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Abstract-The existing approaches to sensor-based 
motion planning tend to deal solely with kinematic 
and geometric issues, and ignore the system dynam- 
ics. This work attempts to incorporate body dynam- 
ics into the paradigm of sensor-based motion planning. 
We consider the case of a mass point robot operating 
in a planar environment with unknown arbitrary sta- 
tionary obstacles. Given the constraints on the robot’s 
dynamics, sensing, and control means, conditions are 
formulated for generating trajectories which guarantee 
convergence and the robot’s safety at all times. The 
approach calls for continuous computation and is fast 
enough for real time implementation. The robot plans 
its motion based on its velocity, control means, and 
sensing information about the surrounding obstacles, 
and such that in case of a sudden potential collision it 
can always resort to a safe emergency stopping path. 
Simulated examples demonstrate the algorithm’s per- 
formance. 

I. INTRODUCTION 

This work studies the effect of body dynamics on robot 
sensor-based motion planning, with the goal of designing 
provably correct algorithms for motion planning in an un- 
certain environment. We consider a mobile robot operating 
in a planar environment filled with unknown arbitrary sta- 
tionary obstacles. Planning is  done in small steps (say, 30 
or 50 times per second), resulting in a continuous motion. 
The robot is equipped with sensors, such as vision or range 
finders, which allow it to detect and measure distances to  
surrounding objects within i ts sensing range (“radius of vi- 
sion”). This range covers a number of robot steps - say, 
5 or 50 or 1000 - so that normally the robot would see an 
obstacle far enough to plan a collision-avoiding maneuver. 

Besides the usual planning problems of “where to go” and 
how to provide convergence in view of incomplete informa- 
tion, an additional, dynamic component of planning appears 
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because of the robot‘s mass and velocity. A step reason- 
able from the standpoint of reaching the target position - 
for example, a sharp turn - may not be physically realiz- 
able because of the robot’s inertia (as a t  point P ,  Fig. 1). 
The existing strategies for sensor-based planning usually deal 
solely with the system kinematics and geometry and ignore 
i ts dynamic properties. 

Most approaches to  automatic motion planning adhere 
to one of two paradigms which differ in the assumptions 
about the information available for planning. In the first 
paradigm, called motion planning with complete informa- 
tion (or the Piano Mover’s problem), perfect information 
about the robot and the obstacles is assumed, their shapes 
are presented algebraically, and the motion planning is a one- 
time off-line operation (see, e.g., [l, 21). Dynamics and 
control constraints can be incorporated into this model as 
well [3], for example by introducing a two-stage planning 
process, time-optimal trajectories [4, 51. 

This paper is concerned with the second paradigm, called 
motion planning wath incomplete information, or sensor- 
based motion planning. In this model, the objects in the 
environment can be of arbitrary shape, and the input infor- 
mation is typically of local character, such as from a range 
finder or a vision sensor [6].  By making use of the notion of 
sensor feedback, this paradigm naturally fits the methodol- 
ogy of control theory, in particular techniques for continuous 
dynamic on-line processes. 

Techniques that ignore the dynamic issues can be called 
kinematic, as opposed to  the dynamic techniques which take 
into account the body dynamics. The existing kinematic 
techniques can be divided into two groups - those for holo- 
nomic systems and for nonholonomic systems [7]. A’num- 
ber of kinematic strategies for holonomic systems originate in 
maze-searching algorithms [6, 81; when applicable, they are 
usually fast, can be used for real time control, and guarantee 
convergence: the obstacles can be of arbitrary shape. Below 
we make of use of such algorithms. 

To design a prova bly-correct dynamic algorithm for 
sensor-based motion planning, one needs a single control 
mechanism - separating it into stages is  likely to  destroy 



convergence. Convergence has two faces - globally it’s a 
guarantee of finding a path to  the target if one exists, and 
locally it’s a guarantee of collision avoidance in view of the 
robot’s inertia. The former can be borrowed from kinematic 
algorithms; the latter requires an explicit consideration of 
dynamics. 

Imagine a runner who starts turning the corner and sud- 
denly sees a heavy large object right on the intended path. 
Clearly, some quick replanning will take place, almost simul- 
taneous with further sensing and motion execution. The run- 
ner’s velocity may temporarily decrease and the path will 
smoothly divert from the object. Or, he might “brake” to  
a halt along the initial path, and then start  a detour path. 
Note that sensing, planning, and movement are taking place 
simultaneously and continuously. Unless a right relationship 
is maintained between the velocity a t  the time of noticing 
the object, the distance t o  it, and the runner’s mass, col- 
lision may occur. For a bigger mass, for example, better 
(further) sensing is needed to  maintain the same velocity. 
Also, if obstacles can appear a t  any time and distance, and 
if higher velocities are essential, the control algorithm must 
provide an “insurance” option of a safe stopping a t  all times. 

