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AbsLract4iven two points in the plane, each with 
the prescribed direction of motion, the question being 
asked is to find the shortest smooth path of bounded 
curvature that joins them. The classical result by Du- 
bins [l] that is commonly used gives a sufficient set 
of paths which is guaranteed to contain the shortest 
path; the latter is then found by explicitly calculat- 
ing every path in the set. In this paper we show that 
in the case when the distance between the two points 
is above some minimum, the solution sought can be 
found via a simple classification scheme. Besides com- 
putational savings (essential, for example, in real-time 
motion planning), this result sheds light on the nature 
of factors affecting the length of paths in the Dubins’s 
problem. 

I. INTRODUCTION. 

Consider two points in the plane, P(t0) and P ( t f )  ~ called 
the initial and final point - each associated with its own 
orientation angle, a and p, respectively. Each orien- 
tation angle defines the prescribed direction of motion 
at the corresponding point; the combinations (P(to) ,  a )  
and ( P ( t f ) , p )  are called the initial and final configura- 
t ion,  respectively (see Figure 1). Given the configurations 
( P f t o ) ,  a)  and ( P ( t f ) ,  p) (which together constitute the 
boundary conditions), the problem is to find the shortest 
path between P(t0) and P ( t f ) ,  such that it would start 
and end in the directions CY and p, respectively, and satisfy 
a constraint on the path curvature, p 5 1/R,  where R is 
the minimal radius of turning. 

This kind of tasks appear in numerous applications, 
such as when joining pieces of railways [2] or planning 
two- and three-dimensional pipe networks. In robotics this 
problem plays a central role in most of the nonholonomic 
motion planners proposed so far [3, 4, 51. We consider 
the case - called here the Long Paths Case - when the 
distance d between points P(t0) and P ( t f )  is sufficiently 
large (see the definition below; the complementing case, 
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for small d,  requires a somewhat different handling and is 
not included here). 

The complete solution to  this problem was first reported 
in an elegant paper [l] by Lester Dubins in 1957. He 
showed that any geodesic (i.e. the shortest path) consists 
of exactly three path segments and presents a sequence 
CCC or CSC, where C (for “circle”) is an arc of radius 
R,  and S (for “straight”) is a line segment. For a given 
orientation angle, each arc C has two options - turning 
left or right. Denote those r and 1, respectively, and the 
line segment by s. Then the Dubins set, V, includes six 
paths, or words, 2, = {Id,  rsr, rsl ,  lsr, rlr, lrl}. Further- 
more, Dubins’s theorem states that in order to be a can- 
didate for the optimal path, each arc has to  be of the 
minimal allowed radius R. 

Using advanced calculus, this result of Dubins was later 
proved by J. Reeds and L. Shepp [6]; they were also able to 
obtain further results for a more complex case with motion 
reversals. Finally, J. Boissonnat et al. [7] proved this result 
from the standpoint of optimal control, by making use of 
the powerful Pontryagin’s optimality principle [8]. 

The actual implementation of the Dubins’s result for the 
shortest path calculation requires an explicit calculation 
of the lengths of all arcs and straight line segments in 
the Dubins set, and then choosing the shortest of the six 
members of the set. A natural question here is whether 
the exhaustive calculation of the set can be avoided or 
reduced via some implicit classification of the words in 
the set. 

Another motivation behind this work is to  produce an 
efficient kernel calculation scheme which could be used on 
a continuous basis in real-time sensor-based systems with 
dynamics, where the time constraints on calculations are 
quite severe. 

The following analysis of the Dubins set is based on 
the notion of equivalency groups formed by the pairs of 
orientation angles depending on their angular quadrant. 
Each such group consists of a few classes of paths, such 
that any path is equivalent, up to an orthogonal trans- 
formation, to any other path in the same group. This 
means that the optimal path analysis can be reduced to  
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Fig. 1. Shown are the coordinate system, the initial 
(P(to) ,  a) and the final ( P ( t f ) , p )  configurations. 

following elementary transformations. Given the ini- 
tiatl and final configurations, (z( to) ,  y(to), a )  E R3 and 
(z(tf),y(tf),P) E El3, we introduce three elementary mo- 
tions: rotation to  the left, rotation to the right (both along 
a circle of radius 1), and straight line motion. To specify a 
transformation, tlhere are three corresponding operators, 
Lt (for left) , Rt (for right), St (for straight): 

Lt = R3 --+ R3, 
Rt = R3 --+ R3, 

fewer elements. Furthermore, a simple classification of the 
equivalency groups can either produce the optimal path 
directly, thus eliminating any explicit calciilation of paths, 
or reduce the number of candidates to consider. 

