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Active Structural Error Suppression in MEMS
Vibratory Rate Integrating Gyroscopes
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Abstract—Due to restrictive tolerancing in microfabrication,
structural imperfections that reduce performance of fabricated
micro devices are typical. In microelectromechanical vibratory
gyroscopes, feedback control is a common strategy in attempting
to correct the imperfections. However, a purely feedback control
can be insufficient for compensation of all the errors, requiring
post processing in the form of laser trimming to achieve higher
levels of performance. In this paper, we explore another alter-
native: the design and implementation of a dual stage control
architecture with self-calibration and feedback capabilities. The
self-calibrative portion of the control identifies and electroni-
cally “trims” large imperfections, while the feedback control
compensates for remaining small nonidealities and in-operation
perturbations. Presented here is an algorithm forin-situ imper-
fection identification based on the dynamic response of the device.
A realization of the dual stage control architecture is proposed for
a gyroscope using nonlinear electrostatic parallel plate actuators.
Modeling and simulation results which demonstrate successful
compensation of imperfections with the proposed architecture
for a device with 10% fabrication error appearing in the form
of stiffness nonidealities and subjected to further 1% in-run
perturbations are presented.

Index Terms—Error suppression, microelectromechanical sys-
tems (MEMS), rate integrating gyroscopes, smart MEMS.

I. INTRODUCTION

A S MICROELECTROMECHANICAL systems (MEMS)
inertial sensors have begun to proliferate more into rate

and tactical grade application markets [1], the current demand
is for inertial sensors with higher precision and long term per-
formance. In its current maturity, fabrication technologies fall
below the tolerancing required for these demands, requiring ad-
ditional error suppression capabilities to achieve design goals.
Currently, in order to operate with the highest precision, vi-
bratory gyroscopes typically include active feedback control to
compensate for fabrication imperfections [2]–[4]. However, as
it will be illustrated in this paper, when imperfections are large
compared to the measured Coriolis force, compensation cannot
be achieved with a purely feedback control without interfering
with the Coriolis measurements. These interferences cause scale
factor and drift errors in the gyroscope, resulting in degraded
performance. In these cases, both post processing such as laser
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trimming [5], ion beam milling [6], or selective material depo-
sition [7] and feedback control are required.

The demand for improved performance has also given rise
to a new paradigm of “smart” devices [9] with enhanced capa-
bilities, such as active structural compensation, self-calibration,
and signal processing integrated on the same chip. Under this
new paradigm, we present an alternative to potentially costly
and time consuming post processing of each individual device
by implementation of a dual stage architecture (Fig. 1) that uti-
lizes both self-calibrative capabilities for elimination of large
structural imperfections and feedback control for elimination
of smaller in-run perturbations. A gyroscope using this archi-
tecture would be fabricated with the self-calibration capabili-
ties built onto the same chip to enable in situ system identi-
fication, such as stiffness and damping parameters. From the
results of the self-calibration, the device would be capable of
electronically “trimming” the large imperfections in the form a
feedforward control with gains based off the anisoelasticity pa-
rameters. The feedforward control would work in tandem with
a feedback control which would compensate for small perturba-
tions arising during the normal operation of the device.

A prototype rate integrating gyroscope [8] (Fig. 2) is used as
an illustrative model to demonstrate the dual stage architecture
principles. Section II of the paper describes the fundamental dy-
namical principles of single mass vibratory rate integrating gy-
roscopes. In Section III, we present the effect of anisoelasticity
on gyroscope performance and the design of a purely feedback
type of control architecture. We show that when a device with
large structural imperfections uses a purely feedback control,
this degrades the device performance. Section IV details the
calibration algorithm used to identify anisoelasticity and Sec-
tion V describes the feedforward control implementation real-
ized using electrostatic parallel plates. Concluding remarks are
in Section VI.

II. GYROSCOPEDYNAMICS

A single mass vibratory rate integrating gyroscope can be
modeled as a lumped mass-spring system operating in its first
two fundamental in-plane modes [Fig. 3(a)]. The lumped mass-
spring dynamics of an ideal system are expressed in the rotating
coordinate frame ( ) by [10]

(1)

where and are deflections along the and axis, respec-
tively, is the natural frequency, and is the input angular
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Fig. 1. Smart MEMS gyroscope would include self-calibration capabilities built on-chip for detection and compensation of deterministic perturbations.