Although the robot has complete knowledge of the obsta- 
cles within i ts  sensing range, because of the computational 
and convergence problems it would be difficult to  address the 
problem as a sequence of smaller problems with complete in- 
formation. Our step-by-step calculation algorithm thus op- 
erates as a single procedure which (a) places each step on 
a globally converging collision-free path, while (b) satisfying 
the robot dynamics constraints. 

Assume that the sensing range (“radius of vision”) is T, ,  

Fig. 1. The general strategy is as follows: a t  the moment 
(step) i. the kinematic algorithm identifies an intermediate 
target point, Ti, which lies on a convergent path and, for 
local path optimization, is far enough from the robot - nor- 
mally a t  the boundary of the sensing range. Then, a step is 
made in the direction of Ti, and the process repeats. Because 
of the dynamics, this step toward Ti may not be possible and 
needs t o  be modified. 

As mentioned above, sometimes stopping may be the only 
way to  avoid collision, and an assurance is required that at 
any moment the robot could execute a last resort stopping 
path if needed. Since no information is available beyond the 
sensing range, the whole stopping path, as computed a t  a 
given moment, must lie within that sensing area. Further, 
since part of the sensing range may be invisible because of 
obstacles, the stopping path must lie in the visible part of 
the sensing range. Similarly, if the intermediate target Ti 
lies on the boundary of the sensing range, the robot needs a 
guarantee of stopping a t  Ti, even if a t  the moment it does 
not intend to  do so. Thus, each step is to  be planned as 
the first step of a trajectory which, given the initial position, 
velocity and control constraints, would bring the robot to  a 

Fig. 1. Example of performance of the (kinematic) VisBug 
algorithm. 

halt a t  Ti. 
In case of a curved path segment, the control system will 

attempt a reasonably fast convergence to  Ti by trying t o  align 
the direction of the robot’s motion with the direction toward 
T, as soon as possible. That is, if the angle between the 
current velocity vector and the direction toward Ti is larger 
than the maximum turn the robot can make in one step, the 
robot will keep turning in the maximum way possible until the 
directions align (hence the name Mwimzlm Turn Strategy). 
Once a step is physically executed, new sensing information 
appears and the process repeats. The procedure also covers 
a special case where the intermediate target goes out of the 
robot’s sight because of the robot’s inertia or because of 
occluding obstacles. 

The model assumed is introduced in Section I t ,  followed 
by the sketch of the suggested approach in Sec. Ill. Analysis 
of the system dynamics appears in Sec. IV; the algorithm 
and its convergence properties are discussed in Sec. V, and 
simulated examples of the algorithm performance in Sec. VI. 
Some details and proofs are omitted due to  space limitations. 

11. THE MODEL 

The environment (the scene) is a plane; it may include a 
locally finite number of static obstacles. Each obstacle is 
bounded by a simple closed curve of arbitrary shape and of 
finite length, such that a straight line will cross it only in a 
finite number of points. Obstacles do not touch each other 
(if they do, they are considered one obstacle). Note that the 
model does not require the number of obstacles be finite. 

The robot is a mass point, of mass m. Its sensors allow 
it ,  a t  its current location Ci, to  detect any obstacles and the 
distance to  them within i ts  sensing range - a disc of radius 
r, (“radius of vision”) centered at Ci. At moment ti, the 
robot’s input information includes its current velocity vector 
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Vi, coordinates of Ci and of the target point T it is trying 
to  reach, and perhaps of few other points of interest, such 
as an intermediate target. 

The task is t o  move from point S (start) in the scene t o  
point T (target), see Fig. 1. The robot’s means for mo- 
tion control are two components of the acceleration vector 
U = ;fi. = ( p , q ) ,  where m is the robot’s mass, and f is 
the force applied. By taking, without loss of generality, mass 
m = 1, we can refer to  the componentsp and q as if they rep- 
resent control forces, each within i ts  fixed range lpl < p,,,, 
141 5 qmaz;  pmas,qmaz > 0. Force p controls the forward 
(or backward when braking) motion; i t s  positive direction co- 
incides with the robot’s velocity vector V. Force q is perpen- 
dicular to  p forming a right pair of vectors, and is equivalent 
to  the steering control (rotation of vector V ) ,  Fig. 2. 