Below, d is the distance between the initial, P(to), and 
final, P(tp), positions. A rectangular coordinate system 
(z, y) is chosen such that its origin is P(t0) = (0,O) and the 
positive direction of the x-axis is toward P ( t f ) ,  Figure 1. 
The coordinates of point P ( t f )  are thus P(tp) = (d,O). 
The initial and final orientation angles, cy and p, are mea- 
sured counter-clockwise from the positive direction of x- 
axis. Without loss of generality, assume a unit radius of 
the minimum turning circle, R = 1 (any other R can be 
reduced to 1 by the scaling d = DfR, where D is the 
actual distance between P(t0) and P ( t f ) ) .  

Denote the initial and final arcs in the Dubins set as 
CEl, C,,, C f l ,  C f ,  ( r  and 1 stand for “riglit” and “left”). 
Then, in rnore precise terms, the case being studied is 
when the distanced satisfies {C,~UC,,}n{;C~~UCf.) = 0. 
This covers all cases when d > 4R and many cases of 
smaller d (see Figure 4 and Proposition 3).  

The set of admissible paths is studied in Section 11. The 
summary of the approach used is given in Section 111, fol- 
lowed by the statement of the main result in Section IV 
and its further analysis in Section V. Some proofs omitted 
due to space limitations can be found in [9]. 

II. ADMISSIBLE PATHS AND THEIR SPECIFICATIONS 

Following [l], an admissible path is defined as a continu- 
ously differentiable curve which is either ((i) an arc of the 
circle of radius 1, followed by a line segmient, followed by 
another arc of the circle of radius 1; or (ii) a sequence of 
three arcs of circles of radius 1; or (iii) a :subpath of path 
of type (i) or (ii). 

Assume we have an admissible path y(t) from the 
Dubins set, between the initial, (P(t0). + ( t o ) ) ,  and fi- 
nal, (P( tp ) ,+( t f ) ) ,  configurations, where + ( t o )  = OL and 
+ ( t f )  = p. The length of the admissible path y : 
(P(to), + ( t o ) )  -+ ( P ( t f ) ,  c$(tf))  is then defined as L(y) = 
t f  - t o .  

To specify the admissible paths, we will use the 

where index t indicates that the corresponding motion is 
along the segment of length t .  

By applying an elementary motion operator, an arbi- 
trary point (z,y,$) E R3 is transformed into its corre- 
sponding image point in R3. The formulas for the ele- 
mentary .transformations are given by 

Lt(z ,  y, 4) 

Rt(z, y, 4) 

St(zjy,4) := ( z + t c o s 4 ,  y+tsinc$, 4) (I) 

With these elementary transformations, any word 
(p,ath) from the Dubins set 2, can be expressed in terms of 
thie corresponding equations. In the coordinate system as 
chosen, the initial configuration of each path is at (O,O,  a )  
and the final configuration at  (d, 0, p). For example, the 
pa.th ltrplq that starts at the configuration (O,O,  a )  must 
end at  L,(R,(Lt(O,O,(x))) = (d,O,/3). The length C of 
each path can be defined as the sum of the segments t , p  
and 4, 

:= (z + sin($ + t )  - sin 4, 

(z - sin(q5 - t )  + sin 4, 
y - c o s ( ~ + t ) + c o s c $ ,  4 + t )  

y + COS(’$ - t )  - cos 4, 4 - t )  
:= 

L = f r ; + p + q  (2) 

We woidd like to build a scheme for classifying the Du- 
bins set 23 = {lsl ,  T S T ,  rsl,  Zsr, rlr, Id}, with the purpose 
of obtaining the optimal solution from the classification, 
rather than from an explicit calculation and comparison 
of all six words. To this end, we now derive the operator 
equations, defining each word iin the set D. 

