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Incorporating Body Dynamics Into Sensor-Based because of the robot’s inertia. Given the lack of information about
Motion Planning: The Maximum Turn Strategy the surroundings, this translates into a safety issue—one needs a
guarantee of atopping pathat any time in case a sudden obstacle
Andrei M. Shkel and Vladimir J. Lumelsky makes it impossible to continue on the intended path.

This is not unlike the decisions a human jogger faces when going

Abstract_Most of today’ hes t based motion planni for a morning run in an urban neighborhood. The jogger's speed,
strac Ost of today's approaches to sensor-basea motion planning H ol :

focus on kinematic and geometric issues and ignore the system dynamics.mas_s’ quality of VISI_On’ and fspe.ed of reaction t.o sudden cha_nges (the
Those few that address dynamics do so in a two-stage fashion by quality of control) will all be tied into some relationship, affecting the
considering one issue at the time. This work attempts to incorporate real-time decision-making process. Note that sensing, local planning,
control of body dynamics into the sensor-based motion planning process. global planning, and actual movement in this process take place

A point mobile robot is assumed to operate in a planar environment with - i 1tanequsly and continuously. Locally, when the object is first
unknown arbitrary stationary obstacles. Based on its current velocity and

sensory data about the surrounding obstacles, the robot plans its motion Noticed, unless a right relationship is maintained between the jogger's
to locally maximize the turning angle toward the current intermediate mass, velocity, and the distance to the object, a collision may occur;
target. An optimal braking procedure takes care of sudden potential for example, a bigger mass may dictate better (farther) sensing

collisions by guaranteeing a safe emergency stopping path. Given the 1 aintain the same velocity. Globally, unless a “grand plan” is
constraints on robot’'s dynamics, sensing, and control means, conditions foll d be |

are formulated for generating trajectories that guarantee convergence [0llOWed, convergence may be lost. .

and the robot's safety at all times. The approach calls for continuous  Although system dynamics and sensor-based motion control are

computation and is fast enough for real-time implementation. Simulated tightly coupled, little attention has been paid to this connection in

examples demonstrate its performance. the literature. Most of the existing approaches deal solely with the
Index Terms—Control, dynamics, obstacle avoidance, sensor-based System kinematics and geometry and ignore its dynamic properties.
motion planning Consequently, they can be used only in applications where the effect

of speeds and masses is negligible. One reason for the difficulty is that
the methods of motion planning tend to rely on tools from geometry
) ) ) .and topology, which are not easily connected to the tools common
When planning motion for a machine, such as a robot, operating -qntrol theory.
Ina gorr’IpIeX environment, one anltlonaI issue to consider is theygtion planning algorithms usually adhere to one of two paradigms
machine’s dynamics. A piece of trajectory that makes sense from {ag giffer in their assumptions about input information. In the first
standpoint of the destination and the surrounding objects may not adigm, which is callechotion planning with complete information
feasible because of the effects of inertia and control limitations. T}"tiér the Piano Mover's probles) one assumes full information and
work studies those effects, with the goal of designing provably corregt apraic representation of objects: motion planning is a one-time,
sensor-based algorithms for operating in an uncertain environme -line operation. In the second paradigm, which is calfedtion
Since the uncertainty implies that the global optimality is not feaSiblﬁlanning with incomplete informatiotor sensor-based planning
it is natural to attempt a local optimization. A salient feature of tth'ects can be of arbitrary shape, and input information is of
strategy suggested here is that while maintaining a maximum velo '%al character, such as from a range finder or vision. By making
that allows collision-free motion among the surrounding obstacles, t [ sensor’feedback this paradigm fits the on-line character

robot will attempt to locally maximize the turning angle toward th%f control theory methods well. Both paradigms give rise to two

required d'fe°“°” of n_10tnon. L . . pes of strategies: those that consider only kinematic and geometric
We consider a mobile robot operating in two-dimensional (2-DI sues—for brevit I : )
y, we call therkinematic approachesand those

physical space filled with a locally finite number of unknown sta- . . )
tionary obstacles of arbitrary shapes. Planning is done in small s{aéhat take into account the system dynamics (we call tiigmamic

S
(say, 30 or 50 times per second), resulting in continuous motion. Tﬁ%proachg}: . . .
- . . s ) . Dynamics and control constraints can be incorporated into the
robot is equipped with sensors, such as vision or range finders, wh |21no Mover's paradiam. for examole. by dividing planning into two
allow it to detect and measure distances to surrounding objects within P gm, pie, by 9p 9

its sensing range—equal to, say, 20 or 50 steps. Therefore, un tgsqes—fl_r_st, one fln(_js a path thaF satisfies g_eometrlc cons_tramts and
li.l modifies it to fit the dynamics constraints [1], possibly in a

obstacles occlude one another, the robot can see them far eno . . . -
ahead to plan appropriate actions time-optimal fashion [2], [3]. One of the first attempts to explicitly
. " and how tg')ncorporate body dynamics into the planning process were made by

