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Abstract-We pose the following questions: Given 
two points within a closed area W C R2, each with 
a prescribed direction of motion in it, (i) what is the 
shortest path of bounded curvature that joints them 
and lies completely in W? (ii) what is the minimum 
number of cusps one needs to design a path in W? This 
kind of questions appear in various applications, such 
as robot motion planning. The proposed approach 
makes use of a tool dubbed the Reflective Unfolding op- 
erator which has a clear geometric interpretation and 
provides an interesting means for solving other tra- 
jectory design problems. In this text, the approach 
is applied to the following problem: for a car moving 
with bounded curvature and possible reversals, given 
the starting and target directions of motion at the cen- 
ter of a disc D of some radius R, design the shortest 
possible path fully lying in D. The path produced by 
the algorithm turns out to also be of the lowest com- 
plexity (the minimum number of cusps). 

I. INTRODUCTION 

We address the question of finding the shortest path for a 
car with nonholonomic constraints. The car can move only 
along paths of bounded curvature, not more than l / p m i n .  
The path is to connect the initial and final points, qo, q f ,  
in R2, each with a specified orientation angle (direction 
of motion), $0 and qhf. Together, coordinates p = (q ,$ )  
are called a configuration. For the case of unlimited oper- 
ational space, the complete solution to this problem was 
given by J. Reeds and L. Shepp [l]. We consider a more 
general case when the path between the two configurations 
must lie within a closed domain W C Et2. 

The existence of a path between two configurations 
which are in the same open component of free space was 
shown by J.P. Laumond [2]. The idea of the proof is to 
approximate the path by a sequence of short back and 
forth motions (reversals). As mentioned in [3], such ap- 
proximation may include very many reversals, and so it 
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would be of interest to find a motion that minimizes the 
number of reversals. 

For the case with no constraints on the car’s environ- 
ment, Dubins [4] showed how to compute the shortest 
paths with forward (smooth) motion only. This result 
was later extended by Reeds and Shepp [l] to the optimal 
solution for a more complex case with motion reversals 
(cusps). The case left open by these works - obtaining so- 
lutions for a constrained environment - is very important 
for applications, such as robot motion planning. 

In partially known environment (sensor-based planning) 
the situation with obstacles can be reduced to that of mo- 
tion in a limited space without obstacles, by taking an area 
around the robot that is free of obstacles and then design- 
ing a path inside of this area. A related question here is to 
find the shortest path or the path with the fewest rever- 
sals. For the real-time version of robot motion planning, 
the said area is defined at every step of the path based on 
sensing information; then, a point on this area boundary 
that satisfies some global planning considerations is de- 
fined as an intermediate target, the shortest path toward 
this target is defined, and a physical step along this path 
is made; then the sequence repeats [5]. 

A strategy for finding the shortest path in a limited area 
is the subject of this work. We introduce a new tool called 
the Reflective Unfolding operator (R U-operator) which 
maps the original problem of planning a path with rever- 
sals in a limited area into an equivalent problem of plan- 
ning a smooth path in an unlimited space. A successive 
application of the RU-operator yields the optimal solution. 
The technique can be used for a variety of shortest path 
problems. In the spirit of works [l, 2, 3, 41, we asume 
that the car’s path curvature is constrained, may include 
reversals of motion, and is confined to a disc-shaped area 
D of radius R. 

Assume for the moment that the path does already ex- 
ist. Order all its reversal cusps sequentially, starting at 
the initial configuration. In a single application of the 
RU-operator, it will take two subpaths adjoining the first 
cusp, and “unfold” the second subpath so as to produce 
a smooth cuspless piece of circle around the former cusp 

0-7803-361 2-7-4/97 $5.00 0 1997 IEEE 1394 



point, while preserving the original tangent to  both seg- 
ments. The next cusp is then treated in a similar fashion, 
thus producing out of path segments a large circular arc 
of radius p, with multiple discs of radius R superimposed 
on it (see Section IV and Figure 4). 

The operator possesses a number of properties that 
make it a good tool for calculating optimal paths. For 
example, the car’s final orientation defines uniquely a tan- 
gent line to the circle p, and so from the distance (along 
that circle) between the initial and final configurations one 
can quickly calculate the number of segments (i.e. the to- 
tal length of) in the optimal path, even without calculat- 
ing the actual path. 