L,(4&(0,0, cy))) = (4 0, P ) ;  

lsr : Rq(Sp(Lt(O70,~))) (d,O,p); 
TSZ : Lq(Sp(Rt(O, 0, CY))) = (d ,  0,p); 

rsr : Rq(Sp(Rt(O, 0 , o ) ) )  = (d, 0,p); 

: Rq(L&J(Rt(07 O, a!))) = ( d 7  ‘ 1  p);  
: Lq(Rp(Lt(O,O, .Y))) = (d ,  0, P I ;  

By solving these operator equations, we can find seg- 
ments t ,  p ,  and q for each word from the Dubins set. Ac- 
cording to (2), the sum of t ,  p,and q defines the length of 
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the corresponding path. For example, the length of the 
path r s l ,  as a function of a,  /3 and d,  is given by 

~ r ~ ~ = p + q + t = 2 t + p - a + p ( ~ ~ d 2 7 r )  = 
cos a+cos p a + /?(mod 27r) - 2 arctan d-sin a--sin + 

2 arctan 5 + p ( 3 )  

where 

111. EQUIVALENCE GROUPS 

We are now ready to turn to  the classification of the Du- 
bins set 'D. With the orientations Q and ,B defined as in 
Figure 1, we divide the whole range of possible orienta- 
tions into 4 regions (quadrants). Region l corresponds 
to the range [Q, 7r/2], region 2 - to [x/2, 7 r ] ,  region 3 - to 
[x, 37r/2], and region 4 - to the range [37r/2,27r]. Since 
each of a or /3 can be in any of the four regions, together 
we have 16 different combinations of possible orientation 
regions. 

These 16 cases can be shown to  reduce to  only 6 inde- 
pendent combinations. Each of the remaining 10 combi- 
nations presents an orthogonal transformation of one of 
the 6 and thus has the same topology and the same path 
length. This fact helps reduce the number of path can- 
didates that have to  be considered to find the optimal 
solution. (Recall that the set of candidates to  consider is 
further reduced due to the constraint of the Long Paths 
Case, {Cil U Cir} n {Cfl  U Cj,} = 0). 

We represent these 16 combinations of (a ,  p) by a 4 x 4 
matrix, {ai j} ,  where index i corresponds to the initial, and 
index j - to the final orientation. For example, the case 
Q E [0,7r/2] and /3 E [7r/2,7r] corresponds to the element 
a12 of the matrix {aij}.  That is, element aij describes the 
class of all possible paths whose initial and final orienta- 
tion angles belong to  the corresponding quadrants. 

Dubins's theorem says that each candidate for the op- 
timal path in set 2, must start with a piece of circle and 
end with a piece of circle (of radius R = 1, see above). 
Depending on the word in V, the initial (and the final) 
circle can turn either left or right; we denote those Cil 
and Ci, (Cfl  and Cf , ) ,  respectively. 

Later we will make use of the following proposition 
about equivalent orientations: 

Proposition 1 For any  path connecting two points,  
P(t0, a ) ,  P ( t j ,  /?), where (a ,  p) are the initial and final 
orientation angles, there exist three other paths between 
P(t0) and P ( t f )  which are equivalent t o  the original path 
u p  t o  an orthogonal transformation. The i r  corresponding 
orientation angles are (-a, -@), (p ,  a)  and (-p, -a).  

Fig. 2. Path I A l A z F  is equivalent to  the paths 
IBlBZF,  I D l D z F ,  I E l E 2 F .  

As an example, take one path, say I A I A ~ F ,  in Figure 2. 
Then, paths I B I B ~ F ,  IDlDZF, and IElE2F can be ob- 
tained from I A l  A2 F by applying the following orthogonal 
transformations: 

where RGH and RIF are the operators of reflection 
with respect to the lines GH and I F ,  respectively. 
Clearly, if the orientation angles of path I A l A z F  are Q, p, 
IAlAzF[cr, p],  then 

IL41A2F[CY, /?] ZT IBiB2F[-P,  -a] N 

IDiD2F[P, Q] 2: I E ~ E ~ F [ - Q ,  -p] 

(here "E" is the sign of equivalence). It follows from this 
proposition that the matrix {aij} can be divided into few 
equivalence groups. The following statement holds: 

Propos i t ion  2 Matrix  {ai j}  can be divided in to  six i n -  
dependent equivalence groups: (I) all N a44, (2) a12 N 

a21 2: a34 N a43, (3) a13 N a24 2: a31 a42, (4) a14 = a41, 
(5) a22 2: a33, and (6) a23 a32. 

For example, for the equivalence group 2, for any path 
of class a12 there exists an equivalent path in each of the 
classes a21, a34, and a43. 

By choosing one representative from each equivalence 
group in matrix {ai?}, we define a basis set  t? of matrix 
{ a i j }  - a set of six mutually independent classes of orien- 
tation pairs. Therefore, the number of orientation pairs to 
be analyzed for the optimal solution can be reduced from 
16 to 6. Notice that the basis set is not unique since its 
members can be chosen in various ways. 