In addition to the usual problems of “where to go ) laing for th di ional d by C
guarantee convergence in view of incomplete information, the robopsDun aing for t € one-dimensiona (1-D) case [4] and by Canny
al [5] in their kinodynamic planning approach for the 2-D case.

mass and velocity bring about the dynamic component of planning. . X X
A step that is reasonable from the standpoint of reaching the tarde}® atter technique, although it operates in the context of complete
is somewhat akin to our approach below in that the

position—for example, a sharp turn—may not be physically realizaH@ormat'on’ X
velocity and acceleration components are assumed to be bounded
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here is how to avoid possible local minima in the potential field. ]
An interesting approach called active reflex control [8] attempts to '
combine the potential field method with the handling of the robot ,
dynamics; the emphasis is on local collision avoidance and on filtering S
out infeasible control commands generated by a “kinematic” planner. '

Within the paradigm with incomplete information (which this work
adheres to), a variety of kinematic techniques originate in maze-
searching strategies [9], [10]. When applicable, they are typically Q
fast, can be used in real time, and guarantee convergence; obstacles [/
may be of arbitrary shapes.

To design a provably correctynamicalgorithm for sensor-based
motion planning, one needs a single control mechanism—separating
it into stages is likely to destroy convergence. Convergence has two
faces: Globally, one has to guarantee finding a path to the target if
one exists; locally, one needs an assurance of collision avoidance in
view of the robot inertia. The former can be borrowed from kinematic

algorithms; the latter requires an explicit consideration of dynamics. ) ) )
ig. 1. Example of a conflict between the performance of a kinematic

In terms of the planning S”ategy’_ note that i_n spite of Suf'ﬁ(:ie_r‘!.lligorithm (the solid line path) and the effects of dynamics (the dotted piece
knowledge about the obstacles within the sensing range, at a givnrajectory at P).

step, it would not be wise to address the problem as one with
complete information and attempt to compute the whole subpath
in the sensing range. The main reason for that is that only the
first step of the subpath is likely to be executed as new sensi ) : . ;
data at the next step will in general require path adjustment. TH proa(_:h in Section Il After a}naly5|s of the system dynamlc_:s
is, computing this whole subpath would be largely computationg] Sections IV and V the algorlthm proper |s_presented, _and its
waste. Besides, computing this subpath would require Sowingcgnvergence propertlles are dlscusseq |n.Sect.|on V|_‘ A simulated
rather difficult optimal motion control problem. Given our variousexample of the algorithm performance is given in Section VII.