Fig. 2. Studied rate integrating gyroscope [8] consists of a freely vibrating
proof mass attached to a concentric six-ring suspension. Stationary electrodes
interwoven throughout the mass sustain motion and allow measurement of the
Coriolis-induced precession angle. The precession angle is proportional to the
angle of rotation of the device.

velocity. In a nonrotating system ( 0), the solution is an el-
lipse of semi-major axis length, semi-minor axis length, and
oriented at an angle from the - axes [Fig. 3(b)]. A con-
venient way of expressing the trajectory of the system is using
these elliptical “orbital” variables [11] (, , and ) which are
common in orbital and celestial mechanics. If the ellipse is ori-
ented with the - axes, the solution can be expressed by

(2)

where defines the initial “orbital angle” , designating the
starting point of the mass on the ellipse. Angleaccounts for

the orientation of the ellipse, giving the complete generalized
elliptical equations as

(3)

where

Based off the position and velocity, the orientation angle can be
instantly calculated by

(4)

While and are changing very quickly over one period of
oscillation ( vibrations per second), the orbital param-
eters , , and remain nearly constant over one period. Thus,
averaging techniques may be implemented to approximate the
long term behavior of the slowly varying orbital parameters.
This technique is useful in evaluating the effect of perturba-
tions on the gyroscopic system [12]. In the interest of space,
a terse background is presented, a more general explanation of
this technique can be found in [13] and in the scope of gyro-
scopic systems in [11] and [14]. The initial dynamic system in
(1) can be presented in state form as

(5)

where and are small perturbations such
as the Coriolis force, anisoelasticity, and damping. The homo-
geneous solution when 0 is

(6)
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(a)

(b)

Fig. 3. (a) Gyroscope is modeled as a two-degree-of-freedom lumped
mass-spring system.fi; j; kg is the inertial coordinate system andfX;Y;Zg
is the coordinate system attached to the rotating device. (b) In the absence
of rotation, the mass trajectory is an ellipse with semi-major axis lengtha,
semi-minor axisb, inclination angle�, and orbital angle
.

where is an array of initial condition deter-
mined constants. To solve for the particular solution, we use
variation of parameters, where . Differentiating (6)
gives

Using the fact that and substituting back into (5) gives

Time averaging over one period of oscillationyields

Fig. 4. Anisoelasticities are an unavoidable byproduct of fabrication due to
tolerancing restrictions of optical lithography, deposition, and chemical etching.
In the gyroscope, one manifestation of this is nonconsistent geometry in the
concentric ring suspension members.

If the only perturbations are the Coriolis force, then this process
leads to the orbital state equations given as [11]

(7)

Thus, we see that when the device is rotated at a constant ve-
locity , the vibration pattern will precess with the same angular
velocity, but in the opposite direction with respect to a viewer in
the moving frame. Assuming the oscillation pattern initially co-
incides with the - coordinate system ( 0), the inclination
of the ellipse , which can be found at any given time by (4), is
exactly equal to the negative angle of rotation of the device

(8)

A device operating on these principles mechanically integrates
any input angular rate and an output angular displacement can
be resolved without integrating any electronic signals. An im-
portant property is that even if varies in time, (8) is still valid.
Since (8) is twice differentiable, it can be observed that the an-
gular acceleration of the vibration pattern precession is equal
to the negative angular acceleration of the device. Thus, the cal-
culated precession angle is invariant to changes in the angular
rate. This important property has also been observed in vibrating
shells [15].