In this text, the development and application of the 
RU-operator and the control strategy for generating the 
optimal path is illustrated on a special case where only the 
orientation angles of the initial and final configurations 
differ. Some proofs omitted due to  space limitations. 

11. PROBLEM STATEMENT; NOTATIONS 

The domain W c R2 in which the car operates is a disc, 
D(qo,R), with center qo and radius R. The car’s orien- 
tation is associated with its front end and defined by the 
orientation angle, 4, measured from the z-axis to  the ori- 
entation line perpendicular to  the wheel axes and passing 
through the center of mass, Figure 1. The radius of car’s 
turning cannot be less than a specified value, pmin. 

The control inputs responsible for forward or backward 
motion are considered in terms of the car translational 
velocity and angular (steering) velocity. Let q = (2, g) de- 
note the coordinates of the car’s center of mass C in w; 
p = p(q) is the radius of curvature at q; U - the magnitude 
of translational velocity of C; and w - the magnitude of 
angular velocity. We assume a unit translational velocity, 
U = fl ,  and a limit on angular velocity, l/pmin radian 
per time unit. Assume that the wheels do not slide; that 
is, the velocity of the car’s center of mass coincides with 
the orientation line and is tangent to the path. This as- 
sumption imposes a nonholonomic constraint on the car 
motion, of the form i sin $J - j l  cos $J = 0. 

The car kinematics is modeled as follows: 

x = ucosq5, y = vsinq5, $ = w.  (1) 

The task thus is: Given the car’s initial and final con- 
figurations, po = (O,O, $0) and p f  = (O,O, 0) (that is, both 
positions 40, qf  are at the origin 0, and q5f = 0), find the 
shortest possible path for the car’s center of mass C that 
lies fully inside the disc D. 

Phase space. At an instant t ,  the state of the car is 
completely specified by its position qt = ( z t , y t )  and ve- 
locity ut = (it, yt); t can also be interpreted as a running 
parameter, e.g. an arclength. The car motion is confined 
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Fig. 1. From its initial configuration (qo,q50), the car is 
to arrive at the final configuration ( q o , O ) ,  along the shortest 
path possible and so that its center of mass is confined to the 
disc D.  The resulting path here is made of five arc segments 
and has four cusps, qo + q1 -+ q2 -+ 43 t 44 t qo. 

to  the closed domain W with the boundary I? = dW: 

In our case, W is the disc D(q0, R), and r is its bound- 
ary circle of radius R. Both W and I? are specified by the 
function f ( z ,y )  = R2 - x2 - y2. 

Denote by P the unit tangent bundle over W. The 
points of P = W x {Sl = [ O , ~ T ] }  are of the form p = 
(q ,  q5), where q E W and q5 E S1 specify the tangent to the 
path at points of W. The direction of the tangent vector 
coincides with the direction of motion; it can be identified 
with the unit velocity vector U. The pair (q,u),  which is 
a point in the three-dimensional phase space P, uniquely 
determines the car position on the path. Function p ( t )  = 
(q( t ) ,  u ( t ) )  defines the whole car trajectory. 

Suppose T : P + W is the natural projection for 
p = (q,u) E P; i.e. x(q, w) = q and P = T - ~ ( W ) .  Gener- 
ally speaking, if W is a compact Riemann manifold with 
piecewise smooth boundary, then P is a manifold of the 
same type. The boundary satisfies dP = .ir-’(dW). 

Definition 1 For q E W, the point q = ~ ( p )  is said to 
be the carrier of p .  

