device requires a two dimensional control
architecture to maintain the motion of the passive mass
assuming that the line of oscillation may be oriented
anywhere within a two dimensional working plane.

2 DYNAMICS

For a dual mass-spring-damper model (Figure 1a),
the equations of motion are

mi1Z1 + a1 + (ky + ko) 71 — koze — 2mQyy = F,

mayr + ey + (k1 + k2) y1 — kayz + 2m1 Q1 = F o

MoZs + Coo + koo — kaxy — 2m29y‘2 =0
May2 + C2y2 + kaya — kay1 + 2meQzs =0

where m; and my and ¢; and ¢, are the mass and damp-
ing of the drive and slave mass, respectively. Parame-
ters k; and k; are the spring constants for the spring
attached to the drive mass and the spring coupling the
drive and slave mass, respectively. F, and F, are ap-
plied external control forces on the driven mass and Q
is a constant input angular rotation. Here, any coupled
damping between the masses can be neglected if there is
good separation between the drive and slave masses. If
damping is sufficiently small and the input angular ve-
locity is orders of magnitude less than the two eigenfre-
quencies, then both damping and Coriolis forces can be
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considered as small, regular perturbations. Thus, time
averaging techniques similiar to one used for single mass
rate integrating gyroscopes [5] can be implemented. In
the case of the single mass gyroscopes, the averaging
leads to approximations for the long term behavior of
the gyroscope in the presence of the imperfections. We
shall show that similar results can be obtained in our
case of two masses. The first step in this process is to
find the homogeneous solution in the absence of pertur-
bations

;= M;nq cos ¢1 cos 1 + N;as cos ¢ cos by
-—Mibl sin ¢1 sin 01 bl Nibz sin ¢2 sin 92

yi =M;a; sin ¢; cos8; + N;as sin ¢o cos b

M;by cos ¢ sin by — N;bs cos ¢ sin b (2)
i=1,2
bh=eit+m
b2=ezt + 72

where ¢ are indices corresponding to the drive and slave
masses, Mi, M2, N1, and N, are constant functions of
the structural parameters k1, k2, m;, and ms and e; and
ez are the two eigenfrequencies (Figure 1b) . Lettingu =
{21,941, %2, Y2, €1, 41, 2, %2} and z = {a1,b1,61,71,a2,b2,
$2,72}, the homogeneous solution can be expressed as
u=g(z). Here, variables {z1,1:} and {z3,y2} define
quasi elliptical trajectories of the two masses where con-
stants a1, ag, b1, and by are initial condition determined
constants which define the general shape of the ellip-
tical trajectories, ¢; and ¢, are constants defining the
orientation of the two mass trajectories, and constants
v and 7y, designate the initial position of each mass on
its trajectory. Under the assumption that aj, az, by,
ba, ¢1, and ¢2 change slowly in one period of oscillation
in the presence of small perturbations f (u), the second
and third steps in the procedure are to write the dy-
namic system in terms of the changing constants and
then perform averaging over a period of oscillation [5]

T
z o~ %/J‘lh(z,t)dt
0

where T = 27 /w and h = f (g (z,t)). Parameter w is the
frequency of oscillation, which complicates the averaging
procedure as there are two different periods of oscilla-
tion. However, if the perturbations are purely Coriolis
force, then z decouples into exclusively e; components
for the drive mass variables and e, components for the
slave mass variables. Thus, w = e for aj, b1, and ¢;
and w = ey for da, by, and ¢2. Equation (3) gives the
dynamics with respect to the slow changing variables as
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Figure 1: (a) Model of the coupled dual mass-spring dynam-
ical system. (b) Frequency response of a dual mass-spring
system. By actuating the drive mass at the first resonant
frequency (e2), we can achieve large amplitude deflections in
the slave mass while retaining small deflections in the drive
mass.

10

We see that the angle ¢, is equal to the negative angular
deflection

¢ = —/:th (4)

Thus, in our dynamic system, if ¢» can be instantly
identified from sense electronics, the angular deflection
of the device can be measured.

2.1 Sense and Drive

Since the goal of the device is to decouple drive and
sense functionality, it is desirable to calculate precession
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from only the slave mass position and velocity and ap-
ply forces only on the active mass. From Equation (2)
we see the the slave mass position is comprised of two
frequency components, e; and es. If there is good sepa-
ration between the eigenfrequencies, we can assume that
the position and velocity can be demodulated into com-
ponents of the two frequencies. Assume that we now
have the following demodulated positions and velocities

.1 1, . .