III. A NISOELASTICITY

Anisoelasticities are an unavoidable byproduct of fabrication
due to tolerancing restrictions of optical lithography, deposition,
and chemical etching (Fig. 4). Anisoelasticities disrupt sym-
metry of the suspension, causing frequency mismatch and mode
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coupling. Assuming negligible nonlinear effects, the equations
of motion with these stiffness nonidealities become

(9)

where is the lumped mass approximation for the gyroscope
and , , , and are the nonideal stiffness terms (due
to energy conservation, ). By the properties of ma-
trices, the stiffness terms can be expressed as the sum of a diag-
onal, rotation, and skew-symmetric matrix

(10)

Here, if the stiffness matrix is symmetric, is naturally zero.
Another convenient way of expressing anisoelasticity is in terms
of the principal stiffness values and and the angular
mismatch angle of the principal axes of elasticity with the

- coordinate system (Fig. 5), whereand correspond to
the intended reference frame of the gyroscope (defined by the
layout of the device). In these terms, the stiffness nonidealities
are written as [12]

(11)

where is average of the principal axes stiffness values,
, and is the mismatch between the principal axes

stiffness values, . In the presence of small
anisoelasticities, the long term effect on the elliptical state equa-
tions can be approximated by [11]

(12)

We see that anisoelasticity interferes with the precession angle
while the device is driven with ellipticity ( 0). However, by

running the device with as small ellipticity as possible ( 0),
the effects of anisoelasticity on the precession will be elimi-
nated. Based on this fact, the ideal gyroscope should be run with
as close to a linear oscillation pattern as possible [Fig. 6(a)]. Fur-
ther, by choosing a control effort with the same topology as the
skew symmetric matrix ( 0), the ellipticity can be driven to
zero without interfering with the precession pattern. This is the
basis of a feedback control system for structural error suppres-
sion. An appropriate feedback control which will compensate

Fig. 5. In the ideal gyroscope, the principal axes of elasticity have equal
stiffness (k ) and coincide with theX-Y coordinate system, whereX andY
correspond to the intended reference frame of the gyroscope (defined by the
layout of the device). In the presence of imperfections, there is a mismatch in
the principal stiffness values2h = (K �K ) and an angular mismatch of
the principal axes from theX-Y coordinate system by an angle�.

for anisoelasticity while not interfering with the precession is
of the form [10]

(13)

where is a constant gain, is a unity gain 2 2 skew sym-
metric matrix, and is angular momentum defined as

(14)

The underlying assumptions for this control is that anisoelas-
ticity is sufficiently small [e.g., 10 and corresponds
to 1% of the ideal stiffness, Fig. 6(b)]. For larger errors [e.g.,

10 and corresponds to 5% of the ideal stiffness,
Fig. 6(c)], the controller, while compensating for the errors,
also interferes with the measured precession angle (demon-
strated in Section V). One fabricated prototype gyroscope
(Fig. 7) shows much larger errors ( 45 and corresponds
to 72% of the ideal stiffness) and while this is an extreme
example and can vary from run to run and device to device,
it illustrates that some level of structural imperfections will
always be present. Thus, it is necessary to “trim” the anisoe-
lasticites to a level where a feedback control can provide
compensation. Besides post processing, this can be accom-
plished electronically through the use of a feedforward type
control architecture where the control gains are set based on
the anisoelasticity parameters.

IV. I DENTIFICATION OF ERRORS

The first step in implementing the system for electronic
“trimming” of the imperfections is to develop an algorithm
used to determine the structural imperfections as part of a
self-calibration diagnostic test. Previous work on system identi-
fication has demonstrated a systematic approach to identifying
anisoelasticity of a torsional “rocking” MEMS rate gyroscope
using model synthesis and Markov parameters [16]. However,
in linear mass gyroscopes, there are certain characteristics
of dynamic motion that allow for a simpler algorithm for
identifying anisoelasticities. Here, we present this algorithm
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(a)

(b)

(c)

Fig. 6. (a) In the presence of an input angular rotation, the line of oscillation
of an ideal gyroscope would be observed to precess by an angle� with
respect to the rotating coordinate system. (b) With small anisoelasticities, the
line of oscillation is disrupted as it precesses. These anisoelasticities enter
into the equations for the measured precession angle, causing degradation of
performance. (c) Large anisoelasticities are even more disruptive, completely
eliminating precession.

developed for identifying errors based off the dynamic response
of the device.

