
Incorporating Body Dynamics into the Sensor-Based Motion Planning
Paradigm. The Maximum Turn Strategy.*

Vladimir J. Lumelsky and Andrei M. Shkel
University of Wisconsin-Madison
Madison, Wisconsin 53706, USA

Abstract-The existing approaches to sensor-based
motion planning tend to deal solely with kinematic
and geometric issues, and ignore the system dynam-
ics. This work attempts to incorporate body dynam-
ics into the paradigm of sensor-based motion planning.
We consider the case of a mass point robot operating
in a planar environment with unknown arbitrary sta-
tionary obstacles. Given the constraints on the robot’s
dynamics, sensing, and control means, conditions are
formulated for generating trajectories which guarantee
convergence and the robot’s safety at all times. The
approach calls for continuous computation and is fast
enough for real time implementation. The robot plans
its motion based on its velocity, control means, and
sensing information about the surrounding obstacles,
and such that in case of a sudden potential collision it
can always resort to a safe emergency stopping path.
Simulated examples demonstrate the algorithm’s per-
formance.

I. INTRODUCTION

This work studies the effect of body dynamics on robot
sensor-based motion planning, with the goal of designing
provably correct algorithms for motion planning in an un-
certain environment. We consider a mobile robot operating
in a planar environment filled with unknown arbitrary sta-
tionary obstacles. Planning is done in small steps (say, 30
or 50 times per second), resulting in a continuous motion.
The robot is equipped with sensors, such as vision or range
finders, which allow it to detect and measure distances to
surrounding objects within i ts sensing range (“radius of vi-
sion”). This range covers a number of robot steps - say,
5 or 50 or 1000 - so that normally the robot would see an
obstacle far enough to plan a collision-avoiding maneuver.

Besides the usual planning problems of “where to go” and
how to provide convergence in view of incomplete informa-
tion, an additional, dynamic component of planning appears

*This work is supported in part by the US Sea Grant R/NI-PO
and DOE (Sandia Labs) Grant 18-4379C.

IEEE lnternatlonal Conference
on Robotics and Automation
0-7803- 1965-6/95 $4.00 01 995 IEEE

- 1637 -

because of the robot‘s mass and velocity. A step reason-
able from the standpoint of reaching the target position -
for example, a sharp turn - may not be physically realiz-
able because of the robot’s inertia (as a t point P , Fig. 1).
The existing strategies for sensor-based planning usually deal
solely with the system kinematics and geometry and ignore
i ts dynamic properties.

Most approaches to automatic motion planning adhere
to one of two paradigms which differ in the assumptions
about the information available for planning. In the first
paradigm, called motion planning with complete informa-
tion (or the Piano Mover’s problem), perfect information
about the robot and the obstacles is assumed, their shapes
are presented algebraically, and the motion planning is a one-
time off-line operation (see, e.g., [l, 21). Dynamics and
control constraints can be incorporated into this model as
well [3], for example by introducing a two-stage planning
process, time-optimal trajectories [4, 51.

This paper is concerned with the second paradigm, called
motion planning wath incomplete information, or sensor-
based motion planning. In this model, the objects in the
environment can be of arbitrary shape, and the input infor-
mation is typically of local character, such as from a range
finder or a vision sensor [6]. By making use of the notion of
sensor feedback, this paradigm naturally fits the methodol-
ogy of control theory, in particular techniques for continuous
dynamic on-line processes.

Techniques that ignore the dynamic issues can be called
kinematic, as opposed to the dynamic techniques which take
into account the body dynamics. The existing kinematic
techniques can be divided into two groups - those for holo-
nomic systems and for nonholonomic systems [7]. A’num-
ber of kinematic strategies for holonomic systems originate in
maze-searching algorithms [6, 81; when applicable, they are
usually fast, can be used for real time control, and guarantee
convergence: the obstacles can be of arbitrary shape. Below
we make of use of such algorithms.