The M-line (Main line) is the straight line connecting 
points S and T ,  and is the robot’s desired path. When, 
while moving along the M-line, the robot senses on its way 
an obstacle, this point on the obstacle boundary is called a 
hit point, H .  The corresponding M-line point “on the other 
side” of the obstacle is a leave point, L .  

The control of robot motion is done in steps i = 0,1,2, ... . 
Each step i takes the same time T = ti+l - ti = const; its 
length thus depends on the robot’s velocity within the step. 
Steps i and i + 1 start  a t  times ti and ti+l, respectively; 
CO = S .  We define two coordinate systems (follow Fig. 2): 
(i) The world coordinate frame, (z,y), fixed a t  point S. 
(ii) The path coordinate frame, (t ,n),  which describes the 
motion of the mass point at any moment T E [ti, t i + l )  within 
the step i .  Its origin is attached to  the robot; axis t is aligned 
with the current velocity vector V ,  axis n is normal to  t. 
Together with axis b, which is a cross product b = t x n, 
the triple (t, n, b) forms the Frenet trihedron, with the plane 
of t and n being the osculating plane. 

111. THE APPROACH 

The algorithm will be executed at each step of the robot’s 
path, as a single operation. We take the convergence mecha- 
nism of a kinematic sensor-based motion planning algorithm, 
and add to it controls for handling dynamics. At any mo- 
ment ti the robot will maintain an intermediate target point 
Ti within its sensing range, usually on an obstacle boundary 
or on the M-line. At its current position Ci, the robot will 
plan and execute i ts  next step in the direction Ti, then, at 
Ci+l analyze new sensory information and perhaps define a 
new intermediate target Ti+l, and so on. At times, the cur- 
rent Ti may go out of the robot’s sight because of its inertia 
or due to  occluding obstacles. In such cases the robot will 
be designate temporary intermediate targets and use them 
until it can see point Ti again. 

In principle, any maze-searching algorithm can be utilized 
for the kinematic part, so long as it allows an extension t o  
distant sensing. For the sake of specificity, we use here the 

VisBug algorithm [6], which is based on these two steps (as 
before, S and T are starting and target positions, T,  the 
radius of the sensing range, Fig. 1): (1) Walk from S toward 
T along the M-line until, a t  some point C ,  detect an obstacle 
crossing the M-line, say a t  point H ;  go to  Step 2. (2) Using 
sensors, define the farthest visible intermediate target Ti on 
the obstacle boundary; make a step toward Ti; iterate Step 2 
until detect M-line; go to  Step 1. In Fig. 1, note that while 
trying to  pass the obstacle from the left, a t  point P the robot 
will make a sharp turn. 

Safety considerations due to  dynamics appear in a number 
of ways. Since no information about the obstacles is available 
beyond distance T,, from the robot, guaranteeing collision- 
free motion means assuring a t  any moment a t  least one “last 
resort” path that would bring the robot to  a halt within the 
radius T ,  i f  needed. If this rule is violated, a t  the next step 
new obstacles may appear in the sensing range, such that 
collision will become imminent no matter what control is 
used. This dictates a certain relation between the velocity 
V, mass m, and controls U = ( p ,  q): if the robot moves with 
the maximum velocity, the stop point of the stopping path 
must be no further that a t  distance T,, from C ,  V = a. 

In Fig. 1, when approaching point P,  the robot will des- 
ignate it as i ts  next intermediate target Ti. For awhile Ti 
will stay a t  P because no other visible point on the obstacle 
boundary appears until the robot arrives a t  P.  During this 
time, unless a stopping path is possible a t  any time, the robot 
would have to  plan t o  stop a t  P.  Otherwise, it may arrive a t  
P with a non-zero velocity, start  turning around the corner, 
and suddenly uncover an obstacle invisible so far, making a 
collision unavoidable. 

Convergence. Because of dynamics, the convergence 
mechanism borrowed from a kinematic algorithm needs some 
modification. For example, the robot’s inertia may cause it 
to  move so that the intermediate target Ti will become invis- 
ible, either because it goes outside the sensing range r, (as 
after point P,  Fig. l), or due to  occluding obstacles (Fig. 3), 
and so the robot may lose it (and the path convergence with 
it). The solution chosen is to  keep the velocity high and, if 
the intermediate target Ti does go out of sight, modify the 
motion locally until Ti is found again. 

