
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997 873

Incorporating Body Dynamics Into Sensor-Based
Motion Planning: The Maximum Turn Strategy

Andrei M. Shkel and Vladimir J. Lumelsky

Abstract—Most of today’s approaches to sensor-based motion planning
focus on kinematic and geometric issues and ignore the system dynamics.
Those few that address dynamics do so in a two-stage fashion by
considering one issue at the time. This work attempts to incorporate
control of body dynamics into the sensor-based motion planning process.
A point mobile robot is assumed to operate in a planar environment with
unknown arbitrary stationary obstacles. Based on its current velocity and
sensory data about the surrounding obstacles, the robot plans its motion
to locally maximize the turning angle toward the current intermediate
target. An optimal braking procedure takes care of sudden potential
collisions by guaranteeing a safe emergency stopping path. Given the
constraints on robot’s dynamics, sensing, and control means, conditions
are formulated for generating trajectories that guarantee convergence
and the robot’s safety at all times. The approach calls for continuous
computation and is fast enough for real-time implementation. Simulated
examples demonstrate its performance.

Index Terms—Control, dynamics, obstacle avoidance, sensor-based
motion planning

I. INTRODUCTION

When planning motion for a machine, such as a robot, operating
in a complex environment, one additional issue to consider is the
machine’s dynamics. A piece of trajectory that makes sense from the
standpoint of the destination and the surrounding objects may not be
feasible because of the effects of inertia and control limitations. This
work studies those effects, with the goal of designing provably correct
sensor-based algorithms for operating in an uncertain environment.
Since the uncertainty implies that the global optimality is not feasible,
it is natural to attempt a local optimization. A salient feature of the
strategy suggested here is that while maintaining a maximum velocity
that allows collision-free motion among the surrounding obstacles, the
robot will attempt to locally maximize the turning angle toward the
required direction of motion.

We consider a mobile robot operating in two-dimensional (2-D)
physical space filled with a locally finite number of unknown sta-
tionary obstacles of arbitrary shapes. Planning is done in small steps
(say, 30 or 50 times per second), resulting in continuous motion. The
robot is equipped with sensors, such as vision or range finders, which
allow it to detect and measure distances to surrounding objects within
its sensing range—equal to, say, 20 or 50 steps. Therefore, unless
obstacles occlude one another, the robot can see them far enough
ahead to plan appropriate actions.

In addition to the usual problems of “where to go” and how to
guarantee convergence in view of incomplete information, the robot’s
mass and velocity bring about the dynamic component of planning.
A step that is reasonable from the standpoint of reaching the target
position—for example, a sharp turn—may not be physically realizable

Manuscript received October 30, 1995; revised October 1, 1996. This work
was supported in part by the Department of Energy (Sandia Labs) under
Grant 18-4379C and the National Oceanic and Atmospheric Administration
under Grant NA46RG048. This paper was recommended for publication by
Associate Editor M. Peshkin and Editor S. Salcudean upon evaluation of the
reviewers’ comments.

The authors are with the Department of Mechanical Engineering, University
of Wisconsin, Madison, WI 53706 USA (email: shkel@robios.me.wisc.edu;
lumelsky@engr.wisc.edu)

Publisher Item Identifier S 1042-296X(97)07798-7.

because of the robot’s inertia. Given the lack of information about
the surroundings, this translates into a safety issue—one needs a
guarantee of astopping pathat any time in case a sudden obstacle
makes it impossible to continue on the intended path.

This is not unlike the decisions a human jogger faces when going
for a morning run in an urban neighborhood. The jogger’s speed,
mass, quality of vision, and speed of reaction to sudden changes (the
quality of control) will all be tied into some relationship, affecting the
real-time decision-making process. Note that sensing, local planning,
global planning, and actual movement in this process take place
simultaneously and continuously. Locally, when the object is first
noticed, unless a right relationship is maintained between the jogger’s
mass, velocity, and the distance to the object, a collision may occur;
for example, a bigger mass may dictate better (farther) sensing
to maintain the same velocity. Globally, unless a “grand plan” is
followed, convergence may be lost.

Although system dynamics and sensor-based motion control are
tightly coupled, little attention has been paid to this connection in
the literature. Most of the existing approaches deal solely with the
system kinematics and geometry and ignore its dynamic properties.
Consequently, they can be used only in applications where the effect
of speeds and masses is negligible. One reason for the difficulty is that
the methods of motion planning tend to rely on tools from geometry
and topology, which are not easily connected to the tools common
to control theory.

Motion planning algorithms usually adhere to one of two paradigms
that differ in their assumptions about input information. In the first
paradigm, which is calledmotion planning with complete information
(or the Piano Mover’s problem), one assumes full information and
algebraic representation of objects; motion planning is a one-time,
off-line operation. In the second paradigm, which is calledmotion
planning with incomplete information(or sensor-based planning),
objects can be of arbitrary shape, and input information is of
local character, such as from a range finder or vision. By making
use of sensor feedback, this paradigm fits the on-line character
of control theory methods well. Both paradigms give rise to two
types of strategies: those that consider only kinematic and geometric
issues—for brevity, we call themkinematic approaches—and those
that take into account the system dynamics (we call themdynamic
approaches).