Motion flow and cusps. Define a one-parameter 
group of transformations { F t ]  on P. Let p ( p )  be the - .  
Eonfiguration t seconds after the car moved from point 
p = (q,q5) E P (with a unit speed). We call P the mo- 
tion %ow over distance t;  it defines uniquely the car motion 
along the trajectory. That is, .P is a piece of curve, a func- 
tion o f t .  Motion flow 3” can be defined by a combination 
of elementary motions - rotation to the left, Lt,  rotation 
to  the right, Rt (both along a circle of radius p 2 pmin) ,  



and straight line motion St: {p} = {L’, Rt, S’} , with 
the elementary transformations defined by 

~ ~ ( z ,  y ,  4) = (x + p sin( 4 + t )  - p sin 4, 
y - pcos(4 + t )  + pcos 4, 4 + t )  (2) 

Rt(s, y , 4 )  = (x - psin(4 - t )  + psin4, 
y + p c o s ( 4 - t )  -pcos+,  4 - t )  (3) 

S t ( s , y , 4 )  = ( x+tcos$ ,  y+t s in+ ,  4) (4) 

Given a configuration p ,  we are interested in two cases 
associated with the flow p ( p ) :  (i) flow does not in- 
tersect the boundary dW; (ii) for some value t ,  the end 
point of flow F is located at the boundary r = dW. 

In terms of motion control, case (i) presents two op- 
tions: (a) reverse the motion (thus producing a cusp), and 
(b) continue the smooth flow under the group of transfor- 
mations {p} (arcs 4142 and q2q3, Figure 1). Case (ii) 
presents one choice only - reverse the motion in order to 
stay within W (positions q1,q2, q3, and 44,  Figure 1). 

Reversals can take place at the boundary dW or inside 
W. At cusp points, the natural projection r : P + W 
possesses an involution (reflection) property: that is, a 
point p- = (q , v - )  E P is mapped into the point p+ = 
(4, w+) E P, with the same carrier q and opposite velocity 
vector w+ = -U-. The behavior of flow p ( p )  in the vicin- 
ity of a cusp point p is defined by the left and right limits, 
p ( p )  gf limt,t~+o p ‘ ( p )  and p ( p )  ef limt-,tr-o Ti@). 

111. THE BASIC TRANSFORMATION 

A .  Reflective Unfolding operator 

Consider a motion flow consisting of two segments, y i ( t )  
and y i+l ( t ) ,  Figure 2. As parameter t increases, the flow 
continues from segment y i ( t )  to segment yi+1 (t). When 
switching from yi(t)  to yi+l(t), the car reverses the direc- 
tion of its motion. 

Segment yi(t) starts ‘in configuration p i ,  with carrier 
qi =  pi), and ends in configuration pi+l, with carrier 
qi+l = r(pi+l). Carrier qi+l is a cusp point; it belongs 
to the interior of the domain W or boundary dW. At the 
cusp, define two configurations, p G l  and p k l ,  with the 
same carrier qi+l and tangents of opposite signs, = 
-wL1. Segment yi+l( t )  starts in pi+l and ends in pi+2. 

To eliminate the cusp at qi+l, we introduce a mapping 
transformation called the Reflective Unfolding operator, 
denoted by U :  

Definition 2 Mapping crq,+l called Reflective Unfolding 
(RU) operator with respect to the carrier qi+l, is as fol- 
lows: for  any two neighboring subpaths Ti and yi+l sepa- 
rated by  a cusp qi+l subpath yi is fixed in R2, and subpath 
yi+1 is transformed into an  equivalent subpath yji\ by  a 

Fig. 2. The RU-operator U eliminates a cusp at the carrier 
qi+l and maps segment ~ i + 1  into segment .y$’, . 

180’ rotation with respect to  the carrier q,+l; this is de- 
( 1 )  noted as gq,+l : yz Uq, yZ+l + yz Uyt+l 

Here notation Uq, on the left of the arrow refers to the 
original path, with subpaths y, and yz+l joined by a cusp 
at  carrier qz+l, and W on the right of the arrow refers to 
the path obtained after a single application of the RU- 
operator. (Here and below, superscripts “(l)”, “(2)” etc., 
when used, indicate the number of applications of RU- 
operator to the corresponding entity). Thus, the operator 
does the “unfolding” via a simple central symmetry reflec- 
tion with respect to the cusp point (see Figure 2). 

Next we consider some properties of the RU-operator. 
Recall that a path is not differentiable at a cusp point: 
31im,,-tt-op (p) and 3 1 i m , , + t + o ~  ( p )  in the carrier 

qz+l, but limt~+t-o p’ ( P )  # lim,! +t+O p‘ ( P I .  

, I 

Proposition 1 A szngle applzcatzon of the RU-operator 
at a cusp point elamznates the cusp. 