IV. THE MAIN RESULT 

The main result of this work is in showing that in the case 
at ha.nd the problem of finding the shortest smooth path 
between two configurations can be solved largely without 
an explicit calculation of the paths involved, using a simple 
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logical scheme. In the scheme, all possible paths are first 
classified into groups, such that the membership in a group 
eventually defines the optimal solution. 

The resulting classification is summarized in the table 
in Figure 3. The procedure for finding the optimal solu- 
tion is thus simple: find the quadrants olf the given ori- 
entation angles ( a l p ) ,  and then find the corresponding 
element in the table Figure 3. Note that in some cases a 
single solution appears directly, whereas in other cases two 
candidates have to be considered. As an example, the set 
a E [0, ~ / 2 ]  and ,D E [0, 7r/2] (element all of  matrix { a i j } )  

represents the former type: the optimal path solution is 
the word rsl. The element a12 is an example of the llatter 
type: knowing the quadrant is not sufficient to  pinpoint 
the optimal solution, and further processing of the subset 
(rsl ,  rsr, lsr)  is necessary (refer to [9] for details). 

1 2 
Initial Quadrant 

rsl or 
1 

Fig. 3. The table of solutions. 

v. THE METHOD FOR PATH CLASSIFICATION 

Building the scheme for classifying the Dubins set involves 
the as following steps: 

(a) Find the condition of no intersection of the union 
{Cil U Ci,.} with the union {Cfl U Cf,.}. 

(b) Justify what simplifications in the set of candidates 
for the optimal solutions are implied if condition (a) is 
satisfied. 

(c) Specify the basis set B and the optimal solutions for 
all elements of the set. 

(d) Using proposition 1, show how to find the optimal 
solution for the remaining elements of { u l j } .  

We demonstrate the scheme on one basis set; take, for 
example, the basis set B = { a l l ,  a l z ,  a13, (1141 ~ 2 2 ,  a23). 

.._ _............... . . . .- __.. ,... 

Fig. 4. 
quadrant. 

The rl-case; here both a and p are in the first 

To prove this necessary and sufficient condition for 
the Long, Paths Case, consider the case when the set 
{Ci l  UCi7} is tangent to the set {Cfl  UCfr} .  Take, for in- 
stance, the case a]  1 (a  and p are in the first quadrant, Fig- 
ure 4). Assume a unit radius, .R = 1. Here two circle arcs 
ha.ve a coimmon tangent, and so 118'1 = IIAI+IABI+IBFI. 
From AlAOl: lYAl = s ina  and lOlAl = COSQ. From 
AFB02: lBFl = s inp  and lOzBl = cosp. From 
AlO102C: 'IOlOal ' =  10,Bl + 101A1, and 
therefore l0lCl := +  COS^)^. Summing up 
for lIAl $-'JAB1 + IBFI, obtain the expression for distance 
IIFI, which is a condition for a common tangent for the 
right initial circle and left final circle. In general, the ex- 
pression ~JC-$cosal + I cosBl)2 + I sin a1 + I sinP1 = d 
covers all possible cases for t w o  circles with a common 
tangent point. 

Piroposiition 4 If the bounda:ry conditions are such that 
{Ci l  U Ci,.} n {Cfi  U CfT}  = 8 then the word CCC cannot 
be the optimal solution. 

To show this, consider the set B of independent orien- 
tations. We have to show th,at for any possible pair of 
orientations (that is, for any element from B) there ex- 
ist,s a path of type CSC which is shorter than the path 
CCC. Am example that illustrates this point is shown in 
Figure 5. 

Start with the element all C: I?, for which a and p are 
in the first quadrant, Figure 5. If the shortest word were 
of type CCC, it would be eithier rlr or lrl. Consider the 
case when CCC is of the form rlr (for the case 11-1 the 
proof is similar). We will now show that for any word of 
the form rlr there exists a word of type CSC which is 
shorter. 

Build a common tangent line, ( L l , L 2 ) ,  for the right 
circle of the initial position and the left circle of the final 
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X 

Fig. 6. Optimal solution; here both (Y and p are in the first 
quadrant. 