La=-—az COS ¢ COS B2 —~ —by sin P sin f2
n n

_ 1 1 .

Yo=—az sin ¢ cosfs — ;bz cOs ¢ sin
n

. 1 1
To=— h—ageg COS ¢ sin g ~ ;L-ezbz sin ¢2 cos (®)

- 1 . . 1
y2=—50262 sin ¢ sin 63 — —bses €OS g cOS O
n

From here, the precession angle ¢, which was deter-
mined to be proportional to the angular displacement,
can be instantly identified as

2 (e3%292 + 2292)
tan2¢, = — = - 6
? e (1622 - 3122) + (373 - yg) ©

In order to drive the system to a steady energy state,
an energy compensating feedback control similar to one
used in single mass rate integrating gyroscopes [6] is
proposed

F, = —k-AE-2,

. (M)
F, = —k-AE-y

where k is a gain and AF is the difference between a
user defined nominal energy Ey and the instantaneous
total energy of the slave mass E(t). Under this control,
the drive frequency is always the lower eigenfrequency
ez, resulting in dynamic amplification of the slave mass
(see Figure 1b).

3 SIMULATION

The dynamic system from Equation (1) is modeled
using parameters based off a fabricated surface micro-
machined device (Figure 2). Here, m; = 4.44x10~10
kg, ms = 5.20x1071% kg, k; = 4.0 N/m, and k; = 0.25
N/m. To illustrate the precession of the oscillation pat-
tern, the device is first run with no damping (¢; = ¢z =
0) at an angular velocity 2=200 rad/sec. Plots of the
drive mass and slave mass positions (Figure 3a) show
that the oscillation pattern of each mass precesses iden-
tically. To demonstate the amplification capabilities of
the controller, the simulation is run with small damping
introduced (¢; = ¢2 = 1.933x1078 (N - sec)/m) and an
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Figure 2: A prototype surface micromachined rate integrat-
ing gyroscope using a dual mass architecture. Folded suspen-
sions serve as the spring members and electrostatic parallel
plates are used for drive and sense.

input angular velocity of 1 rad/sec over a time period of
1 sec. Demodulation of the slave mass position is per-
formed using a low pass filter with a cutoff frequency of 8
kHz, roughly halfway between the two eigenfrequencies
(e2=3.5 kHz and e;=15.5 kHz). The demodulated slave
position is then used to calculate the precession angle
with respect to the moving frame based off Equation
(6). The demodulated slave position is also fed back to
the drive mass through the energy compensating con-
troller of the same architecture as Equation (7). The
plot of the output precession angle (Figure 3b) shows
an output of -1 radians (the actual angular deflection is
the opposite sign as the precession angle). In addition,
the control achieves dynamic amplification with an over
tenfold amplification of the passive mass deflection over
the active mass deflection (Figure 3c).

4 CONCLUSION

In this paper, we have proposed a novel rate integrat-
ing gyroscope design using a dual mass architecture as
a way to decouple drive and sense functionality. We
have shown analytically and through simulation that
the line of oscillation of a dual mass device operating
under ideal operating conditions precesses at the same
rate as an input angular velocity. We have shown that
the precession angle equal to the angle of rotation can
be calculated from the output position and velocity of
the slave mass. An energy compensating controller was
demonstrated which feedbacks motion from the slave
mass to apply forces on the drive mass. Through simu-
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Figure 3: (a) For illustrative purposes, the simulation is run for .01 sec with an input angular velocity of 200 rad/sec, zero
damping, and no feedback control. The line of oscillation of each mass is observed to precess identically with high amplitudes
of motion in the passive mass compared to the active mass. (b) Simulation is then run for 1 sec. with an input angular velocity
of 1 rad/sec, small damping, and the energy compensating control. The measured precession angle is -1 rad, exactly equal to
the negative angular deflection of the device. (¢) From the plots of the deflection magnitude between the slave and drive mass,

there is an over ten fold amplification in motion.

lation using parameters based off a realistic implemen-
tation of the device, the controller was demonstrated to
dynamically amplify the motion of the slave mass with
respect to the driven mass without interfering with the
precession. Future work includes analyzing the effect of
non-idealities such as anisoelasticity and coupled damp-
ing on the performance of such a device, implementa-
tion of compensating control methods, and experimental
demonstration of the device.
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