(a)

(b)

Fig. 7. (a) Prototype surface machined rate integrating gyroscope was fabri-
cated using JDS Uniphase’s MUMPS process. (b) In the prototype gyroscope,
the stiffness along the four axes is estimated by observing the natural frequency
along each direction and knowing the ideal mass of the system. The plot of
stiffness magnitude along the four directions shows large mismatches between
the principal axis stiffnessesK andK (K �K =K +K = 72%) and
coupling (rotation of the stiffness axes by angle� = 45).

A. Algorithm

Substituting (10) and (11) into (9) and solving forand
assuming no angular rotation ( ), no damping, and an
initial deflection of and , yields

(15)
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(a)

(b)

Fig. 8. (a) In the absence of damping, the trajectory of the gyroscope will form
into elliptical type Lissajous figures. These figures will be bound by a rectangle
oriented at an angle�. PCA is used to determine the principal axes of elasticity,
designated as�X and �Y . (b) The Fourier transform of thex component of the
data reveals two peaks due to off diagonal coupling of the stiffness matrix. From
this plot, theh parameter of the system can be extracted as2h = m (! � ! )
where! and! correspond to the frequencies of the maximum and second
maximum peaks, respectively.

We see that each position is comprised of the summation of two
different sinusoidal functions due to the stiffness coupling. A
plot of the time response of the system is a family of Lissajous
figures [Fig. 8(a)]. Over time, it can be seen that the Lissajous
figures will have trajectories bounded by a rectangle whose size
is defined by and which is oriented at the anglefrom the
coordinate axis. To determine the orientation of the principal
axes, we employ the statistical method of principal component
analysis (PCA).

Here, we will discuss the applications of PCA as it pertains
to this study; a more general explanation can be found in [17].
In our case, we have two variables of interest, theposition and

position. Now consider a 2 1 vector . We will
assume that and have zero mean (centered about the origin)

and that we have experimentally acquired covariances between
and . A covariance matrix can be expressed by

(16)

where and are the variances ofand and the covariance
between and is given by

(17)

with the index of summation going over the entire sample size
. The covariance matrix is a numerical measure of the coupling

between variables and in the case whenis diagonal, the vectors
of are uncorrelated, i.e., theposition has no influence on the

position. Notice, when there is coupling through the stiffness
matrix between the and position, the covariance matrix will
also have coupling. Thus, a transformation that diagonalizes the
covariance matrix will also diagonalize the stiffness matrix. We
now introduce a coordinate transformation where
is a constant matrix of transformation. It can be shown that there
exists such an orthogonal transformationthat the covariance
matrix of this new coordinate system is [17]

(18)

We will assume that the transformation is a unity gain rota-
tion and so . With this assumption, we see that by
choosing the columns of to be the eigenvectors ( and )
of the covariance matrix, we will achieve a diagonal form, thus
the eigenvectors designate the basis vectors for the uncoupled
space. Since is Grammian, we are guaranteed of that eigen-
vectors are orthogonal. From (15), we can see that a rotation
transformation of the form

(19)

will uncouple the dynamic system to the uncorrelated principal
axis coordinate system. It is necessary that this transformation
must be equivalent to and so one expression for the eigen-
vectors representing the principal axes is [Fig. 8(a)]

(20)

We can then directly calculate the anglefrom the second
eigenvector

(21)

where and are the and components of the second
eigenvector, respectively.

Based off the dynamic system in (15), if we restrict the initial
conditions to only an deflection ( ), then we are guar-
anteed of the system oscillating within a rectangle oriented in
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the boundary . Taking a Fourier transform of
(15) while considering only the position yields

(22)

From (22), assuming the initialdeflection is zero, the ratio of
the amplitudes of the two frequency components are

(23)

In this case, the highest peak in the frequency plot corresponds
to the term and the second highest peak corresponds to the
term [Fig. 8(b)]. Parameterand the ideal isotropic stiffness
are calculated as and ,
respectively. If , then .