To design a prova bly-correct dynamic algorithm for
sensor-based motion planning, one needs a single control
mechanism - separating it into stages is likely to destroy

convergence. Convergence has two faces - globally it’s a
guarantee of finding a path to the target if one exists, and
locally it’s a guarantee of collision avoidance in view of the
robot’s inertia. The former can be borrowed from kinematic
algorithms; the latter requires an explicit consideration of
dynamics.

Imagine a runner who starts turning the corner and sud-
denly sees a heavy large object right on the intended path.
Clearly, some quick replanning will take place, almost simul-
taneous with further sensing and motion execution. The run-
ner’s velocity may temporarily decrease and the path will
smoothly divert from the object. Or, he might “brake” to
a halt along the initial path, and then start a detour path.
Note that sensing, planning, and movement are taking place
simultaneously and continuously. Unless a right relationship
is maintained between the velocity a t the time of noticing
the object, the distance t o it, and the runner’s mass, col-
lision may occur. For a bigger mass, for example, better
(further) sensing is needed to maintain the same velocity.
Also, if obstacles can appear a t any time and distance, and
if higher velocities are essential, the control algorithm must
provide an “insurance” option of a safe stopping a t all times.

Although the robot has complete knowledge of the obsta-
cles within i ts sensing range, because of the computational
and convergence problems it would be difficult to address the
problem as a sequence of smaller problems with complete in-
formation. Our step-by-step calculation algorithm thus op-
erates as a single procedure which (a) places each step on
a globally converging collision-free path, while (b) satisfying
the robot dynamics constraints.

Assume that the sensing range (“radius of vision”) is T, ,

Fig. 1. The general strategy is as follows: a t the moment
(step) i. the kinematic algorithm identifies an intermediate
target point, Ti, which lies on a convergent path and, for
local path optimization, is far enough from the robot - nor-
mally a t the boundary of the sensing range. Then, a step is
made in the direction of Ti, and the process repeats. Because
of the dynamics, this step toward Ti may not be possible and
needs t o be modified.

As mentioned above, sometimes stopping may be the only
way to avoid collision, and an assurance is required that at
any moment the robot could execute a last resort stopping
path if needed. Since no information is available beyond the
sensing range, the whole stopping path, as computed a t a
given moment, must lie within that sensing area. Further,
since part of the sensing range may be invisible because of
obstacles, the stopping path must lie in the visible part of
the sensing range. Similarly, if the intermediate target Ti
lies on the boundary of the sensing range, the robot needs a
guarantee of stopping a t Ti, even if a t the moment it does
not intend to do so. Thus, each step is to be planned as
the first step of a trajectory which, given the initial position,
velocity and control constraints, would bring the robot to a

Fig. 1. Example of performance of the (kinematic) VisBug
algorithm.

halt a t Ti.
In case of a curved path segment, the control system will

attempt a reasonably fast convergence to Ti by trying t o align
the direction of the robot’s motion with the direction toward
T, as soon as possible. That is, if the angle between the
current velocity vector and the direction toward Ti is larger
than the maximum turn the robot can make in one step, the
robot will keep turning in the maximum way possible until the
directions align (hence the name Mwimzlm Turn Strategy).
Once a step is physically executed, new sensing information
appears and the process repeats. The procedure also covers
a special case where the intermediate target goes out of the
robot’s sight because of the robot’s inertia or because of
occluding obstacles.

The model assumed is introduced in Section I t , followed
by the sketch of the suggested approach in Sec. Ill. Analysis
of the system dynamics appears in Sec. IV; the algorithm
and its convergence properties are discussed in Sec. V, and
simulated examples of the algorithm performance in Sec. VI.
Some details and proofs are omitted due to space limitations.

11. THE MODEL

The environment (the scene) is a plane; it may include a
locally finite number of static obstacles. Each obstacle is
bounded by a simple closed curve of arbitrary shape and of
finite length, such that a straight line will cross it only in a
finite number of points. Obstacles do not touch each other
(if they do, they are considered one obstacle). Note that the
model does not require the number of obstacles be finite.