Fig. 5 .  This example illustrates that  if the initial and final 
circles do not intersect, then the word of type CCC cannot 
be the optimal solution. 

position, Figure 5. Then, draw a circle tangent to the 
initial and final circles, to complete the CCC path rlr. If 
the tangent points L3 and L4 are above the curve L1L2F 
then the middle arc of the word rlr will be less than 7r 

and can be shortened [l]. If L3 and L4 are below the 
curve L1L2F (as in Figure 5), connect points L1, L3, Ld, F 
by straight line segments. Since the straight line is the 
shortest distance between two points in the plane, we have 

Summing up these inequalities, obtain Liz3 + L3& + 
LiF < LI"L3 + L314 + LiF.  Since curve L1 L2 F is shorter 
than Liz3 4 L3& + LiF ,  then curve ILlL2F is shorter 
than the curve I L I L ~ L ~ F .  Notice that this fact is inde- 
pendent of the boundary conditions, as long as the ini- 
tial and final circles are not intersecting and the curves 
in question correspond to the element all .  The following 
proposition holds: 

Proposition 5 For the Long Paths  Case,  {Cil U CiT} n 
{Cfl U Cf,} = 0, the  optimal solution corresponding to  the 
element all is  rsl. 

L ~ - L ~  c L&3, L;L~ < L ~ Y L ~ ,  L ~ F  c L ~ F .  

Note that the number of the candidate curves for the 
optimal solution in set 2) is now reduced to ls l ,  lsr, rsl ,  rsr 
- the curves of type CCC are excluded from the considera- 
tion due to Proposition 4. For the three words, ls l ,  lsr, rsr,  
the x coordinate goes outside the range 0 5 x 5 d. Take 
the length of the curve 1s as the lower bound on the length 
of the words Esl and lsr (Is is a subword of words Is1 or lsr 
with Q = 7 ~ 1 2 ) .  Notice, the word rsr cannot be considered 
as a candidate for the optimal solution of the element all .  

We claim that the upper bound on the length of words 
for which the x coordinate is in the range 0 5 x 5 d is 
the word rsl with cy = ,l? = 71-12. Indeed, from Section 11, 
dLT,l/dcu > 0 and dLT,l/a,l? > 0. Therefore, the maxi- 
mum of Crsl in this region will occur when Q and p are 
equal to  n/2. 

To prove that the optimal solution for the words within 
the range 0 5 x 5 d is rsl, we have to  show that the 
lower bound on the path length in the Dubins subset 
{ I d ,  rsr,  lsr}  is bigger than the upper bound on the word 
rsl .  This case is illustrated in Figure 6 .  

Note that if a and p are in the first quadrant then the 
upper bound for Lrsl will be limited by 

and the lower bound for the remaining candidates for the 
optimal solution Llsl, ClsT,  and L T s T  is, 

In order to prove that the optimal solution correspond- 
ing to the element all is rsl ,  we need to show that 

It is easy to see that (4) holds if d m -  d m -  
71-12 > 0: move 7r/2 to the right side of the inequality and 
multiply both sides by the positive expression d m +  
d m .  The result is 6d > 7 r d m ,  which is true if 
8 - 4d > 0 - precisely the case we are interested in. This 
completes the proof of inequality (4) and of the claim that 
the optimal solution for element all is rsl. 

The proofs for the remaining elements of the set B are 
similar and can be found in [9]. The results of this analysis 
for the remaining elements of set B are summarized in the 
following proposition: 

Proposition 6 T h e  elements of t he  basis set  of indepen- 
dent orientations B = {al l ,  u12, a13, a14, a22, a23} have the 
following optimal solutions: 
a11 C) { r s l } ;  a12 I-+ {rsl or {rsr or Zsr}}; 
a13 C) {rsr or lsr};  a14 e {rsr or Isr} 
a22 I-+ {rsl or {rsr or lsl}};a23 e {rsr} .  

For example, a12 C) {rsl or {rsr or l s r } }  means that 
if the initial and final orientations are a! E [0,7r/2] and ,B E 
[ 7 r / 2 , ~ ]  (which corresponds to the element a12 of matrix 
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(a iJ } ) ,  then the corresponding optimal solution is one of 
the words rsl ,  rsr,  lsr. Further classification can then be 
applied: continuirlg with the class a12, depending on the 
sign of the function Q(a ,P ,d )  = - l+cos (a -p )+ds ina ,  
some words can be eliminated from the set of candidates. 
Namely, if Q > 0 then the word lsr can be eliminated; 
otherwise, word rsr is eliminated. Other classifications 
and their proofs can be found in [9]. 

Proposition 6 can be further extended based on the 
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