Dynamics and control constraints can be incorporated into the
Piano Mover’s paradigm, for example, by dividing planning into two
stages—first, one finds a path that satisfies geometric constraints and
then modifies it to fit the dynamics constraints [1], possibly in a
time-optimal fashion [2], [3]. One of the first attempts to explicitly
incorporate body dynamics into the planning process were made by
O’Dunlaing for the one-dimensional (1-D) case [4] and by Canny
et al [5] in their kinodynamic planning approach for the 2-D case.
The latter technique, although it operates in the context of complete
information, is somewhat akin to our approach below in that the
velocity and acceleration components are assumed to be bounded
with respect to a fixed (absolute) reference system.

A number of strategies make use of the notion of artificial potential
fields. Although attempts have been made to design such systems
based on real-time sensory data [6], these strategies usually require
complete information and analytical representation of obstacles; mo-
tion control makes use of “repulsive forces” modeled via a potential
field associated with obstacles and of “attractive forces” associated
with the goal position (see, e.g., [7]). A typical convergence issue

1042–296X/97$10.00 1997 IEEE

874 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

here is how to avoid possible local minima in the potential field.
An interesting approach called active reflex control [8] attempts to
combine the potential field method with the handling of the robot
dynamics; the emphasis is on local collision avoidance and on filtering
out infeasible control commands generated by a “kinematic” planner.

Within the paradigm with incomplete information (which this work
adheres to), a variety of kinematic techniques originate in maze-
searching strategies [9], [10]. When applicable, they are typically
fast, can be used in real time, and guarantee convergence; obstacles
may be of arbitrary shapes.

To design a provably correctdynamicalgorithm for sensor-based
motion planning, one needs a single control mechanism—separating
it into stages is likely to destroy convergence. Convergence has two
faces: Globally, one has to guarantee finding a path to the target if
one exists; locally, one needs an assurance of collision avoidance in
view of the robot inertia. The former can be borrowed from kinematic
algorithms; the latter requires an explicit consideration of dynamics.

In terms of the planning strategy, note that in spite of sufficient
knowledge about the obstacles within the sensing range, at a given
step, it would not be wise to address the problem as one with
complete information and attempt to compute the whole subpath
in the sensing range. The main reason for that is that only the
first step of the subpath is likely to be executed as new sensing
data at the next step will in general require path adjustment. That
is, computing this whole subpath would be largely computational
waste. Besides, computing this subpath would require solving a
rather difficult optimal motion control problem. Given our various
constraints, such as a limited operating area and obstacles, the solution
would likely be computationally expensive, even for our simple
model.

As usually in maze-searching strategies (see, e.g., [9]), sensory data
will be only used for planning the immediately following step(s). No
explicit (partial or full) model of the environment will be built. From
the start pointS, the algorithm will work its way toward the target
pointT sequentially in small steps, each of which i) lies on a globally
convergent path and ii) satisfies the robot dynamics constraints.

The general strategy is as follows: At its current positionCi,
the robot will identify a visible intermediate target pointTi that is
guaranteed to lie on a convergent path and is far enough from the
robot—normally, at the sensing range boundary. Since the direction
toward Ti may differ from the current velocity vectorVi, moving
towardTi may require a sharp turn, which may or may not be possible
due to the system dynamics. If the angle betweenVi and the direction
towardTi is larger than the maximum turn the robot can make in one
step, the robot will attempt a fast smooth maneuver by turning at the
maximum rate until the directions align, hence the namemaximum
turn strategy. (A case of time-optimal local optimization for the same
task can be found in [11]). Once a step is executed, new sensing data
appear, a new pointTi+1 is sought, and so on. That is, the actual
path and the path that contains pointsTi are different paths—with the
new sensory data at the next step, the robot may or may not actually
pass through the pointTi.

The fact that no information is available beyond the sensing range
dictates caution. First, to guarantee safety, the whole stopping path
must lie inside the sensing range. Since some of this area may be
occupied or occluded by obstacles, the stopping path must lie in its
visible part. In addition, since the intermediate targetTi is chosen as
the farthest point based on the information available, the robot needs
a guarantee of stopping atTi, even if it does not intend to do so. That
is, each step is to be planned as the first step of a trajectory that, given
the current position, velocity, and control constraints, would bring the
robot to a halt atTi. Within one step, the time to acquire sensory data
and to calculate necessary controls must fit into the step cycle.

Fig. 1. Example of a conflict between the performance of a kinematic
algorithm (the solid line path) and the effects of dynamics (the dotted piece
of trajectory at P).

Below, the model, terminology used, and the problem statement
are introduced in Section II, followed by a sketch of the suggested
approach in Section III. After analysis of the system dynamics
in Sections IV and V, the algorithm proper is presented, and its
convergence properties are discussed in Section VI. A simulated
example of the algorithm performance is given in Section VII.

II. THE PROBLEM STATEMENT

The robot operates in a plane; the scene may include a locally
finite number of static obstacles. Each obstacle is bounded by a simple
closed curve of arbitrary shape and of finite length, such that a straight
line will cross it only in a finite number of points. Obstacles do not
touch each other (if they do, they are considered to be one obstacle).
The total number of obstacles need not be finite.