The robot is a mass point, of mass m. Its sensors allow
it , a t its current location Ci, to detect any obstacles and the
distance to them within i ts sensing range - a disc of radius
r, (“radius of vision”) centered at Ci. At moment ti, the
robot’s input information includes its current velocity vector

- 1638 -

Vi, coordinates of Ci and of the target point T it is trying
to reach, and perhaps of few other points of interest, such
as an intermediate target.

The task is t o move from point S (start) in the scene t o
point T (target), see Fig. 1. The robot’s means for mo-
tion control are two components of the acceleration vector
U = ;fi. = (p , q) , where m is the robot’s mass, and f is
the force applied. By taking, without loss of generality, mass
m = 1, we can refer to the componentsp and q as if they rep-
resent control forces, each within i ts fixed range lpl < p,,,,
141 5 qmaz; pmas,qmaz > 0. Force p controls the forward
(or backward when braking) motion; i t s positive direction co-
incides with the robot’s velocity vector V. Force q is perpen-
dicular to p forming a right pair of vectors, and is equivalent
to the steering control (rotation of vector V) , Fig. 2.

The M-line (Main line) is the straight line connecting
points S and T , and is the robot’s desired path. When,
while moving along the M-line, the robot senses on its way
an obstacle, this point on the obstacle boundary is called a
hit point, H . The corresponding M-line point “on the other
side” of the obstacle is a leave point, L .

The control of robot motion is done in steps i = 0,1,2,
Each step i takes the same time T = ti+l - ti = const; its
length thus depends on the robot’s velocity within the step.
Steps i and i + 1 start a t times ti and ti+l, respectively;
CO = S . We define two coordinate systems (follow Fig. 2):
(i) The world coordinate frame, (z,y), fixed a t point S.
(ii) The path coordinate frame, (t ,n), which describes the
motion of the mass point at any moment T E [ti, t i + l) within
the step i . Its origin is attached to the robot; axis t is aligned
with the current velocity vector V , axis n is normal to t.
Together with axis b, which is a cross product b = t x n,
the triple (t, n, b) forms the Frenet trihedron, with the plane
of t and n being the osculating plane.

111. THE APPROACH

The algorithm will be executed at each step of the robot’s
path, as a single operation. We take the convergence mecha-
nism of a kinematic sensor-based motion planning algorithm,
and add to it controls for handling dynamics. At any mo-
ment ti the robot will maintain an intermediate target point
Ti within its sensing range, usually on an obstacle boundary
or on the M-line. At its current position Ci, the robot will
plan and execute i ts next step in the direction Ti, then, at
Ci+l analyze new sensory information and perhaps define a
new intermediate target Ti+l, and so on. At times, the cur-
rent Ti may go out of the robot’s sight because of its inertia
or due to occluding obstacles. In such cases the robot will
be designate temporary intermediate targets and use them
until it can see point Ti again.

In principle, any maze-searching algorithm can be utilized
for the kinematic part, so long as it allows an extension t o
distant sensing. For the sake of specificity, we use here the

VisBug algorithm [6], which is based on these two steps (as
before, S and T are starting and target positions, T, the
radius of the sensing range, Fig. 1): (1) Walk from S toward
T along the M-line until, a t some point C , detect an obstacle
crossing the M-line, say a t point H ; go to Step 2. (2) Using
sensors, define the farthest visible intermediate target Ti on
the obstacle boundary; make a step toward Ti; iterate Step 2
until detect M-line; go to Step 1. In Fig. 1, note that while
trying to pass the obstacle from the left, a t point P the robot
will make a sharp turn.

Safety considerations due to dynamics appear in a number
of ways. Since no information about the obstacles is available
beyond distance T,, from the robot, guaranteeing collision-
free motion means assuring a t any moment a t least one “last
resort” path that would bring the robot to a halt within the
radius T , i f needed. If this rule is violated, a t the next step
new obstacles may appear in the sensing range, such that
collision will become imminent no matter what control is
used. This dictates a certain relation between the velocity
V, mass m, and controls U = (p , q): if the robot moves with
the maximum velocity, the stop point of the stopping path
must be no further that a t distance T,, from C , V = a.