Iv. DYNAMICS AND COLLISION AVOIDANCE 

Consider a time sequence ut = { t o , t l , t z ,  ...}. Step i corre- 
sponds to  the interval [ti,ti+l). At moment ti the robot is 
a t  the position Ci, with the velocity vector V i .  Within this 
interval, based on the sensing data, the intermediate target 
Ti (supplied by the VisBug procedure), and vector V i ,  the 
control system calculates the values of control forces p and 
q,  applies them to the robot, and the robot executes step i, 
finishing it a t  point Cj+l at moment ti+l, with the velocity 
vector Vi+l; then the process repeats. 
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Fig. 2.  The dynamic effects of the robot motion are pre- 
sented with respect to the path coordinate f rame (t, n). Ob- 
stacle detection analysis and path planning are done with 
respect to the world f r a m e  (z,y); its origin is in the starting 
position S .  

The following analysis consists of two parts. First, we 
incorporate the control constraints into the mobile robot's 
model, and develop the transformation from the moving path 
coordinate frame, see Section II, to the world frame. Then, 
the Maximum Turn Strategy i s  described, the incremental 
decision making mechanism which controls the computation 
of forces p and q a t  each step. 

Transformation from path frame to world frame. 
The remainder of this section refers to the time inter- 
val [ti,ti+l), and so the index i can be dropped. De- 
note ( 2 , ~ )  E R2 the position of the robot in the world 
frame, and 6' the (slope) angle between the velocity vector 
V = (Vz,V,) = ( i , y )  and z-axis of the world frame (see 
Fig. 2). The planning process involves computation of the 
controls U = ( p ,  q ) ,  which for every step defines the velocity 
vector and eventually the path, x = (z,y), as a function of 
time. The angle .!9 between vector V = (Vz,Vy) and x-axis 
of the world frame is found as 

* = {  arctan( 31, rt" vx 2 0 
arc tan(^) + 7r, V, < 0 

Given that the control forces p and q act  along the t and n 
directions, respectively, the equations of motion with respect 
to the path frame are V = p, % = q/V. Since the control 
forces are constant over time interval [ti, t i+l),  within this 
interval the solution for V ( t )  and O(t) becomes 

V ( t )  = p t  + VO, 

P 
\ ,  

where 8' and V o  are constants of integration and are equal to 
the values of .!9(ti) and V(t i ) ,  respectively. By parameterizing 
the path by the value and direction of the velocity vector, the 
path can be mapped onto the world frame (z,y) using the 

following vector integral equation: 

r(t) = .fi'" V t dt 

Here r ( t )  = ( x ( t ) ,  ~ ( t ) ) ,  and t = (cos(O),sin(O)) i s  a projec- 
tion of unit vector along the V direction. After integrating 
equation (2) ,  we obtain the set of solutions of the form: 

x ( t )  = 2pcosO(t) + qsinB(t) V2(t) + A 
4p2 + 42 

V"t) + B ( 3 )  
qcosQ(t )  - 2psinB(t) 

4p2 + 4 2  
Y ( t )  = - 

where terms A and B are 

vO2 ( 2 p  cos(00) + q sin(*,)) 
4p2 4- q 2  

vO2 ( 4  cos(eo) - 2 p  sin(8o)) 
4p2 + q2 

A = ~ 0 -  2 

B = yo+ 

V ( t )  and Q(t)  in equations (3), which are directly con- 
trolled by the variables p and q ,  are given by equation (1). 

In the general case, equations (3) describe a spiral curve. 
Note two special cases: when q = 0 , p  # 0, equations (3) 
describe a straight line motion along the vector of velocity; 
when p = 0 , q  # 0, they produce a circle of radius % cen- 
tered a t  t he  point ( A , B ) .  

The Maximum Turn Strategy . We now turn to the 
control law which guides the selection of forces p and q a t  
each step i, for the time interval [ t i , t i+ l ) .  To assure a rea- 
sonably fast  convergence to the intermediate target Ti, those 
forces are chosen such as t o  align the direction of the robot's 
motion with that toward Ti as soon as possible. First, find a 
solution among the controls ( p ,  q )  such tha t  

V 2  

where q = +qmaz if the intermediate target T; lies in the left 
semiplane, and q = -qmaz if it lies in the right semiplane 
with respect to the vector of velocity. That is, force p is 
chosen so as t o  keep the maximum velocity, and q is cho- 
sen on the boundary to produce maximum turn in the right 
direction. 

If, on the other hand, no controls in the range (4) can 
be chosen, this means that the maximum braking should be 
applied and that the turning angle should be limited. Then 
the controls are chosen from the set: 

where the sign in front of qmaz i s  chosen as above. Note 
that the sets (4) and (5) always include a t  least one safe 
solution - due t o  the algorithm's design, the straight-line 
motion with maximum braking, (p ,  q )  = (-p,,,, 0) is always 
safe. 
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V. THE ALGORITHM 
The algorithm includes three procedures: the Main body an- 
alyzes the path towards the intermediate target T,; Define 
Next Step chooses the forces p and q;  Find Lost Target deals 
with the case when T, goes out of the robot’s sight. Also 
used is  a procedure called Compute T,, from the VisBug al- 
gorithm [6 ] ,  for computing the next intermediate target T,+1 
and analyzing the target reachability. Vector V, is the cur- 
rent vector of velocity, T is the robot’s target. 