constraints, such as a limited operating area and obstacles, the solution
would likely be computationally expensive, even for our simple Il. THE PROBLEM STATEMENT
model. The robot operates in a plane; the scene may include a locally
As usually in maze-searching strategies (see, e.g., [9]), sensory datie number of static obstacles. Each obstacle is bounded by a simple
will be only used for planning the immediately following step(s). Nalosed curve of arbitrary shape and of finite length, such that a straight
explicit (partial or full) model of the environment will be built. Fromline will cross it only in a finite number of points. Obstacles do not
the start pointS, the algorithm will work its way toward the target touch each other (if they do, they are considered to be one obstacle).
pointT sequentially in small steps, each of which i) lies on a globallyhe total number of obstacles need not be finite.
convergent path and ii) satisfies the robot dynamics constraints.  The robot’s sensors provide it with information about its surround-
The general strategy is as follows: At its current position,  ings within thesensing rangewhich is a disc of radiug, (“radius of
the robot will identify a visible intermediate target poiht that is vision”) centered at its current locatid@ri;. Namely, it can assess the
guaranteed to lie on a convergent path and is far enough from ttistance to the nearest obstacle in any direction within the sensing
robot—normally, at the sensing range boundary. Since the directi@nge. At moment;, the robot’s input information includes its current
toward 7; may differ from the current velocity vectdV;, moving velocity vectorV;, coordinates of”; and of the target poirit’, and
towardT; may require a sharp turn, which may or may not be possibp®ssibly few other points of interest, such as an intermediate target
due to the system dynamics. If the angle betw®erand the direction T;. The task is to move, collision-free, from poifit(start) to point
towardT; is larger than the maximum turn the robot can make in oriE (target); see Fig. 1.
step, the robot will attempt a fast smooth maneuver by turning at theThe robot is gpoint massof massm. The motion control means
maximum rate until the directions align, hence the namsximum include two components of the acceleration veator % =(p,q),
turn strategy (A case of time-optimal local optimization for the samevhere f is the force applied. Although the units 6f, ¢) are those
task can be found in [11]). Once a step is executed, new sensing dafteacceleration, by normalizing ten = 1, we can refer top
appear, a new poirlfi+; is sought, and so on. That is, the actuaind ¢ as control forces, each within its fixed ran@te¢ < pmae,
path and the path that contains poifitsare different paths—with the |¢| < ¢ma.; p andq are the only external forces acting on the system.
new sensory data at the next step, the robot may or may not actu&igrce p controls forward (or backward when braking) motion; its
pass through the poirf;. positive direction coincides with the velocity vectdf. Forceq is
The fact that no information is available beyond the sensing rangerpendicular tgp, forming a right pair of vectors, and is equivalent
dictates caution. First, to guarantee safety, the whole stopping ptarhe steering control (rotation of vect®f); see Fig. 2. Constraints
must lie inside the sensing range. Since some of this area maydfiep andg imply a constraint on the path curvature. The point mass
occupied or occluded by obstacles, the stopping path must lie in @&sumption implies that the robot’s rotation with respect to its “center
visible part. In addition, since the intermediate tarflets chosen as Of mass” has no effect on the system dynamics. There is no friction;
the farthest point based on the information available, the robot ned@ls €xample, valuep = ¢ = 0 and 'V # 0 will result in a straight
a guarantee of stopping @, even if it does not intend to do so. Thatline constant velocity motioh.
is, each step is to be planned as the first step of a trajectory that, givefRobot motion is controlled istepsi = 0,1, 2,... Each step takes
the current position, velocity, and control constraints, would bring tHéne 6t = tit1 — t; = const; its length depends on the robot's
robot to a halt af/;. Within one step, the time to acquire sensory data 1|f needed, other external forces and constraints can be handled within this
and to calculate necessary controls must fit into the step cycle. model, using, for example, the technique described in [12].

Obstacle

Robot’s path

Below, the model, terminology used, and the problem statement
introduced in Section I, followed by a sketch of the suggested
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: path is the only way to assure collision-free motion. Unless this
\/t “last resort” path is available, new obstacles may appear in the
n sensing range at the next step, and a collision may occur. A stopping
path implies a safe direction of motion and a safe velocity value.
We choose the stopping path to be a straight line segment along
v the step’s velocity vector. A candidate step is “approved” only if
q o, ' its direction provides the stopping path. In this sense, the overall
"'C planning procedure is based on a one-step analyBige procedure
; for a detour around a sudden obstacle operates in a similar way.
y For the continuous case, allowing a straight line stopping path with
I_’ the stop point at the sensing range boundary implies the following
S X relationship between the velocify, massm, and controlsu =

Fig. 2. Path coordinate framét,n) is used in the analysis of dynamic
effects of robot motion. The world framix, y), with its origin at the start V< \/ﬂ
point S, is used in the obstacle detection and path planning analysis. = b

)
whered is the distance from the current position to the stop point.
velocity within the step. Stepsandi + 1 start at times; andti+1,  For example, an increase in the radius of visigrallows one to raise
respectivelyCo = 5. While moving toward locatioi';+1, the robot  the maximum velocity by the virtue of providing more information
computes necessary controls for step 1 using the current sensory farther along the path. Some ramifications of discrete control on this
data and executes them@t,, . The finite time necessary within onerelationship are analyzed in Section IV.
step for acquiring sensory data, calculating the controls, and executingonvergence: Because of dynamics, the convergence mechanism
the step must fit into the step cycle (see details in [13]). We defim@rrowed from a kinematic algorithm—here VisBug [9]—needs some
two coordinate systems (follow Fig. 2): modification. VisBug assumes that the intermediate target point is
« theworld coordinate framgx,y) fixed at pointS; either on the boundary of the obstacle or on the M-line and is
« the path coordinate framét, n), which describes the motion of visible. However, the robot’s inertia may cause it to move so that the
point mass at any moment€ [¢;, t;41) within stepi. Its origin  intermediate targef; will become invisible either because it goes
is attached to the robot; axiss aligned with the current velocity outside the sensing range (as after pointP; see Fig. 1) or due to
vector V; axisn is normal tot, i.e., whenV = 0, the frame occluding obstacles (as in Fig. 6), with the danger that the robot may
is undefined. (One may note that together with dxis t x n, lose it and the path convergence with it. One possible solution is to
the triple (t,n, b) forms the knownFrenet trihedron with the keep the velocity low enough to avoid such overshoots—a high price
plane oft andn being theosculating plang14]). in efficiency to pay. The solution chosen is to keep the velocity high
and, if the intermediate targéf; does go out of sight, modify the
motion locally until 7; is found again (Section VI).
lll. THE MAXIMUM TURN STRATEGY
Define M-line (Main line) as the straight line segme($7'); see
Fig. 1; this is the robot's desired path. When, while moving along
the M-line, the robot senses an obstacle on its way, this point on theBy substituting p,.... for p and r, for d into (1), obtain the
obstacle boundary is calledhdt point H. The corresponding M-line maximum velocityV;,,.... Since the maximum distance for which
point “on the other side” of the obstacle ideave pointL. information is available is., an emergency stop should be planned
The planning procedure will be executed at each step of the robdids that distance. We show that moving with the maximum speed
path. As said, any provable maze-searching algorithm can be used(f@rtainly a desired feature) actually guarantees a minimum-time
the kinematic part, as long as it allows distant sensing. For specificiggpp at the boundary. The suggested braking procedure, developed in
we use here the VisBug algorithm [9], which alternates between theSection IV-C, makes use of an optimization scheme that is sketched