In Fig. 1, when approaching point P, the robot will des-
ignate it as i ts next intermediate target Ti. For awhile Ti
will stay a t P because no other visible point on the obstacle
boundary appears until the robot arrives a t P. During this
time, unless a stopping path is possible a t any time, the robot
would have to plan t o stop a t P. Otherwise, it may arrive a t
P with a non-zero velocity, start turning around the corner,
and suddenly uncover an obstacle invisible so far, making a
collision unavoidable.

Convergence. Because of dynamics, the convergence
mechanism borrowed from a kinematic algorithm needs some
modification. For example, the robot’s inertia may cause it
to move so that the intermediate target Ti will become invis-
ible, either because it goes outside the sensing range r, (as
after point P, Fig. l), or due to occluding obstacles (Fig. 3),
and so the robot may lose it (and the path convergence with
it). The solution chosen is to keep the velocity high and, if
the intermediate target Ti does go out of sight, modify the
motion locally until Ti is found again.

Iv. DYNAMICS AND COLLISION AVOIDANCE

Consider a time sequence ut = { t o , t l , t z , ...}. Step i corre-
sponds to the interval [ti,ti+l). At moment ti the robot is
a t the position Ci, with the velocity vector V i . Within this
interval, based on the sensing data, the intermediate target
Ti (supplied by the VisBug procedure), and vector V i , the
control system calculates the values of control forces p and
q, applies them to the robot, and the robot executes step i,
finishing it a t point Cj+l at moment ti+l, with the velocity
vector Vi+l; then the process repeats.

- 1639 -

n . J'

't
s x

Fig. 2. The dynamic effects of the robot motion are pre-
sented with respect to the path coordinate f rame (t, n). Ob-
stacle detection analysis and path planning are done with
respect to the world f r a m e (z,y); its origin is in the starting
position S .

The following analysis consists of two parts. First, we
incorporate the control constraints into the mobile robot's
model, and develop the transformation from the moving path
coordinate frame, see Section II, to the world frame. Then,
the Maximum Turn Strategy i s described, the incremental
decision making mechanism which controls the computation
of forces p and q a t each step.

Transformation from path frame to world frame.
The remainder of this section refers to the time inter-
val [ti,ti+l), and so the index i can be dropped. De-
note (2 , ~) E R2 the position of the robot in the world
frame, and 6' the (slope) angle between the velocity vector
V = (Vz,V,) = (i , y) and z-axis of the world frame (see
Fig. 2). The planning process involves computation of the
controls U = (p , q) , which for every step defines the velocity
vector and eventually the path, x = (z,y), as a function of
time. The angle .!9 between vector V = (Vz,Vy) and x-axis
of the world frame is found as

* = { arctan(31, rt" vx 2 0
arc tan(^) + 7r, V, < 0

Given that the control forces p and q act along the t and n
directions, respectively, the equations of motion with respect
to the path frame are V = p, % = q/V. Since the control
forces are constant over time interval [ti, t i+l), within this
interval the solution for V (t) and O(t) becomes

V (t) = p t + VO,

P
\ ,

where 8' and V o are constants of integration and are equal to
the values of .!9(ti) and V(t i) , respectively. By parameterizing
the path by the value and direction of the velocity vector, the
path can be mapped onto the world frame (z,y) using the

following vector integral equation:

r(t) = .fi'" V t dt

Here r (t) = (x (t) , ~ (t)) , and t = (cos(O),sin(O)) i s a projec-
tion of unit vector along the V direction. After integrating
equation (2) , we obtain the set of solutions of the form:

x (t) = 2pcosO(t) + qsinB(t) V2(t) + A
4p2 + 42

V"t) + B (3)
qcosQ(t) - 2psinB(t)

4p2 + 4 2
Y (t) = -

where terms A and B are

vO2 (2 p cos(00) + q sin(*,))
4p2 4- q 2

vO2 (4 cos(eo) - 2 p sin(8o))
4p2 + q2

A = ~ 0 - 2

B = yo+

V (t) and Q(t) in equations (3), which are directly con-
trolled by the variables p and q , are given by equation (1).