The robot’s sensors provide it with information about its surround-
ings within thesensing range, which is a disc of radiusrv (“radius of
vision”) centered at its current locationCi. Namely, it can assess the
distance to the nearest obstacle in any direction within the sensing
range. At momentti, the robot’s input information includes its current
velocity vectorVi, coordinates ofCi and of the target pointT , and
possibly few other points of interest, such as an intermediate target
Ti. The task is to move, collision-free, from pointS (start) to point
T (target); see Fig. 1.

The robot is apoint massof massm. The motion control means
include two components of the acceleration vectoru = f

m
= (p; q),

wheref is the force applied. Although the units of(p; q) are those
of acceleration, by normalizing tom = 1, we can refer top
and q as control forces, each within its fixed rangejpj � pmax,
jqj � qmax; p andq are the only external forces acting on the system.
Force p controls forward (or backward when braking) motion; its
positive direction coincides with the velocity vectorV. Forceq is
perpendicular top, forming a right pair of vectors, and is equivalent
to the steering control (rotation of vectorV); see Fig. 2. Constraints
on p andq imply a constraint on the path curvature. The point mass
assumption implies that the robot’s rotation with respect to its “center
of mass” has no effect on the system dynamics. There is no friction;
for example, valuesp = q = 0 andV 6= 0 will result in a straight
line constant velocity motion.1

Robot motion is controlled instepsi = 0; 1; 2; . . . Each step takes
time �t = ti+1 � ti = const; its length depends on the robot’s

1If needed, other external forces and constraints can be handled within this
model, using, for example, the technique described in [12].

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997 875

Fig. 2. Path coordinate frame(t;n) is used in the analysis of dynamic
effects of robot motion. The world frame(x;y), with its origin at the start
point S, is used in the obstacle detection and path planning analysis.

velocity within the step. Stepsi andi+ 1 start at timesti andti+1,
respectively;C0 = S. While moving toward locationCi+1, the robot
computes necessary controls for stepi+ 1 using the current sensory
data and executes them atCi+1. The finite time necessary within one
step for acquiring sensory data, calculating the controls, and executing
the step must fit into the step cycle (see details in [13]). We define
two coordinate systems (follow Fig. 2):

• the world coordinate frame(x;y) fixed at pointS;
• thepath coordinate frame(t;n), which describes the motion of

point mass at any moment� 2 [ti; ti+1) within stepi. Its origin
is attached to the robot; axist is aligned with the current velocity
vectorV; axis n is normal tot, i.e., whenV = 0, the frame
is undefined. (One may note that together with axisb = t� n,
the triple (t;n;b) forms the knownFrenet trihedron, with the
plane oft andn being theosculating plane[14]).

III. T HE MAXIMUM TURN STRATEGY

Define M-line (Main line) as the straight line segment(ST); see
Fig. 1; this is the robot’s desired path. When, while moving along
the M-line, the robot senses an obstacle on its way, this point on the
obstacle boundary is called ahit pointH. The corresponding M-line
point “on the other side” of the obstacle is aleave pointL.

The planning procedure will be executed at each step of the robot’s
path. As said, any provable maze-searching algorithm can be used for
the kinematic part, as long as it allows distant sensing. For specificity,
we use here the VisBug algorithm [9], which alternates between these
two steps (see Fig. 1).

1) Walk from pointS toward pointT along the M-line until detect
an obstacle crossing the M-line.

2) Using sensing data, define the farthest visibleintermediate
target Ti on the obstacle boundary and on a convergent path;
make a step towardTi; iterate Step 2 until M-line is detected;
go to Step 1.

In Fig. 1, note that under the VisBug procedure, while trying to
pass the obstacle from the left, at pointP , the robot makes a sharp
turn. Such motion is not possible in a system with dynamics. To
this, a control procedure for handling dynamics is added. At times,
because of inertia or occluding obstacles, the current intermediate
targetTi may go out of the robot’s sight. In such cases, the robot
will be designatingtemporary intermediate targetsand use them until
it can spot pointTi again. The actual algorithm also includes other
mechanisms, such as a finite-time target reachability test and local
path optimization.

Safety Considerations:Dynamics affects safety. Given the uncer-
tainty beyond the distancerv from the robot, a guaranteedstopping

path is the only way to assure collision-free motion. Unless this
“last resort” path is available, new obstacles may appear in the
sensing range at the next step, and a collision may occur. A stopping
path implies a safe direction of motion and a safe velocity value.
We choose the stopping path to be a straight line segment along
the step’s velocity vector. A candidate step is “approved” only if
its direction provides the stopping path. In this sense, the overall
planning procedure is based on a one-step analysis.2 The procedure
for a detour around a sudden obstacle operates in a similar way.

For the continuous case, allowing a straight line stopping path with
the stop point at the sensing range boundary implies the following
relationship between the velocityV, massm, and controlsu =

(p; q).

V � 2pd (1)

whered is the distance from the current position to the stop point.
For example, an increase in the radius of visionrv allows one to raise
the maximum velocity by the virtue of providing more information
farther along the path. Some ramifications of discrete control on this
relationship are analyzed in Section IV.