IV. VELOCITY CONSTRAINTS. MINIMUM TIME BRAKING

two steps (see Fig. 1). briefly in Section IV-B.
1) Walk from pointS toward pointI” along the M-line until detect
an obstacle crossing the M-line. A. Velocity Constraints

2) Using sensing data, define the farthest visibitermediate It is easy to see (follow an example in Fig. 3) that in order to

target 1 on the obstagle boundary and on a convergent pa@uarantee a safe stopping path under discrete control, the maximum
make a step toward;; iterate Step 2 until M-line is detected

;velocity must be less thaW,,... This velocity, which is called

go to Step 1. permitted maximum velocify,....., can be found from the following
In Fig. 1, note that under the VisBug procedure, while trying t@ondition: If V' = Vjm.. at pointC, (and, thus, ai’;), we can
pass the obstacle from the Ieft, at pOiﬁt the robot makes a Sharpguarantee the Stop at the Sensing range boundary (‘antsee

turn. Such motion is not possible in a system with dynamics. Tgg. 3). Recall that velocity)” is generated at’; by the control
this, a control procedure for handling dynamics is added. At timegyce p. Let |, Cy| = 6x; then

because of inertia or occluding obstacles, the current intermediate

targetT; may go out of the robot’s sight. In such cases, the robot 52 = Voman - 6t
will be designatingemporary intermediate targetsd use them until

it can spot pointl; again. The actual algorithm also includes other
mechanisms, such as a finite-time target reachability test and local
path optimization. 2While a deeper, multistep analysis could occasionally produce locally

Safety ConsiderationsDynamics affects safety. Given the uncersnorter paths, it would not add in safety and is not likely to justify the steep
tainty beyond the distance, from the robot, a guaranteestopping rise in computational expenses.

7 7
.['/Bl = .['/prnui' - pwuu't-
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rewritten asi = V andV = p(t); it is convenient to analyze the
system behavior in thehase spacgV, z).

The goal of control is to move the system from its initial position
(z(to), V (to)) to the final position(z(ts), V' (t5)). For convenience,
choosez(t;) = 0. We are interested in an optimal control strategy
that would perform this motion in minimum tinte, arriving atz(¢y)
with zero velocityV (¢5) = 0. This optimal solution can be obtained
in closed form; it depends on the above/below relation of the initial
position with respect to two parabolas that define the switch curves
in the phase planéV, x)

V2 i
rv e 2pmao:’ ‘ Z 0 (2)
: 172
r= , V<o. 3
2pmar

Fig. 3. With . i bstacleO: i ‘ ¢ visible f e This simple result in optimal control (see. e.g, [15]), which is
1g. o. I sensing raaius,, obstacle(/; Is not visible from pointC . . . . . . .
Because of the discrete control, velocity commanded af’; will be constant summarized in the following control law, is used in the next section to

during the step interva{Cy, C'y). Therefore, ifVi = Vinas at C1, then develop the braking procedure for the emergency stop; the procedure
Vs = Vimaz, and the robot will not be able to stop &, causing collision guarantees the robot's safety while allowing it to cruise with the

with O1. The permitted velocity, thus, must B&maez < Vinaz. maximum velocity (follow Fig. 4).
Control Law: If, in the phase space, the initial positiO¥f, <o) is
X > above the switch curve (2), move first along the parabola defined by

controlp = —p.... toward curve (2) and then with contrpl= p,,q.
along the curve to the origin. If poirtls, «¢) is below the switch