That is, after one application of RU-operator the path 
becomes differentiable at  the former cusp point. Indeed, 
configurations p G l  and p G 1  have the same carrier q,+l 
and tangents of opposite signs, w , i l  = -wL1. After the 
application of RU-operator, qz+l and wZyl stay the same, 
and w>l becomes collinear with .GI. Equivalently, at car- 

rier qZ+l ({), 3 lim,J +, ,, p’ ( p )  and 3 lim,! +t+O Ft‘ ( p ) ,  
and, in addition, limtt,t-o Ft (p )  = limtt+t+o Ft ( p ) ,  
which guarantees that the flow p ( p )  is smooth in qz+l. 

, , 
, 

B. Composition of transformations 

Consider a path y ( t )  consisting of n + 1 smooth seg- 
ments yi, i = 1, ..., n + 1, y ( t )  = y1 kJql y2 . . . yn &Jqn yn+l, 
connected by n cusps, 41, . . . , qn. We will now apply the 
RU-operator sequentially to this path, as explained below, 
obtaining a smooth path as a result. 

Definition 3 The composition transformation 
fl{ql,...,qn) - {gql,  Cq2, .-, oqnp1 , gqn 1 of a path y ( t )  = 
71 Wql 7 2  . . . yn Wq, yn+l with n CUSPS is obtained b y  sequen- 
tially applying the Reflective Unfolding operator n times to 
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the path, starting with the first cusp q1 and proceeding to  
the last cusp qn. 

Proposition 2 When  applied to  a path y ( t )  = y1 kJql 
7 2  a . yn Mq,, ^/n+l with n CUSPS, the composition transfor- 
mation produces a smooth path yl w 7i1) . . 
yP-1) ?Zl 

The composition transformation proceeds as follows. 
First (transformation cql),  the RU-operator is applied to 
two subpaths, 7 1  and (79 , .  . - , yn+l}, connected by a cusp 
at carrier q1. In this operation, subpath y1 is fixed, and 
subpath ( 7 2 , .  . . , ~ ~ + l }  is rotated 180°, resulting in a path 
that is smooth at 41,  

Then RU-operator is applied again (transformation 
oqz), this time at  the second cusp, to  two subpaths, 
(71, 7i1)}  and {y:'), a .  , ( 1 )  

at q2, yl k ~ y i ~ ) ~ y $ ~ ) ~ ~ ~  yp) I yn ( 2 )  wqn yn+l. ( 2 )  

thus eliminating the cusp 
BY continuing 

this process through the last cusp, obtain Proposition 2. 

Iv. MOVING IN A LIMITED DOMAIN: 
CONTROL STRATEGY 

Here we develop the control strategy for finding the op- 
timal (curvature-constrained) path within the workspace 
D (see the problem statement in Section 11). The strat- 
egy makes use of the composite transformation described 
above. We conclude the section by showing that this strat- 
egy produces paths that are the shortest possible and of 
the lowest complexity (i.e. have the smallest number of 
cusps). It is also shown that there exist infinitely many 
paths of the same length but higher complexity, and in- 
finitely many paths of the same lowest complexity but 
longer. 

The strategy makes use of two simple considerations: 
(a) each path segment is an arc of a circle of minimum ra- 
dius; (b) to use the space most effectively, each path seg- 
ment originates and ends at the boundary of disc D(q0, R) 
(we call this boundary-to-boundary motion). In the result- 
ing path, the car will alternate between forward and re- 
verse motion, with reversal cusps at the disc boundary, 
until the final configuration is reached. 

A .  The equivalent problem 

A typical path by a car in the disc D(q0, R) is shown in 
Figure 1. Starting at the configuration po = (qo, $o), the 
car first moves along an arc of radius pmin, and reaches 
the boundary of the workspace W = D(q0,R) at point 
q1 E dW, with orientation $c, or equivalently, with the 
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Fig. 3. The mapping is defined as a central symmetry with 
respect to the reflection point; the central symmetry with 
respect to point q1 maps qz into qi l ) ,  A into A(1) ,  and B 
into disc D into the disc dl). 

unit velocity vector U;. Then the car reverses and moves 
backward along the second arc segment, with the initial 
velocity vector UT, reaching dW at point q 2 ,  with the 
orientation v2-. The path from PO = (qO,$o)  to  p2 = 
( q 2 , 4 2 )  thus contains two arcs, 71 and 7 2 ,  connected by a 
cusp with tangency q1 (Figure 3) .  