Convergence:Because of dynamics, the convergence mechanism
borrowed from a kinematic algorithm—here VisBug [9]—needs some
modification. VisBug assumes that the intermediate target point is
either on the boundary of the obstacle or on the M-line and is
visible. However, the robot’s inertia may cause it to move so that the
intermediate targetTi will become invisible either because it goes
outside the sensing rangerv (as after pointP ; see Fig. 1) or due to
occluding obstacles (as in Fig. 6), with the danger that the robot may
lose it and the path convergence with it. One possible solution is to
keep the velocity low enough to avoid such overshoots—a high price
in efficiency to pay. The solution chosen is to keep the velocity high
and, if the intermediate targetTi does go out of sight, modify the
motion locally untilTi is found again (Section VI).

IV. V ELOCITY CONSTRAINTS. MINIMUM TIME BRAKING

By substitutingpmax for p and rv for d into (1), obtain the
maximum velocityVmax. Since the maximum distance for which
information is available isrv, an emergency stop should be planned
for that distance. We show that moving with the maximum speed
(certainly a desired feature) actually guarantees a minimum-time
stop at the boundary. The suggested braking procedure, developed in
Section IV-C, makes use of an optimization scheme that is sketched
briefly in Section IV-B.

A. Velocity Constraints

It is easy to see (follow an example in Fig. 3) that in order to
guarantee a safe stopping path under discrete control, the maximum
velocity must be less thanVmax. This velocity, which is called
permitted maximum velocityVpmax, can be found from the following
condition: If V = Vpmax at point C2 (and, thus, atC1), we can
guarantee the stop at the sensing range boundary (pointB1; see
Fig. 3). Recall that velocityV is generated atC1 by the control
force p. Let jC1C2j = �x; then

�x = Vpmax � �t

VB = Vpmax � pmaxt:

2While a deeper, multistep analysis could occasionally produce locally
shorter paths, it would not add in safety and is not likely to justify the steep
rise in computational expenses.

876 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

Fig. 3. With sensing radiusrv , obstacleO1 is not visible from pointC1.
Because of the discrete control, velocityV1 commanded atC1 will be constant
during the step interval(C1; C2). Therefore, ifV1 = Vmax at C1, then
V2 = Vmax, and the robot will not be able to stop atB1, causing collision
with O1. The permitted velocity, thus, must beVpmax < Vmax.

Fig. 4. Depending on whether the initial position(V0; x0) in the phase space
(V; x) is above or below the switch curves, there are two cases to consider.
The optimal solution corresponds to moving first from(V0; x0) to the point
of switching (Vs; xs) and then along the switch line to the origin.

Since we requireVB = 0, then t =
V

p
. For the segment

jC2B1j = rv � �x, we have

rv � �x = Vpmax � t�
pmaxt

2

2
:

From these equations, the expression for the maximum permitted
velocity Vpmax can be obtained,

Vpmax = p2max�t
2 + 2pmaxrv � pmax�t

As expected,Vpmax < Vmax and converges toVmax with �t ! 0.

B. Optimal Straight Line Motion

The following sketch of the optimization scheme is used below in
the development of the braking procedure; for details, refer to [11].
Consider a dynamic system described by a second-order differential
equation �x = p(t), where kp(t)k � pmax, and p(t) is a scalar
control function. Assume that the system moves along a straight line.
By introducing state variablesx andV , the system equations can be

rewritten as _x = V and _V = p(t); it is convenient to analyze the
system behavior in thephase space(V; x).

The goal of control is to move the system from its initial position
(x(t0); V (t0)) to the final position(x(tf); V (tf)). For convenience,
choosex(tf) = 0. We are interested in an optimal control strategy
that would perform this motion in minimum timetf , arriving atx(tf)
with zero velocityV (tf) = 0. This optimal solution can be obtained
in closed form; it depends on the above/below relation of the initial
position with respect to two parabolas that define the switch curves
in the phase plane(V; x)

x =�
V 2

2pmax

; V � 0 (2)

x =
V 2

2pmax

; V � 0: (3)

This simple result in optimal control (see. e.g, [15]), which is
summarized in the following control law, is used in the next section to
develop the braking procedure for the emergency stop; the procedure
guarantees the robot’s safety while allowing it to cruise with the
maximum velocity (follow Fig. 4).

Control Law: If, in the phase space, the initial position(V0; x0) is
above the switch curve (2), move first along the parabola defined by
controlp̂ = �pmax toward curve (2) and then with controlp̂ = pmax

along the curve to the origin. If point(V0; x0) is below the switch
curve, first move with control̂p = pmax toward the switch curve (3)
and then with control̂p = �pmax along the curve to the origin.

C. The Braking Procedure

We now turn to the calculation of time necessary for stopping when
moving along the stopping path. It follows from the argument above
that if at the moment when the robot decides to stop its velocity is
V = Vpmax, then it will need to apply maximum braking all the way
until the stop. This will define uniquely the time to stop. However, if
V < Vpmax, then there is a variety of braking strategies and, hence,
of different times to stop.