At this point, the algorithm for determining and is de-
pendent on differentiating the two peaks in thefrequency do-
main. As the errors, and hence the peak separation, tend to grow
smaller, it becomes impossible to distinguish the two peaks and
any numerical peak finding algorithm may result in erroneous
results. A more accurate method for determiningand re-
quires the calculated from the PCA analysis. Using the trans-
formation from (19), the equations in the transformed principal
coordinate space are

(24)

Thus, if we transform our data in this way and then take the
Fourier transform, we see that there will be one peak forand

at frequencies and , respectively. These frequencies
are

(25)

Then, and are calculated simply as
and , respectively. This result makes it
easier to identify smaller errors since it is only necessary to iden-
tify the largest peak in each frequency spectrum rather than the
largest two.

The benefits of this algorithm is since the PCA and Fourier
transforms take advantage of all the data, it is not necessary to
have precise deflection information. This is especially advanta-
geous in systems where small deflections are difficult to resolve
due to noise in the sensing electronics. One of the shortcomings
of this algorithm is that systems with high damping reduce the
amount of data points, resulting in erroneous results. A solution
to highly damped systems is vacuum packaging of the device
and also to employ an energy compensating controller.

Ambiguity of the Algorithm:In our derivation of the angle
from (20), we initially neglected the fact that the eigenvectors
are interchangeable in the transformation matrix. Thus, another
possible rotation angle is

(26)

where is the angle calculated if we were to use the first eigen-
vector rather than the second. Here,is related to the calcu-
lated from (21) by . Since the output
from the PCA analysis is numerical values for the eigenvectors,
it is impossible to tell if the output PCA angle is eitheror

. However, we will show that even with this
ambiguity in the angle, we will still arrive at an equivalent so-
lution.

From (23), if we make the substitution
, then the equation becomes

(27)

We see that the conditions are changed and nowcorresponds
to the first maximum peak and corresponds to the second
maximum peak. Now the algorithm will calculate rather
than . If we substitute the two angle andcombinations of
( ) and ( , ) into (11), we will arrive at
equivalent solutions. Thus, as long as the guess foris between

and , the algorithm will correctly identify the struc-
tural nonidealities whether the initial guess forwas correct or
if it was actually .

B. Energy Compensating Controller

In reality, viscous damping will eventually deplete the energy
of the system, resulting in a finite number of cycles from which
to obtain data. In relatively high quality factor systems (
100), there is sufficient energy to obtain enough data before the
oscillation pattern dies out. However, in cases of low quality
systems ( 100), there are not enough cycles to obtain an ac-
curate calculation of the anisoelasticities. For example, such
values are indicative of operating microstructures in an ambient
atmosphere [18]. In these cases, a controller to compensate for
energy losses is required. In the angular gyroscope, a controller
of the form [10]

(28)

is implemented into (9) that guarantees to maintain the energy of
the system without interfering with the identification of anisoe-
lasticities. Here, is a constant gain, and are the velocities
along the and directions, and is the change in system
energy given as

(29)

where denotes nominal energy of the system normalized
with respect to the effective mass. In using the controller, we
have assumed isotropic damping with no coupling. This con-
troller is based on small parameter variations [14] and in order
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(a)

(b)

Fig. 9. With the implementation of an energy compensating controller, the systems tends toward the principal axis with the lowest stiffness. In both of these cases,
� is the same, but the mismatch in the principal axis stiffness values is different: (a)h > 0 and (b)h < 0.

for the controller not to interfere with the measured parameters,
the gain must be sufficiently small.

With the implementation of this controller, the oscillation of
the system tends to propagate toward the principal axis with the
smallest stiffness (Fig. 9). We will assume that this is theaxis

(see Fig. 4), which is misaligned from the-axis by the angle
and is guaranteed of being oriented in the range of

. Now, we consider the dynamics in the transformed prin-
cipal axis coordinate system from (24). Taking the Fourier trans-
form of and yields one peak for each at frequenciesand
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Fig. 10. We use the inherent nonlinearity of the parallel plate actuators along
thex andy directions in order to tune out the nonideal stiffness elements.

, respectively. From (25), is given as
and is calculated by . The difference
between this and the algorithm of the previous section is that we
are assuming that is always the axis with the smallest stiff-
ness. Thus, is always less than , so is limited to being
always less than zero. However, with the new limits offrom

and , we have compensated for this restriction on
and the algorithms will still correctly calculate the stiffness non-
idealities when substituting into (11).