Main Body: The procedure is executed at each step, and 
makes use of two procedures, Define Next Step and Find 
Lost Target (below). It includes the following steps: 

0 Step 1: Move in the direction specified by Define Next 
Step, while executing Compute T,. If T, is visible do: if 
C, = T the procedure stops: else if T is unreachable the 
procedure stops; else if C, = T, go to Step 2. Otherwise, 
use Find Lost Target to make T, visible. Iterate Step 1. 

0 Step 2: Make a step along vector Vi while executing 
Compute Ti: if Ci = T the procedure stops; else if 
the target is unreachable the procedure stops; else if 
Ci # Ti go to Step 1. 

Define Next Step: the steps below correspond to  different 
cases: Step 1 handles the motion along M-line and a simple 
one-step turn; Step 2 handles more complex cases of turning: 

0 Step 1: If vector Vi coincides with the direction toward 
Ti, do: if Ti = T make a step toward T ;  else make a 
step toward Ti.  Otherwise, do: if the directions of Vi+l 
and (Ci, Ti) can be aligned within one step, choose this 
step. Else go to  Step 2. 

0 Step 2: If a step with a maximum turn toward Ti and 
maximum velocity is safe, choose it. Else, if a step with 
maximum turn toward Ti and some braking is possible, 
choose i t .  Else, choose a step along Vi, with no turn 
and maximum braking, p = -pmaz,p = 0. 

Find Lost Target is executed when T, becomes invisible. 
The last position C, where T, was visible is stored until T, 
becomes visible again. After losing T,, the robot keeps mov- 
ing ahead while defining temporary intermediate targets on 
the visible part of the line segment (Cz,T,), and continuing 
looking for Ti. If it finds Ti, it moves directly toward i t ,  
Fig. 3a; otherwise, if the whole segment (C,,T,) becomes 
invisible, the robot brakes to  a stop and returns to C, etc., 
Fig. 3b. The procedure includes these steps: 

0 Step 1: If segment (Ci,Ti) is visible, define on it and 
move toward temporary intermediate targets T:, while 
looking for Ti. If current position Cj = T ,  exit; else if 
Ci lies in the segment (Ci,Ti), exit. Else go to Step 2.  

(a) 

Fig. 3 .  In this example, because of the system inertia the 
robot temporarily “loses” the intermediate target point T,, 

0 Step 2: If segment (C,,Ti) is invisible, initiate a stop- 
ping path and then go back to Ci; exit. 

Convergence To prove convergence, we need to show 
that (i) a t  every step the algorithm guarantees collision-free 
motion and (ii) a path to the target position Tw i l l  be found if 
one exists, or the nonreachability of T will be inferred in finite 
time. Condition (i) can be shown by induction; condition 
(ii) is assured by the VisBug mechanism [6].  The following 
statements hold: 

Claim 1 Under the Maximum Turn Strategy algorithm, as- 
suming zero velocity at the start point, VS = 0 ,  at every 
step of the path there exists at least one stopping path. 

Claim 2 The Maximum Turn Strategy algorithm guarantees 
con vergence. 

____I_ 

VI. EXAMPLES 
Fig. 4a-d illustrate the algorithm’s operation in simulated 
examples. The robot’s mass m and controls p , q  are the 
same throughout. Thicker lines show paths generated by 
the Maximum Turn Strategy Algorithm; thin lines show the 
corresponding paths produced by the VisBug algorithm. 

- 1641 - 



Examples in Fig 4a,b correspond to the same radius of 

robot suddenly uncovers a t  a close distance when turning 
around corner Note that in (b) the path becomes tighter, 
the robot becomes more cautious A similar pair of examples 
shown in Fig. 4c,d illustrates the effect of radius of vision in 
(c) and (d), r, is twice that of (a) and (b) 

I t  is interesting to  compare the time (the number of steps) 
the motion took. In Fig. 4a-d thepaths take 221, 232, 193, 
and 209 steps, respectively That is, here better sensing 
(larger r v )  results in shorter time to  complete the task; more 
crowded space requires longer time (though resulting perhaps 

L 
vision T , ,  in Fig 4b there are additional obstacles which the h 

(a) 

in : 

PI 

[31 

[41 

151 

171 

181 

shorter paths). 
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