By applying mapping (RU-operator) cql to the path 
{ y l , y2 } ,  a smooth path (71, yp)} is obtained. Similarly, 
by applying mapping cqz to subpaths (71, y;')} and y3 ( 1 )  

connected by cusp q p ) ,  obtain the path (71, y2 ( 1 )  , y3 ( 2 ) ) .  

The following geometric fact holds: 

Proposition 3 Given the disc D(q0,R) and the start- 
ing point at i ts  center, any path based o n  boundary-to- 
boundary motion and consisting of arcs of fixed radius has 
i ts  every odd arc segment pass through the center of D .  

To see this, consider an equivalent problem (Figure 3). 
Apply mapping cql followed by the mapping cqz. Now, 
the motion flow qo 4 q1 -+ 42 -+ qo within the disc 
D(q0, R) is equivalent to the flow qo -+ q1 -+ qi l )  -+ q?) 
within the union of discs D u D ( 1 ) u D ( 2 ) .  The result- 
ing motion will be along the circle of radius p centered at 
point 0. After transformation cql,  the center qo of disc 
D maps into the center 4:) of disc D ( l ) .  Transformation 
065)  maps the center qi l )  of disc D(l )  into the center q p )  
of disc D ( 2 ) .  It also follows that 1qOq:)l = lq:)qf)I = 2R, 
and points qo, q1, and q p )  belong to  the same circle (0, p) .  
This means that point qc) also belongs to the circle (0, p) .  

To summarize, there are two useful facts about the 
boundary-to-boundary motion flow within a disc: 



Fig. 4. Motion with reversals within the workspace W = 
D(q0, R) is equivalent to the motion along a circle of radius 
pmin centered at point 0. 

(1) The motion flow is periodic. If the motion starts at 
the disc center, then after two reflections from the bound- 
ary the flow will pass through the disc center again. 

(2) The original motion flow can be mapped into an 
equivalent motion flow along a circle and without cusps. 

It suggests another formulation of the problem at hand: 
The equivalent problem: Given the car’s initial 

configuration in the plane, find a curvature-constrained 
smooth trajectory (of curvature l/pmin) leading to  the 
final car orientation. 

Without loss of generality, assume a positive orienta- 
tion of the reference axis at the final orientation. One can 
see already that the equivalent problem is tantamount to  
covering the equivalent trajectory (an arc of radius pmzn)  
by discs of radius R following mapping rules. Once this 
is done, the arc segments of the equivalent path can be 
“folded back” into the actual workspace W = D(q0, R) 
to complete the construction of the trajectory. Below we 
study the equivalent problem in more detail. 

B. Cusp elimination 

Consider the sequence (ai) ,  i = 0,1,2, ... of orientations 
which correspond to those arc segments that pass through 
the center of disc D. According to Proposition 3, a0 = 40 
is the initial orientation of the car, a1 = 43, a2 = 4 5  etc. 
Denote by d the common difference a1 - ao. Then the j-th 
term of the sequence (ai) is defined as aj = a1 + ( j  - l)d, 
and the common difference d is defined as (see Figure 5) 

Fig. 5.  The car is restricted to move within the disc D(q0, R)  
of the radius R centered at point 40. The car trajectory is 
from point qo to q1 to q2 to 40, along the arcs of circles 
( O I , P ) ,  ( 0 2 , ~ ) ,  and ( 0 3 , ~ ) ~  respectively. 

From Figure 3, angle 81 is found as 

R 81 = 2 arcsin - 
2P 

Considering of the triangle A 0 2 0 1 q 0 ,  obtain the ex- 
pression for angle 82: 

Substituting the expressions (6)  and (7) for 81 and 82 

into (5), the common difference d is found as 

(8) 
R 

d = 4 arcsin{ -} + 2 arcsin{ 
2P 

Define a positive number E > 0 as 

40 - lcd, if $0 5 180°, 
E = { $0 + kd, if $0 2 180°, where 

if 40 5 180°, 
1-1, if 40 2 180° (9) 

and symbol LxJ denotes the largest integer less or equal 
to  2. 