Consider again the example in Fig. 3; assume that at pointC2,
V2 < Vpmax. What is theoptimal braking strategy, the one that
guarantees safety while bringing the robot in minimum time to a
stop at the boundary of the sensing range? (While this strategy is not
necessarily what one would want to implement, it defines the limit
velocity profile the robot can maintain for safe braking.) The answer
is given by solving an optimization problem for a single degree-of-
freedom system. It follows from the control law that the optimal
solution corresponds to at most two curvesI and II in the phase
space(V; x) [see Fig. 5(a)] and to at most one control switch, from
p̂ = pmax on line I to p̂ = �pmax on line II, given by (2) and (3).
For example, if braking starts with the initial valuesx = �rv and
0 � V0 < Vmax, the system will first move, with control̂p = pmax,
along the parabolaI to the parabolaII [see Fig. 5(a)]

x(V) =
V 2 � V 2

0

2pmax

� r

and then, with control̂p = �pmax, toward the origin along the
parabolaII

x(V) =
V 2

2pmax

:

The optimal timetb of braking is a function of the initial velocity
V0, radius of visionrv, and the control limitpmax,

tb(V0) =
2V 2

0
+ 4pmaxrv � V0

pmax

: (4)

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997 877

(a)

(b)

Fig. 5. (a) Optimal braking strategy requires at most one switch of control.
(b) Corresponding time-velocity relation.

Function tb(V0) has a minimum atV0 = Vmax =
p
2pmaxrv,

which is exactly the upper bound on the velocity given by (1); it
is decreasing on the intervalV0 2 [0; Vmax] and increasing when
V0 > Vmax; see Fig. 5(b). For the intervalV0 2 [0; Vmax], which
is of interest to us, the above analysis leads to a somewhat counter-
intuitive conclusion.

Proposition 1: For the initial velocity V0 in the rangeV0 2
[0; Vmax], the time necessary for stopping at the boundary of the
sensing range is a monotonically decreasing function ofV0, with its
minimum atV0 = Vmax.

Notice that this result (see also Fig. 5) leaves a comfortable margin
of safety. Even if, at the moment when the robot sees an obstacle,
it moves with the maximum velocity, it can still stop safely before
the obstacle. If the robot’s velocity is below the maximum, it has
different options for braking, including even one of speeding up
before actual braking. Assume, for example, we want to stop in
minimum time at the sensing range boundary [the origin in Fig. 5(a)];
consider two initial positions: i)x = �rv ; V = V 1

0 , and ii)
x = �rv ; V = V 2

0 ;V 2
0 > V 1

0 . Then, according to Proposition 1,
in case i), this time is bigger than in case ii). Note that because of the
discrete control, it is the permitted maximum velocityVpmax that is

to be substituted into (4) to obtain the minimum time.

V. DYNAMICS AND COLLISION AVOIDANCE

The following analysis consists of two parts. First, the control
constraints are incorporated into the mobile robot model, and the
transformation from the moving path coordinate frame to the world
frame is developed (see Section II). Then, the maximum turn strat-
egy is presented, an incremental decision-making mechanism that
determines the forcesp and q at each step.

A. Transformation from Path Frame to World Frame

The remainder of this section refers to the time interval[ti; ti+1);
therefore, indexi can be dropped. Let(x; y) 2 R2 be the robot’s
position in the world frame, and let� be the (slope) angle between
the velocity vectorV = (Vx; Vy) = (_x; _y) andx-axis of the world
frame (see Fig. 2). The planning process involves computation of
the controlsu = (p; q), which for every step defines the velocity
vector and eventually the pathx = (x; y) as a function of time. The
normalized equations of motion are

�x = p cos � � q sin �

�y = p sin � + q cos �:

The angle� between vectorV and thex-axis of the world frame
is found as

� =
arctan(

V

V
); Vx � 0

arctan(
V

V
) + �; Vx < 0:

To find the transformation from the path frame to the world frame
(x;y), present the velocity in the path frame asV = V t. Angle �

is defined as the angle betweent and the positive direction of the
x axis. Given that the control forcesp andq act along thet andn
directions, respectively, the equations of motion with respect to the
path frame are

_V = p;

_� = q=V:

Since the control forces are constant over time interval[ti; ti+1),
within this interval, the solution forV (t) and�(t) becomes

V (t) = V0 + pt;

�(t) = �0 +
q log(1 + tp

V
)

p
(5)

where �0 and V0 are constants of integration and are equal to the
values of�(ti) andV (ti), respectively. By parameterizing the path
by the value and direction of the velocity vector, the path can be
mapped onto the world frame using the vector integral equation

r(t) =
t

t

V � dt: (6)

Here,r(t) = (x(t); y(t)), andV = (V �cos(�); V � sin(�)) are the
projections of vectorV onto the world frame(x; y). After integrating
(6), we obtain the set of solutions in the form

x(t) =
2p cos �(t) + q sin �(t)

4p2 + q2
V
2(t) + A

y(t) = �q cos �(t)� 2p sin �(t)

4p2 + q2
V
2(t) +B (7)

where termsA and B are

A = x0 � V 2 (2 p cos(�) + q sin(�))

4 p2 + q2

B = y0 +
V 2 (q cos(�)� 2 p sin(�))

4 p2 + q2
:

878 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

Equations (7) are directly defined by the control variablesp and
q; V (t) and �(t) therein are given by (5).

In general, (7) describes a spiral curve. Note two special cases.
When p 6= 0; q = 0, (7) describes a straight line motion along the
vector of velocity; whenp = 0; q 6= 0, (7) produces a circle of radius
V 2
0 =jqj centered at the point(A;B).