Start curve, first move with contrgh = p,.. toward the switch curve (3)
(v, X)) | posi}ion and then with controf = —p,... along the curve to the origin.
S ;4 ’/,
o | (v, x) C. The Braking Procedure
f‘f,li[t];hﬁfg We now turn to the calculation of time necessary for stopping when
\ . : , . . moving along the stopping path. It follows from the argument above
Start A v that if at the moment when the robot decides to stop its velocity is
position V' = Vpmas, then it will need to apply maximum braking all the way
RNy Final / [ (v, X)) until the stop. This will define uniquely the time to stop. However, if
RN position ~ V < Vpmas, then there is a variety of braking strategies and, hence,

(v x) i T of different times to stop.
Point of . . . . .
A switching Consider again the example in Fig. 3; assume that at point

) L Vo < Vemaz. What is theoptimal braking strategythe one that
Zﬁfgh ’ guarantees safety while bringing the robot in minimum time to a
stop at the boundary of the sensing range? (While this strategy is not
Fig. 4. Depending on whether the initial positiip , 2o ) in the phase space necessarily what one would want to implement, it defines the limit
(V,z) is above or below the switch curves, there are two cases to consideglocity profile the robot can maintain for safe braking.) The answer
The optimal solution corresponds to moving first fréib, z0) to the point  js given by solving an optimization problem for a single degree-of-
of switching (Vz, z,) and then along the switch line to the origin. freedom system. It follows from the control law that the optimal
solution corresponds to at most two curvesand I7 in the phase

Since we requireVs, = 0, thent = Yomes  Eor the segment space(V, z) [see Fig. 5(a)] and to at most one control switch, from
|CoBy| = 1. — 62, we have P P = Pmaz ONliN€I 10 p = —pmae ON line I, given by (2) and (3).
) For example, if braking starts with the initial values= —r, and
o — 62 = Vymag -t — Pmaxt . 0 < Vb < Viae, the system will first move, with contrgl = pyyqz,
2 along the parabold to the parabold! [see Fig. 5(a)]
From these equations, the expression for the maximum permitted vy
velocity V... Can be obtained, 2(V) = "2 — Yo _.,
pmar
‘/rP”laJU = \/p%m,a:‘StQ + 2pmagl;rv - pwna;uét
) and then, with controp = —pmq., toward the origin along the
As expectedYpmaz < Vinae and converges t&,,... with 6t — 0. parabolall
72
B. Optimal Straight Line Motion (V) = L
2pmar

The following sketch of the optimization scheme is used below in
the development of the braking procedure; for details, refer to [11]. The optimal timet, of braking is a function of the initial velocity
Consider a dynamic system described by a second-order differentig| radius of visionr,, and the control limitp,,,4.,
equationz = p(t), where||p(t)|| < pmaz, and p(t) is a scalar —s i
control function. Assume that the system moves along a straight line. ty(Vo) = 2V + 4pmacre = Vo _ @)
By introducing state variables andV’, the system equations can be Pmax
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(@)

to be substituted into (4) to obtain the minimum time.

V. DyYNAMICS AND COLLISION AVOIDANCE

The following analysis consists of two parts. First, the control
constraints are incorporated into the mobile robot model, and the
transformation from the moving path coordinate frame to the world
frame is developed (see Section Il). Then, the maximum turn strat-
egy is presented, an incremental decision-making mechanism that
determines the forces and ¢ at each step.

A. Transformation from Path Frame to World Frame

The remainder of this section refers to the time intefvalt; 1 );
therefore, index can be dropped. Letr,y) € R* be the robot's
position in the world frame, and lét be the (slope) angle between
the velocity vectorV = (V,.,V,) = (&, ¢) andx-axis of the world
frame (see Fig. 2). The planning process involves computation of
the controlsu = (p, ¢), which for every step defines the velocity
vector and eventually the path= (=, y) as a function of time. The
normalized equations of motion are

¥ =pcosf# — qsinb
i =psinf + gcosb.

The angled between vectoV and thex-axis of the world frame
is found as

arctan(%), V. >0
= Sl
ﬂrctan(“%) +7, Ve <O.

To find the transformation from the path frame to the world frame
(x,y), present the velocity in the path frame ¥s= V't. Angle ¢
is defined as the angle betweérand the positive direction of the
« axis. Given that the control forcgsand¢ act along thet andn
directions, respectively, the equations of motion with respect to the
path frame are

V =np,

1
VO VO

(b)

Vv,

max

6 = q/V.
Since the control forces are constant over time intefvalt; 1),
within this interval, the solution fo¥’(¢) andf(¢) becomes

Fig. 5. (a) Optimal braking strategy requires at most one switch of control.
(b) Corresponding time-velocity relation.