The advantages of this methodology are the same as the pre-
vious algorithm in Section IV–A with the addition of energy
compensation. As a result, systems with lowcan still be an-
alyzed to determine the structural anisoelasticities. In addition,
no initial deflection is required and the controller will tend to
drive the system to a predetermined energy level. The caveat to
this method is that the chosen gain of the energy compensation
controller must be sufficiently small to avoid interfering with
the measurement of the anisoelasticity.

V. DUAL STAGE ELECTROSTATICCONTROL

Having obtained the anisoelasticity parameters from the al-
gorithm of the previous section, we now demonstrate how this
is applied to a feedforward type architecture using electrostatic
nonlinear parallel plates.

A. Electrostatic “Trimming”

Two different physical mechanisms have been reported in
MEMS for active frequency tuning: thermal compensation [19]
and electrostatic tuning [2]. Since the angular gyroscope uti-
lizes parallel plate electrodes for drive and sense, we focus on
using the inherent nonlinearity of the electrostatic forces to tune
out the nonideal components of the stiffness matrix (Fig. 10).
The nonideal dynamics of the gyroscope, including the electro-
statics, can be expressed by

(30)

where and are electrostatic forces expressed as

Here, , , is the number of control elec-
trode sets (e.g., in Fig. 10, 1), is the structural thick-
ness, is the parallel plate gap, is the total plate overlap
( ), and is the permittivity of a vacuum. For
structural compensation, we use the following control voltages:

where is a constant bias voltage, is a constant feedfor-
ward misalignment control voltage, and are constant
stiffness mismatch control voltages, and and are state
dependent feedback control voltages. We determine the volt-
ages for the feedforward control by first assuming zero feed-
back ( 0). The nonlinearity of the parallel plates
leads to a nonzero first derivative of the electrostatic force with
respect to position, which can be interpreted as an electrostatic
spring [2], contributing to the overall system stiffness. Addi-
tionally, the net forces and moments are zero, so the stiffness
can be tuned without deflecting the structure. In order to find a
closed-form approximation for the control voltages, we assume
small deflections and combine the ideal (), nonideal ( ),
and electrostatic ( ) matrix contributions together to form the
overall stiffness realization

(31)

With any arbitrary dc voltage, there exist different sets of control
voltages , , and to cancel the off-diagonal terms of the
stiffness matrix and set the on-diagonal stiffness terms equal to
each other ( ). Setting the off-diagonal terms equal to zero
leads to the following constraint on the the misalignment control
voltage :

(32)
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(a) (b) (c)

(d) (e) (f)

Fig. 11. (a) In the absence of imperfections, the line of oscillation precesses normally by angle� in the presence of an input angular rotation. (b) Large
anisoelasticities due to fabrication imperfections interfere with the ideal operation of the device, eliminating the precession. (c) The feedbackcontrol used to
compensate for these large imperfections also interferes with the precession pattern, reducing the precession angle from the ideal angle� to 
. (d) By using a
feedforward control, large structural anisoelasticities can be eliminated while maintaining the ideal precession of the device. (e) While the feedforward control
can compensate for constant structural imperfections, it is invariant to small perturbation that arise during normal operation of the device (e.g.,due to thermal
fluctuations), which disrupt the line of oscillation. (f) A dual-stage feedforward/feedback architecture can compensate for both structural imperfections and small
perturbations without interfering with the precession.

There are several ways of choosing and , which are con-
strained by the fact that the on-diagonal terms must be iden-
tical and that voltage values must be real. One way is to set the
voltage which influences the smallest of the on-diagonal stiff-
ness terms equal to zero and use the second voltage to tune the
larger stiffness term to match. This gives the following set of
control voltages for :

(33)

and for

(34)

Since the on-diagonal electrostatic stiffness term is always neg-
ative, the tuned on-diagonal stiffness value will always
be less than the original ideal stiffness ( ). To take
this into account, a good strategy is to design the gyroscope sus-
pension to be stiffer than desired. A theoretical limit is reached
when these stiffness terms become negative ( ) and
the system becomes unstable. Thus, an optimal dc bias voltage is
one that maximizes the trace of the stiffness matrix subject to the
constraint that , , and must satisfy (32) and (33)/(34).
A closed form solution is not readily available for this voltage,

and must be solved for numerically. Even with an optimal choice
for voltages, invariably a practical limit is reached where errors
cannot be compensated for without resulting in system insta-
bility. This occurs when the compensated on-diagonal terms are
less than or equal to zero.