In the general case, equations (3) describe a spiral curve.
Note two special cases: when q = 0 , p # 0, equations (3)
describe a straight line motion along the vector of velocity;
when p = 0 , q # 0, they produce a circle of radius % cen-
tered a t t he point (A , B) .

The Maximum Turn Strategy . We now turn to the
control law which guides the selection of forces p and q a t
each step i, for the time interval [t i , t i+ l) . To assure a rea-
sonably fast convergence to the intermediate target Ti, those
forces are chosen such as t o align the direction of the robot's
motion with that toward Ti as soon as possible. First, find a
solution among the controls (p , q) such tha t

V 2

where q = +qmaz if the intermediate target T; lies in the left
semiplane, and q = -qmaz if it lies in the right semiplane
with respect to the vector of velocity. That is, force p is
chosen so as t o keep the maximum velocity, and q is cho-
sen on the boundary to produce maximum turn in the right
direction.

If, on the other hand, no controls in the range (4) can
be chosen, this means that the maximum braking should be
applied and that the turning angle should be limited. Then
the controls are chosen from the set:

where the sign in front of qmaz i s chosen as above. Note
that the sets (4) and (5) always include a t least one safe
solution - due t o the algorithm's design, the straight-line
motion with maximum braking, (p , q) = (-p,,,, 0) is always
safe.

- 1640 -

V. THE ALGORITHM
The algorithm includes three procedures: the Main body an-
alyzes the path towards the intermediate target T,; Define
Next Step chooses the forces p and q; Find Lost Target deals
with the case when T, goes out of the robot’s sight. Also
used is a procedure called Compute T,, from the VisBug al-
gorithm [6] , for computing the next intermediate target T,+1
and analyzing the target reachability. Vector V, is the cur-
rent vector of velocity, T is the robot’s target.

Main Body: The procedure is executed at each step, and
makes use of two procedures, Define Next Step and Find
Lost Target (below). It includes the following steps:

0 Step 1: Move in the direction specified by Define Next
Step, while executing Compute T,. If T, is visible do: if
C, = T the procedure stops: else if T is unreachable the
procedure stops; else if C, = T, go to Step 2. Otherwise,
use Find Lost Target to make T, visible. Iterate Step 1.

0 Step 2: Make a step along vector Vi while executing
Compute Ti: if Ci = T the procedure stops; else if
the target is unreachable the procedure stops; else if
Ci # Ti go to Step 1.

Define Next Step: the steps below correspond to different
cases: Step 1 handles the motion along M-line and a simple
one-step turn; Step 2 handles more complex cases of turning:

0 Step 1: If vector Vi coincides with the direction toward
Ti, do: if Ti = T make a step toward T ; else make a
step toward Ti. Otherwise, do: if the directions of Vi+l
and (Ci, Ti) can be aligned within one step, choose this
step. Else go to Step 2.

0 Step 2: If a step with a maximum turn toward Ti and
maximum velocity is safe, choose it. Else, if a step with
maximum turn toward Ti and some braking is possible,
choose i t . Else, choose a step along Vi, with no turn
and maximum braking, p = -pmaz,p = 0.

Find Lost Target is executed when T, becomes invisible.
The last position C, where T, was visible is stored until T,
becomes visible again. After losing T,, the robot keeps mov-
ing ahead while defining temporary intermediate targets on
the visible part of the line segment (Cz,T,), and continuing
looking for Ti. If it finds Ti, it moves directly toward i t ,
Fig. 3a; otherwise, if the whole segment (C,,T,) becomes
invisible, the robot brakes to a stop and returns to C, etc.,
Fig. 3b. The procedure includes these steps:

0 Step 1: If segment (Ci,Ti) is visible, define on it and
move toward temporary intermediate targets T:, while
looking for Ti. If current position Cj = T , exit; else if
Ci lies in the segment (Ci,Ti), exit. Else go to Step 2.