V(t) =V + pt,

) tp
) o i Q(t) = 90 + M (5)
Functiont,(Vy) has a minimum aly = Viwar = /ZPmaz?o, p
which is exactly the upper bound on the velocity given by (1); ivhered, and V, are constants of integration and are equal to the
is decreasing on the intervdh € [0, V,....] and increasing when values ofé(;) and V (t;), respectively. By parameterizing the path
Vo > Vinae; See Fig. 5(b). For the intervdly € [0, Vinq2], which by the value and direction of the velocity vector, the path can be
is of interest to us, the above analysis leads to a somewhat countaapped onto the world frame using the vector integral equation
intuitive conclusion. it
Proposition 1: For the initial velocity Vo in the rangeV, € r(t) =/ V- dt. (6)
[0, Viaz], the time necessary for stopping at the boundary of the ti
sensing range is a monotonically decreasing functiofizofwith its Here,r(t) = (x(f),y(1)), andV = (V- cos(#).V -sin(#)) are the
minimum atVo = Vinas. projections of vectoV onto the world framéx, y). After integrating
Notice that this result (see also Fig. 5) leaves a comfortable mardfh. we obtain the set of solutions in the form
of safety. Even if, at the moment when the robot sees an obstacle, 2p cos 8(t) + ¢sin 6(t)

- _ 2 )
it moves with the maximum velocity, it can still stop safely before w(t) = 4p? + ¢2 Vi +4
the obstacle. If the robot’s velocity is below the maximum, it has o qeosf(t) = 2psin§(t) V2 B 7
different options for braking, including even one of speeding up yit) = — FRCRpe 7+ ™

before actual braking. Assume, for example, we want to stop innere terms4 and B are
minimum time at the sensing range boundary [the origin in Fig. 5(a)‘ﬁv; Ve (2 (6) + ¢ sin(65))
0~ (2D cos(by g sty

consider two initial positions: ifr = —r,, V = V', and ii) A= — : i
x = —r,,V = V& V@ > V. Then, according to Proposition 1, . 4p*+q?
in case i), this time is bigger than in case ii). Note that because of the B =+ Vo~ (g cos(fp) —2p sin(flo))
discrete control, it is the permitted maximum velocity,,.... that is ' 4p® + ¢
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Equations (7) are directly defined by the control variableand
q; V(t) and6(t) therein are given by (5).

In general, (7) describes a spiral curve. Note two special cases.
Whenp # 0,q = 0, (7) describes a straight line motion along the
vector of velocity; when = 0, ¢ # 0, (7) produces a circle of radius
Vi /|q| centered at the poirtA, B).

B. Selection of Control Forces

We now turn to the control law that guides the selection of forces
p and ¢ at each step for the time intervall¢;, ¢;+1). To assure
a reasonably fast convergence to the intermediate t&fgethose
forces are chosen such as to align, as fast as possible, the direction of
the robot’s motion with that toward;. First, find a solution among
the controls(p, ¢) such that

(p.q) €{(p,0) : p € [~Pmaz, +Pmaz]s @ = £@maz}  (8)

where ¢ = +¢maq. if the intermediate targef; lies in the left
semiplane and; = —g¢ma. If it lies in the right semiplane, with
respect to the vector of velocity. That is, forpds chosen to keep

the maximum velocity allowed by the surrounding obstacles. To this
end, a discrete set of valuesis tried until a step that guarantees a
collision-free stopping path is found. At a minimum, the set should
include values-p.q., 0, and+pm.q.; the more values that are tried,
the closer the resulting velocity is to the maximum sought. Force
¢ is chosen on the boundary to produce a maximum turn in the
appropriate direction. On the other hand, if because of obstacles no
adequate controls in the range (8) can be chosen, this means that

maximum braking should be applied. Then, the controls are chodefl 6. Because of inertia, the robot here temporarily “loses” the intermediate
from the set targetZ;. In (a), it keeps moving around the obstacle until it spbtsand
then continues toward it. In (b), when the whole segni&it T;) becomes
invisible at pointC',, the robot stops at poir®;, 1, returns back ta’;, and
(»:0) €{(p,0) : p = —Pmaz, ¢ € (£gmaz, 0]} (9)  then moves toward; along the line(C;, T;).