B. Selection of Control Forces

We now turn to the control law that guides the selection of forces
p and q at each stepi for the time interval[ti; ti+1). To assure
a reasonably fast convergence to the intermediate targetTi, those
forces are chosen such as to align, as fast as possible, the direction of
the robot’s motion with that towardTi. First, find a solution among
the controls(p; q) such that

(p; q) 2 f(p; q) : p 2 [�pmax; +pmax]; q = �qmaxg (8)

where q = +qmax if the intermediate targetTi lies in the left
semiplane andq = �qmax if it lies in the right semiplane, with
respect to the vector of velocity. That is, forcep is chosen to keep
the maximum velocity allowed by the surrounding obstacles. To this
end, a discrete set of valuesp is tried until a step that guarantees a
collision-free stopping path is found. At a minimum, the set should
include values�pmax; 0; and+pmax; the more values that are tried,
the closer the resulting velocity is to the maximum sought. Force
q is chosen on the boundary to produce a maximum turn in the
appropriate direction. On the other hand, if because of obstacles no
adequate controls in the range (8) can be chosen, this means that
maximum braking should be applied. Then, the controls are chosen
from the set

(p; q) 2 f(p; q) : p = �pmax; q 2 (�qmax; 0]g (9)

whereq is found from a discrete set similar top in (8). Note that
the sets (8) and (9) always include at least one safe solution. By the
algorithm’s design, the straight line motion with maximum braking
(p; q) = (�pmax; 0) is always collision free (for more details, see
[13]).

VI. THE ALGORITHM

The algorithm consists of three procedures: TheMain Bodyproce-
dure defines the motion toward the intermediate targetTi within the
time interval[ti; ti+1), theDefine Next Stepprocedure chooses forces
p andq, and theFind Lost Targetprocedure handles the case when the
intermediate target goes out of the robot’s sight. A procedure called
ComputeTi, from the VisBug algorithm [9], which computes the next
intermediate targetTi+1 and includes a test for target reachability, is
also used. VectorVi is the current vector of velocity, andT is the
robot’s target. The term “safe motion” refers to the mechanism for
determining the next robot’s positionCi+1 with the stopping path
guarantee (see Section III).

Main Body: The procedure is executed at each time interval
[ti; ti+1) and makes use of two procedures:Define Next Stepand
Find Lost Target:

• M1: Move in the direction specified byDefine Next Stepwhile
executingComputeTi. If Ti is visible, do: if Ci = T , the
procedure stops; else, ifT is unreachable, the procedure stops;
else, ifCi = Ti, go to M2. Otherwise, useFind Lost Targetto
makeTi visible. Iterate M1.

• M2: Make a step along vectorVi while executingComputeTi:
if Ci = T , the procedure stops; else, if the target is unreachable,
the procedure stops; else, ifCi 6= Ti, go to M1.

(a)

(b)

Fig. 6. Because of inertia, the robot here temporarily “loses” the intermediate
targetTi. In (a), it keeps moving around the obstacle until it spotsTi and
then continues toward it. In (b), when the whole segment(Ci; Ti) becomes
invisible at pointCk, the robot stops at pointCk+1, returns back toCi, and
then moves towardTi along the line(Ci; Ti).

Define Next Step:This procedure covers all possible cases of
generation of a single motion step: Part D1 corresponds to motion
along M-line; D2 is a simple turn when the directions of vectorsVi

and (Ci; Ti) can be aligned in one step; D3 occurs when the turn
requires multiple steps and can be done with the maximum speed;
D4 happens when turning must be accompanied by braking:

• D1: If vectorVi coincides with the direction towardTi, do:
if Ti = T , make a step towardT ; else, make a step towardTi.

• D2: If vectorVi does not coincide with the direction toward
Ti, do: if the directions ofVi+1 and (Ci; Ti) can be aligned
within one step, choose this step. Else, go to D3.

• D3: If a step with the maximum turn towardTi and with
maximum velocity is safe, choose it. Else, go to D4.

• D4: If a step with the maximum turn towardTi and some
braking is possible, choose it. Else, choose a step alongVi with
maximum brakingp = �pmax; q = 0.

Find Lost Target: This procedure is executed whenTi becomes
invisible. The last positionCi, whereTi was visible, is kept in the
memory untilTi becomes visible again. A simple though inefficient
strategy could be to immediately initiate a stopping path, then come
back toCi, and then move directly towardTi. Instead, the procedure
operates as follows: If the robot losesTi, it keeps moving ahead while
defining temporary intermediate targets on the visible part of the line
segment(Ci; Ti) and continuing to look forTi. If it seesTi, the
procedure terminates, the control returns to theMain Body, and the
robot moves directly towardTi; see Fig. 6(a). Otherwise, if the whole
segment(Ci; Ti) becomes invisible, the robot brakes to a stop and
returns toCi, the procedure terminates, etc.; see Fig. 6(b). Together,

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997 879

(a)

(b)

(c)

(d)

Fig. 7. In the examples, one path (indicated by the thin line) is produced
by the kinematic algorithm, and the other path (a thicker line) — by the
maximum turn strategy, with dynamics taken into consideration; The radius
of vision rv is also shown.

these two pieces assure thatTi will not be lost. The procedure is
as follows.

• F1: If segment(Ci; Ti) is visible, define on it a temporary
intermediate targetT t

i and move toward it while looking forTi.
If the current position is atT , exit; else, ifCi lies in the segment
(Ci; Ti), exit. Else, go to F2.