(a)

Fig. 3 . In this example, because of the system inertia the
robot temporarily “loses” the intermediate target point T,,

0 Step 2: If segment (C,,Ti) is invisible, initiate a stop-
ping path and then go back to Ci; exit.

Convergence To prove convergence, we need to show
that (i) a t every step the algorithm guarantees collision-free
motion and (ii) a path to the target position Tw i l l be found if
one exists, or the nonreachability of T will be inferred in finite
time. Condition (i) can be shown by induction; condition
(ii) is assured by the VisBug mechanism [6]. The following
statements hold:

Claim 1 Under the Maximum Turn Strategy algorithm, as-
suming zero velocity at the start point, VS = 0 , at every
step of the path there exists at least one stopping path.

Claim 2 The Maximum Turn Strategy algorithm guarantees
con vergence.

____I_

VI. EXAMPLES
Fig. 4a-d illustrate the algorithm’s operation in simulated
examples. The robot’s mass m and controls p , q are the
same throughout. Thicker lines show paths generated by
the Maximum Turn Strategy Algorithm; thin lines show the
corresponding paths produced by the VisBug algorithm.

- 1641 -

Examples in Fig 4a,b correspond to the same radius of

robot suddenly uncovers a t a close distance when turning
around corner Note that in (b) the path becomes tighter,
the robot becomes more cautious A similar pair of examples
shown in Fig. 4c,d illustrates the effect of radius of vision in
(c) and (d), r, is twice that of (a) and (b)

I t is interesting to compare the time (the number of steps)
the motion took. In Fig. 4a-d thepaths take 221, 232, 193,
and 209 steps, respectively That is, here better sensing
(larger r v) results in shorter time to complete the task; more
crowded space requires longer time (though resulting perhaps

L
vision T , , in Fig 4b there are additional obstacles which the h

(a)

in :

PI

[31

[41

151

171

181

shorter paths).

REFERENCES
J. Schwartz and M. Sharir. On the “Piano Movers”
problem. II. General techniques for computing topologi-
cal properties of real algebraic manifolds. Advances in
Applied Mathematics, 4:298-351, 1983.

J. Canny. A new algebraic method for robot motion plan-
ning and real geometry. Proc. 28th IEEE Symposium on
Foundations of Computer Science, 1987. Los Angeles,
CA.

Z. Shiller and H.H. Lu. Computation of path constrained
time optimal motions along specified paths. ASME Jour-
nal of Dynamic Systems, Measurement and Control,
114(3) :34-40, 1992.

B. Donald and P. Xavier. A provably good approxima-
tion algorithm for optimal-time trajectory planning. Proc.
IEEE Intern. Conf. on Robotics and Automation, May
1989. Scottsdale, AZ.

Z. Shiller and S. Dubowsky. On computing the global
time optimal motions of robotic manipulators in the pres-
ence of obstacles. IEEE Trans. on Robotics and Au-
tomation, 7(6):785-797, 1991.

V. Lumelsky and T. Skewis. Incorporating range sens-
ing in the robot navigation function. IEEE Trans.
on Systems, Man, and Cybernetics, 20(5):1058-1069,
September 1990.

D.T. Greenwood. “Principles of Dynamics”. Prentice-
Hall, New York, 1965.

A. Sankaranarayanan and M. Vidyasagar. Path planning
for moving a point object amidst unknown obstacles in
a plane: A new algorithm and a general theory for algo-
rithm development. Proc. 29th IEEE Intern. Conf. on
Decision and Control, 1990. Honolulu, HI.

Fig. 4. Simulated examples of the algorithm’s performance.

- 1642