(b)

whereq is found from a discrete set similar join (8). Note that

the sets (8) and (9) always include at least one safe solution. By th ' s .
algorithm’s design, the straight line motion with maximum brakin (?Deflne Next Step-This procedure covers all possible cases of

. .. . eneration of a single motion step: Part D1 corresponds to motion
,q) = (—pmaz,0) is always collision free (for more details, set;gJ . . . L
(p,0) = (=pm ) y ( along M-line; D2 is a simple turn when the directions of vect¥rs

13)). : . .
[13) and (C;,T;) can be aligned in one step; D3 occurs when the turn
requires multiple steps and can be done with the maximum speed;
VI. THE ALGORITHM D4 happens when turning must be accompanied by braking:
The algorithm consists of three procedures: Mein Bodyproce-  + D1: If vector V; coincides with the direction toward;, do:
dure defines the motion toward the intermediate ta¥gewithin the if T; =T, make a step toward’; else, make a step towaffd.

time intervallt;, t;1+1 ), theDefine Next Steprocedure chooses forces + D2: If vector V; does not coincide with the direction toward
p andg, and theFind Lost Targeprocedure handles the case whenthe  T;, do: if the directions ofV;y, and (;,T;) can be aligned
intermediate target goes out of the robot's sight. A procedure called within one step, choose this step. Else, go to D3.
ComputeT;, from the VisBug algorithm [9], which computes the next ¢ D3: If a step with the maximum turn toward; and with
intermediate target; 1 and includes a test for target reachability, is ~ maximum velocity is safe, choose it. Else, go to D4.
also used. VectoV; is the current vector of velocity, aril is the e D4: If a step with the maximum turn toward; and some
robot's target. The term “safe motion” refers to the mechanism for braking is possible, choose it. Else, choose a step a&longith
determining the next robot’s positiofi;+; with the stopping path maximum brakingp = —pmax,q¢ = 0.
guarantee (see Section II). Find Lost Target: This procedure is executed whdh becomes
Main Body: The procedure is executed at each time intervahyisible. The last positiorC;, whereT; was visible, is kept in the
[ti.ti+1) and makes use of two procedurdsefine Next Ste@nd  memory untilZ; becomes visible again. A simple though inefficient
Find Lost Target strategy could be to immediately initiate a stopping path, then come
* M1: Move in the direction specified bpefine Next Stephile  back toC;, and then move directly towaff. Instead, the procedure
executingComputeT;. If T; is visible, do: if C; = T, the operates as follows: If the robot loS€s it keeps moving ahead while
procedure stops; else, T is unreachable, the procedure stopsiefining temporary intermediate targets on the visible part of the line
else, if C; = T;, go to M2. Otherwise, usEind Lost Targetto segment(C;,7;) and continuing to look forl;. If it seesT;, the
make T; visible. Iterate M1. procedure terminates, the control returns to kein Body and the
* M2: Make a step along vectdf; while executingComputéel;:  robot moves directly toward;; see Fig. 6(a). Otherwise, if the whole
if C; = T, the procedure stops; else, if the target is unreachabegment(C;, T;) becomes invisible, the robot brakes to a stop and
the procedure stops; else,df; # T;, go to M1. returns toC;, the procedure terminates, etc.; see Fig. 6(b). Together,
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these two pieces assure tHAt will not be lost. The procedure is
as follows.
« F1. If segment(C;,T;) is visible, define on it a temporary
intermediate target and move toward it while looking faf;.
If the current position is df, exit; else, ifC; lies in the segment
(C:,T3), exit. Else, go to F2.
e F2: If segment(C;,T;) is invisible, initiate a stopping path,
and then go back t@’;; exit.
Convergence:To prove convergence, we need to show that

i) at every step of the path, the algorithm guarantees collision-
free motion;

ii) the set of intermediate targefs is guaranteed to lie on the
convergent path;

iii) the overall motion planning strategy assures that the current
intermediate target will not be lost.

Together, i) and iii) assure that a path to the target positiomill be
found if one exists. Condition i) can be shown by induction; condition
ii) is provided by the VisBug mechanism [9], which also includes a
mechanism for inferring the nonreachability 6f if true; condition

i) is satisfied by the procedurEind Lost Targetof the Maximum
Turn Strategy. The following statements hold.

Proposition 2: Under the Maximum Turn Strategy algorithm, as-
suming zero velocity at the start positiéh Vs = 0, at each step of
the path, there exists at least one stopping path.

Indeed, according to our approach, the stopping path is a straight
line segment. Choosing the next step to guarantee the existence of a
(b) stopping path implies two requirements: a safe direction of motion
and a velocity value that would allow a stop within the visible area.
The latter is assured by the choice of the system parameters [see (1)
and the safety conditions in Section Ill]. As to the existence of safe
directions, we proceed by induction: We need to show that if a safe
direction exists at the start point and at an arbitrary stepen there
is a safe direction at the stgp + 1).