• F2: If segment(Ci; Ti) is invisible, initiate a stopping path,
and then go back toCi; exit.

Convergence:To prove convergence, we need to show that

i) at every step of the path, the algorithm guarantees collision-
free motion;

ii) the set of intermediate targetsTi is guaranteed to lie on the
convergent path;

iii) the overall motion planning strategy assures that the current
intermediate target will not be lost.

Together, ii) and iii) assure that a path to the target positionT will be
found if one exists. Condition i) can be shown by induction; condition
ii) is provided by the VisBug mechanism [9], which also includes a
mechanism for inferring the nonreachability ofT , if true; condition
iii) is satisfied by the procedureFind Lost Targetof the Maximum
Turn Strategy. The following statements hold.

Proposition 2: Under the Maximum Turn Strategy algorithm, as-
suming zero velocity at the start positionS, VS = 0, at each step of
the path, there exists at least one stopping path.

Indeed, according to our approach, the stopping path is a straight
line segment. Choosing the next step to guarantee the existence of a
stopping path implies two requirements: a safe direction of motion
and a velocity value that would allow a stop within the visible area.
The latter is assured by the choice of the system parameters [see (1)
and the safety conditions in Section III]. As to the existence of safe
directions, we proceed by induction: We need to show that if a safe
direction exists at the start point and at an arbitrary stepi, then there
is a safe direction at the step(i + 1).

Since at the start pointS the velocity is zeroVS = 0, then
any direction of motion atS will be a safe direction; this gives
the basis of induction. The induction proceeds as follows. Under
the algorithm, a candidate step is accepted for execution only if its
direction guarantees a safe stop for the robot if needed. Namely, at
pointCi, stepi is executed only if the resulting vectorVi+1 atCi+1

will point in a safe direction. Therefore, at step(i+ 1), at the least,
directionVi+1 presents a safe stopping path.

Remark: Proposition 2 will hold forVS 6= 0 as well if the start
pointS is known to possess at least one stopping path originating at it.

Proposition 3: The Maximum Turn Strategy is convergent.
To see this, note that by the design of the kinematic algorithm [9],

each intermediate targetTi lies on a convergent path. In addition,Ti

is visible at the moment when it is generated. That is, the only way
the robot can get lost is if at the next stepsCi+1, point Ti becomes
invisible due to the robot’s inertia or an obstacle occlusion: This
would make it impossible to generate the next intermediate target
Ti+1, as required by the kinematic algorithm. However, if pointTi

does become invisible, the procedureFind Lost Targetis invoked, a
set of temporary intermediate targetsT t

i+1 are defined, and associated
steps are executed until pointTi becomes visible again (see Fig. 6).
The setT t

i+1 is finite since it must lie within the sensing range
of radius rv, and the algorithm chooses eachT t

i+1 to guarantee a
stopping path. Therefore, the robot always moves toward a point that
lies on a path that is convergent to the targetT .

VII. EXAMPLES

The following examples in Fig. 7(a)–(d) show the performance
of the Maximum Turn Strategy in a simulated environment. The

880 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

“dynamic” paths generated by the algorithm are shown in thicker
lines. For comparison, paths produced under the same conditions by
a kinematic (here, VisBug) algorithm are shown by a thin line. (Note
that the polygonal shape of the obstacles in the examples is only for
the convenience of generating the scene; the algorithms are immune
to the obstacles’ shape).

To understand the examples, consider a simplified version of the
relationship that appears in Section IV-A,Vmax =

p
2rvpmax =

2rv � fmax=m. In the simulations, the robot’s massm and control
force fmax are kept constant, e.g., an increase in sensing radiusrv
would “raise” the velocityVmax. Radiusrv is the same in Fig. 7(a)
and (b). A more complex scene [Fig. 7(b)] causes the robot to move
more “cautiously,” that is, slower; the path is tighter and closer to
the obstacles. Accordingly, the time to complete the task is 221 units
(steps) in Fig. 7(a) and 232 units in Fig. 7(b), whereas the length of
paths is shorter in Fig. 7(b) than in Fig. 7(a).

Fig. 7(c) and (d) illustrate that better sensing (largerrv) resulted
in shorter time to complete the task; more crowded space resulted in
longer time (though perhaps in shorter paths). The time to complete
the task is 193 units in Fig. 7(c) and 209 units in Fig. 7(d).

Note that stops along the path (indicated by sharp turns in the
“dynamic” path) can be caused by different reasons, e.g., in Fig. 7(a),
the robot stops because its small sensing radiusrv is not sufficient
to see the obstacle far enough to initiate a smooth turn.

REFERENCES

[1] Z. Shiller and H. H. Lu, “Computation of path constrained time optimal
motions along specified paths,”ASME J. Dyn. Syst., Meas. Contr., vol.
114, no. pp. 34–40, Mar. 1992.

[2] J. Bobrow, “Optimal robot path planning using the minimum-time
criterion,” IEEE J. Robot. Automat., vol. 4, pp. 443–450, Aug. 1988.

[3] Z. Shiller and S. Dubowsky, “On computing the global time optimal
motions of robotic manipulators in the presence of obstacles,”IEEE
Trans. Robot. Automat., vol. 7, pp. 785–797, 1991.