Recall the task at hand (Figure 1): Given the car’s 
initial and final configurations, PO = (0,0,$0) and p f  = 
(O,O, 0), find the shortest path for the car’s center of mass 
C that is confined to  the disc D(q0, R). We can now for- 
mulate the algorithm for solving this problem: 
Step 1: Find from (9) the maximum integer k. If 40 5 
180°, move forward clockwise (or, if $0 1 180°, move back- 
ward counterclockwise) along an arc of radius pmin, up to  
the boundary of disc D. Using the reflection rule, reverse 
the direction of motion. Repeat this pattern 2k times and 
arrive at the center qo of disc D(q0, R);  at this point, the 
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orientation angle is E .  

Step 2: The last two reversals take place at the circle of 
radius R1 concentric with disc D(q0, R). To find R1, sub- 
stitute &(mod 180’) instead of d into equation (8), solve 
equation (8) for R, and take R1 = R. 

C. Optimality of the control strategy 

We now show that the proposed control strategy guar- 
antees the shortest path possible between the initial and 
final configurations. In addition, this path is of the lowest 
complexity possible. 

Proposition 4 The motion flow obtained by  the control 
strategy is a geodesic path. 

To prove this statement, we use the following auxiliary 
proposition, which is geometrically obvious and is stated 
without proof. 

Proposition 5 (auxiliary) Consider three configurations, 

ration po is connected with p l  by  an arc 171 of radius R I ,  
and with pa b y  an arc 172 of radius R2. Assume Rz > R1 
and a1 = a2. Then, the length of arc 172 is grater than 
that of arc 171. 

Po = (Mo,ao),  Pl = (W,a1) ,  P2 = (Mo,a2) .  configu- 

Note that there are infinitely many paths that would 
bring the car from its initial to  its final orientation. In- 
deed, since the rate of orientation change is proportional 
to the radius of curvature and to the length of the segment 
traveled, any path that includes at least one arc segment of 
radius larger than pmin is longer than the one whith the 
corresponding arc being of radius pmin (Proposition 5). 
This observation shows that the path produced by the 
proposed algorithm is indeed the shortest one, which com- 
pletes the proof of Proposition 4. 

Proposition 6 The algorithm guarantees that the path 
produced is of the lowest possible complexity, i.e., it con- 
tains the minimum number of motion reversals. 

To see this, think of the problem at hand as that of 
folding an arc of a circle of radius pmin (i.e. the equivalent 
path) back into the workspace disc of radius R. That 
operation is analogous to covering the said arc by discs 
D ,  D ( I ) ,  D(2 ) ,  ... of radius R according to  the mapping rule 
defined by the Reflective Unfolding operator. The more 
discs are needed to  cover the entire arc, the higher is the 
complexity of the path; this is because the boundary-to- 
boundary motion makes the number of discs correspond 
to the number of reversals. Since the discs are of the 
maximum possible radius, fewer discs are required. 

The above analysis of the equivalent problem leads to 
two other interesting conclusions: 

Proposition 7 There are infinitely many geodesics of the 
same length, but of higher complexity. 

Covering the same equivalent (geodesic) path by discs 
of a smaller radius leads to a larger number of discs - that 
is, to more motion reversals and higher complexity of the 
actual path. 

Proposition 8 There are infinitely many paths of the 
lowest complexity, all of bounded length. 

This can be easily seen on a simple example where all 
path segments, except the last one, are those of the opti- 
mal path. Note that the last segment can be chosen as an 
arc of radius larger than pmin - thus producing an infinite 
number of possibilities. The length of such segments will 
be bounded from below by the geodesic path and from 
above by kd + PE, as defined in (8) and (9), where p is a 
solution of (8) with d taken equal to  E.  

V. CONCLUSION 
This paper proposes an approach for solving the problems 
of motion planning for a nonholonomic system operating 
within a limited two-dimensional domain. The approach 
is demonstrated on a control stxategy for a car moving 
within a disc. The idea of trajectory unfolding allows one 
to obtain the optimal solution in an analytic form. The 
optimality of paths produced by the approach is two-fold: 
each path is of the shortest length possible and of the 
lowest complexity possible. 
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