Since at the start poinf the velocity is zeroVs = 0, then
any direction of motion atS will be a safe direction; this gives
the basis of induction. The induction proceeds as follows. Under
the algorithm, a candidate step is accepted for execution only if its
direction guarantees a safe stop for the robot if needed. Namely, at
point C;, stepi is executed only if the resulting vect®f; ., atC;y1
will point in a safe direction. Therefore, at stép+ 1), at the least,
directionV;+1 presents a safe stopping path.

Remark: Proposition 2 will hold forVs # 0 as well if the start
point.S is known to possess at least one stopping path originating at it.

Proposition 3: The Maximum Turn Strategy is convergent.

To see this, note that by the design of the kinematic algorithm [9],
each intermediate targ@} lies on a convergent path. In additidh,
is visible at the moment when it is generated. That is, the only way
the robot can get lost is if at the next ste@s;;, point7; becomes
invisible due to the robot’s inertia or an obstacle occlusion: This
would make it impossible to generate the next intermediate target
T:+1, as required by the kinematic algorithm. However, if pdiit
does become invisible, the proceddied Lost Targetis invoked, a
set of temporary intermediate targdts , are defined, and associated
steps are executed until poiiit becomes visible again (see Fig. 6).
The setTy,, is finite since it must lie within the sensing range
of radiusr,, and the algorithm chooses eaéli,., to guarantee a
stopping path. Therefore, the robot always moves toward a point that
lies on a path that is convergent to the target

(d)

Fig. 7. In the examples, one path (indicated by the thin line) is produced VII. EXAMPLES

by the kinematic algorithm, and the other path (a thicker line) — by the . . .

maximum turn strategy, with dynamics taken into consideration; The radius The following examples in Fig. 7(a)—(d) show the performance
of vision r, is also shown. of the Maximum Turn Strategy in a simulated environment. The
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“dynamic” paths generated by the algorithm are shown in thicker Robust and Accurate Time-Optimal
lines. For comparison, paths produced under the same conditions by Path-Tracking Control for Robot Manipulators
a kinematic (here, VisBug) algorithm are shown by a thin line. (Note
that the polygonal shape of the obstacles in the examples is only for Jon Kieffer, Aidan J. Cahill, and Matthew R. James
the convenience of generating the scene; the algorithms are immune
to the obstacles’ shape).
To understand the examples, consider a simplified version of theabstract—The well-known algorithms for time-optimal trajectory plan-
relationship that appears in Section IV-Xuax = /2rvpmas: = hing are difficult to apply in practice because they rely on imperfect
\/m In the simulations, the robot’s mass and control models of the robot dynamics, they take no account of controller dy-

. . . . _namics, and they provide no connection to tracking accuracy. In this
force fma. are kept constant, €.g., an increase in sensing radius paper we propose two schemes for planning and implementing time-

would “raise” the velocityV:nq.. Radiusr, is the same in Fig. 7(a) optimal control to enable robots under computed torque control to track
and (b). A more complex scene [Fig. 7(b)] causes the robot to mopeths to a prescribed tolerance. Experimental results confirm the theories,
more “cautiously,” that is, slower; the path is tighter and closer @howing that both schemes track to a prescribed accuracy in a near time-
the obstacles. Accordingly, the time to complete the task is 221 uriimal fashion. The second scheme is shown to perform better, achieving
L ’ L cc%mplete torque utilization nearly all of the time.

(steps) in Fig. 7(a) and 232 units in Fig. 7(b), whereas the length o
paths is shorter in Fig. 7(b) than in Fig. 7(a). Index Terms—Path tracking, robotics, time-optimal control.

Fig. 7(c) and (d) illustrate that better sensing (larger resulted
in shorter time to complete the task; more crowded space resulted in
longer time (though perhaps in shorter paths). The time to complete ) ] )
the task is 193 units in Fig. 7(c) and 209 units in Fig. 7(d). Interest in the problem of controlling robots to track paths in

Note that stops along the path (indicated by sharp turns in tﬂgnimu_m time. is _motivated by the desir_e to redu_ce cycle times in
“dynamic” path) can be caused by different reasons, e.g., in Fig. 7(5)dustrlal applications such as laser cutting and high pressure water

the robot stops because its small sensing ragiuis not sufficient €t cutting. It may also be important for welding, glue dispensing, and
to see the obstacle far enough to initiate a smooth turn. spray painting operations, but only if speed is limited by the robot
actuator constraints rather than by the cutting, gluing, welding, or
painting process. In most path-tracking applications accuracy is vital,
and it is reasonable to assume that designers and manufacturers will
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