[4] C. O’Dunlaing, “Motion planning with inertial constraints,”Algorith-
mica, vol. 2, no. 4, 1987.

[5] J. Canny, A. Rege, and J. Reif, “An exact algorithm for kinodynamic
planning in the plane,” inProc. 6th Annu. Symp. Comput. Geometry,
Berkeley, CA, June 1990.

[6] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots.Int. J. Robot. Res., vol. 5, no. 1, pp. 90–99, 1986.

[7] C. De Medio and G. Oriolo, “Robot obstacle avoidance using vortex
fields,” in Advances in Robot Kinematics, S. Stifter and J. Lenarcic,
Eds. New York: Springer-Verlag, 1991.

[8] T. Wikman, M. Branicky, and W. Newman, “Reflexive collision avoid-
ance: A generalized approach,” inProc. IEEE Int. Conf. Robot. Automat.,
Raleigh, NC, May 1993.

[9] V. Lumelsky and T. Skewis, “Incorporating range sensing in the robot
navigation function,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp.
1058–1069, 1990.

[10] A. Sankaranarayanan and M. Vidyasagar, “Path planning for moving a
point object amidst unknown obstacles in a plane: A new algorithm and
a general theory for algorithm development,” inProc. 29th IEEE Int.
Conf. Decision Contr., Honolulu, HI, 1990.

[11] A. Shkel and V. Lumelsky, “The Jogger’s problem: Control of dynamics
in real-time motion planning,”Automatica, vol. 33, pp. 1219–1233, July
1997.

[12] T. Fraichard and A. Scheuer, “Car-like robots and moving obsta-
cles,” in Proc. IEEE Int. Conf. Robot. Automat., San Diego, CA, May
1994.

[13] A. Shkel and V. Lumelsky, “The role of time constraints in the design
of control for the Jogger’s problem,” inProc. IEEE Int. Conf. Decision
Contr., New Orleans, LA, Dec. 1995.

[14] G. Korn and T. Korn,Mathematical Handbook. New York: McGraw-
Hill, 1968.

[15] L. Hocking, Optimal Control. Oxford, U.K.: Clarendon, 1991.

Robust and Accurate Time-Optimal
Path-Tracking Control for Robot Manipulators

Jon Kieffer, Aidan J. Cahill, and Matthew R. James

Abstract—The well-known algorithms for time-optimal trajectory plan-
ning are difficult to apply in practice because they rely on imperfect
models of the robot dynamics, they take no account of controller dy-
namics, and they provide no connection to tracking accuracy. In this
paper we propose two schemes for planning and implementing time-
optimal control to enable robots under computed torque control to track
paths to a prescribed tolerance. Experimental results confirm the theories,
showing that both schemes track to a prescribed accuracy in a near time-
optimal fashion. The second scheme is shown to perform better, achieving
complete torque utilization nearly all of the time.

Index Terms—Path tracking, robotics, time-optimal control.

I. INTRODUCTION

Interest in the problem of controlling robots to track paths in
minimum time is motivated by the desire to reduce cycle times in
industrial applications such as laser cutting and high pressure water
jet cutting. It may also be important for welding, glue dispensing, and
spray painting operations, but only if speed is limited by the robot
actuator constraints rather than by the cutting, gluing, welding, or
painting process. In most path-tracking applications accuracy is vital,
and it is reasonable to assume that designers and manufacturers will
specify precision using an absolute tolerance on tracking error.

Well-known approaches to planning time-optimal trajectories for
prescribed paths [14] are based on knowing the robot’s governing
dynamics and applying the path constraint to those dynamics to define
a lower dimensional dynamic system. Typically, this reduces the
dimension of the dynamics from 12, the joint positions and velocities
to two, the path position, and velocity. This reduction alleviates the
curse of dimensionality in dynamic optimization, making it practical
to compute time-optimal solutions by phase plane shooting methods
or by dynamic programming.

The resulting trajectories provide minimum time solutions for the
considered dynamic systems, but their importance in real applications
needs some clarification. The resultingtorque trajectories cannot be
applied directly to the real robot in an open-loop fashion because
modeling errors will accumulate, leading to severe tracking errors.
Thus a closed-loop tracking controller is needed.

The “time-optimal”joint trajectories provided by these well-known
algorithms might be expected to provide a good reference trajectory
for the closed-loop tracking controller, but we argue that this is
unlikely for the following reasons.

1) The trajectories are planned without considering uncertainties
in the dynamic model.

Manuscript received July 22, 1996; revised December 6, 1996. This work
was supported in part by the Cooperative Research Centre for Robust and
Adaptive Systems, by the Australian Government under the Cooperative
Research Centres Program, and the Australian Research Council. This paper
was recommended for publication by Associate Editor V. Kumar and Editor
A. J. Koivo upon evaluation of the reviewers’ comments.

J. Kieffer and M. R. James are with the Department of Engineering,
Faculty of Engineering and Information Technology, the Australian National
University, Canberra, ACT 0200, Australia (e-mail: Jon.Kieffer@anu.edu.au).

A. J. Cahill is with CAE Electronics, Silverwater, NSW 2128, Australia.
Publisher Item Identifier S 1042-296X(97)07800-2.

1042–296X/97$10.00 1997 IEEE