B. Feedback Control

While the feedforward control can compensate for large con-
stant structural imperfections, it is also necessary to implement
a feedback control to correct for small fluctuations that arise
during the normal operation of the device. For the feedback con-
trol, we implement state dependent control voltagesand

(35)

where and are the control forces based off the skew
symmetric control architecture given in (13). This architecture
is guaranteed of compensating for small perturbations without
interfering with the Coriolis induced precession. With the ad-
dition of the feedforward control voltages, the complete dual
stage architecture is capable of “trimming” large structural im-
perfections while compensating for small perturbations. Com-
puter simulations are presented to demonstrate the effectiveness
of this control strategy.
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C. Numerical Simulation

All simulation parameters are based off a realistic implemen-
tation of a surface micromachined rate integrating gyroscope
(Fig. 7). The mass of the device is 4.10 kg and the
isotropic stiffness is 1.55 N/m, giving a natural frequency
of 9.8 kHz for the system. The total parallel plate overlapis
1200 , the parallel plate gap is 2 m, and the permittivity

is 8.854 F/m.The simulations based off the nonlinear
equations of motion (30) are run for 10 ms, assuming an ini-
tial deflection of .1 microns to satisfy the small deflection as-
sumption. For a chosen set of large structural anisoelasticities
( 10%, 10 ), an optimal dc bias voltage which max-
imizes the trace of the stiffness matrix is calculated to be 4.20
V, which will remain constant for each simulation presented
here. Under this bias voltage and in the absence of imperfections
( 0, 0), the line of oscillation precesses by an angle

[Fig. 11(a)]. With large structural anisoelasticities (
10%, 10 ) and without compensation (

0), the system oscillates about the principal axes of
elasticity and there is no precession [Fig. 11(b)]. A purely feed-
back control using control voltages and as calculated from
(35) is then attempted, which eliminates the quadrature error,
but also interferes with the precession angle [Fig. 11(c)]. Next,
appropriate compensating feedforward control voltages, ,
and are chosen based off the assumption thatand are
well known. The purely feedforward control ( 0) is
used to eliminate the quadrature error, which restores ideal pre-
cession of the line of oscillation [Fig. 11(d)]. However, based
on simulation of the PCA and Fourier anisoelasticity finding al-
gorithms from Section III, the anisoelasticity parameters are ac-
tually calculated to be 10.23%, 10.16.
To realize the effects of this error, as well as other small pertur-
bations that could arise during normal operation, we add small
anisoelasticities ( 1%) to the system that cannot be
compensated for by the feedforward control. This results in de-
struction of the precession pattern [Fig. 11(e)]. The state de-
pendent voltages are then included to compensate for these per-
turbations while still allowing the undisturbed precession pat-
tern [Fig. 11(f), note that the precession angle is the same as
Fig. 11(a) and Fig. 11(f)].

VI. CONCLUSION

In this paper, we have demonstrated the necessity for a dual
stage control architecture comprising feedforward and feedback
control systems in order to compensate for fabrication imper-
fections and in-operation perturbations prevalent in microma-
chined gyroscopes. We have shown how this control can be re-
alized in a gyroscope using electrostatic parallel plate actuators.
The successful application of feedforward control was shown in
a device with large structural imperfections of 10% of the ideal
stiffness where a purely feedback control would interfere with
the performance of the device. Additionally, the feedback por-
tion of the control was shown to compensate for a further 1%
error to the stiffness as a result of small perturbations arising
during normal operation. This type of compensation is limited
by the stability of the device, as large voltages will result in an
unstable system. In the case of devices with imperfections be-
yond this limit, it is necessary to employ alternative methods

such as thermal tuning or postprocessing. Future work includes
study of additional capabilities for identification and suppres-
sion of damping and experimental demonstration of the dual
stage architecture using a DSP implementation.
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