
4!!9 Au(oma(ica, Vol. 33, No. 7, pp. 1219-1233, 1997

Pergamon PII: SOO05-1098(97)OfJ024-l ~ 1997 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

CS305-1098/97$17.00 +0.00

The Jogger’s Problem: Control of Dynamics in Real-time
Motion Planning*

ANDREI M. SHKEL? and VLADIMIR J. LUMELSKYt

An approach that incorporates the e~ects of body dynamics into the
paradigm of sensor-based motion planning is proposed. Given the con-
straints on the robot’s dynamics, sensing and control means, conditions are
formulated for generating collision-free trajectories with guaranteed

convergence.

KeyWords-Robotics; real-time motion planning; dynamic behavior; intelligent machines.

Abstract-Existing approaches to sensor-based motion
planning tend to deal solely with kinematic and geometric
issues, and ignore the system dynamics. This work attempts
to incorporate body dynamics into the paradigm of
sensor-based motion planning. We consider the case of a
point-mass mobile robot operating in a planar environment
with unknown stationary obstacles of arbitrary shapes. Given
the constraints on the robot’s dynamics, sensing and control
means, conditions are formulated for generating collision-
free trajectories with guaranteed convergence. The approach
calls for continuous computation, and is fast enough for
real-time implementation. Based on its velocity and sensing
data, the robot continuously plans its motion based on
canonical solutions, each of which presents a time-optimal
path within the robot’s sensing range. For a special case of a
sudden potential collision, an option of a safe emergency
stopping path is always maintained. Simulated examples
demonstrate the algorithm’s performance. ~ 1997 Elsevier
Science Ltd.

1. INTRODUCTION

This paper studies the effects of body dynamics
on robot sensor-based motion planning, with the
goal of designing exact (provably correct)
algorithms for motion planning in an uncertain
environment. We consider a mobile point robot
operating in two-dimensional physical space
filled with unknown stationary obstacles of
arbitrary shapes. Planning is done in small steps
(say, 30 or 50 times per second), resulting in a
continuous motion. The robot is equipped with
sensors, such as vision or rangefinders, which

*Received 25 January 1995;revised 4 June 1996;received
in final form 13 December 1996. This paper was not
presented at any IFAC meeting. This paper was recom-
mended for publication in revised form by Associate Editor
P. J. Gawthrop under the direction of Editor C. C. Hang.
Corresponding author Dr Andrei M. Shkel. Tel. +1 608265
4010;Fax +1 6082652316;E-mail shkeK@robios.me.wise.edu.

TMechanical Engineering Department, University of
Wisconsin-Madison, Madison, WI 53706,USA.

allow it to detect and measure distances to
surrounding objects within its sensing range
(’radius of vision’). This range covers a number
of robot steps—say, 20 or 50 or more—so that,
unless obstacles occlude one another, they can
be sensed far enough to plan appropriate
actions.

Besides the usual issues of step-by-step
planning and convergence in view of incomplete
information, an additional dynamic component
of planning appears because of the effect of the
robot’s mass and velocity. A move reasonable
from the standpoint of the global path—for
example a sharp turn—may not be physically
realizable because of the robot’s inertia. The
control and planning issues that appear in this
model seem quite similar to those faced by a
jogger in the city environment—hence the name
the Jogger’sProblem.

Interestingly, while the issues of dynamics and
sensor-based motion control are tightly coupled,
little attention has been paid to this connection
in the literature. The existing approaches usually
deal solely with the system kinematics and
geometry, and ignore its dynamic properties.
Consequently, only applications where the effect
of speeds and masses is negligible can benefit
from these techniques. Perhaps one reason for
this state of affairs is that the methods
considered tend to depend strongly on tools
from geometry and combinatorics, which are not
easily connected to the tools common to control
theory.

Most approaches to automatic motion plan-
ning adhere to one of two paradigms, which use
different assumptions about the input informa-
tion available. In the first paradigm, called

1219

1220 A. M. Shkel and V. J. Lumelsky

motion planning with complete information (or
the Piano Mover’s Problem), one assumes
perfect information about the robot and
obstacles, and algebraic representation of ob-
jects; motion planning is a one-time off-line
operation (see ‘e.g. Schwartz and Sharir, 1983;
Canny, 1987). Dynamics and control constraints
can be incorporated into this model as well; for
example, by dividing planning into two stages—
first ‘finding a path- that satisfies geometric
constraints and then modifying it to fit the
dynamics constraints (Shiner and Lu, 1992),
possibly in a time-optimal fashion (Donald and
Xavier, 1989;Shiner and Dubowsky, 1991).

One of the first attempts to explicitly
incorporate body dynamics into the planning
process is the kinodynamicplanning approach of
Canny et al. (1990). It was shown that the
algorithm requires space that is polynomial in
the input and runs in exponential time. Aside
from the fact that it operates in the context of
the paradigm with complete information, the
approach is somewhat akin to the approach in
this paper, in that the control strategy adheres to
the L. norm—the velocity and acceleration
components are assumed to be bounded with
respect to a fixed (absolute) reference system.
This allows one to decouple the equations of
robot motion and thus treat the two-dimensional
problem as two one-dimensional problems.t

This paper is concerned w~h the second
paradigm, ~alled motion planning with incompl-
ete information, or sensor-based motion plan-
ning. In this model the objects in the
env~ronment can be of arbitrary shape, and the
input information is typically of local character,
such as from a rangefinder or a vision sensor
(Lumelsky and Skewis, 1990). By making use of
the notion of sensor feedback, this paradigm
naturally fits the on-line character of the
technicmesof control theory.

Each of the two paradigms gives rise to two
types of techniques: those that consider only
kinematic and geometric issues—for brevity,
they can be called kinematic approaches—as
opposed to the dynamic approaches, which do
take into account body dynamics. We now
consider both briefly.

t One could make the followingcomparison. Using the L.
norm will obviouslyresult, both in Canny et al. (1990)and in
our strategy, in a less-efficient use of the control resources
and in a ‘less-optimal’time of path execution. Since planning
with complete information is a one-time computation, this
loss in time is likely to be significant owing to a large
deviation of the robot’s moving reference system from the
absolute (world) system over the whole path. In contrast, in
the sensor-based paradigm the decoupling of controls occurs
again and again. with the reference system fixed only for the
duration of one step. and so the resulting loss in efficiency
should be less.

Kinematicalgorithms
In turn, the existing kinematic techniques can

be divided into two groups—those for holonomic
systems and those for nonholonomicsystems. In
a holonomic system any desired direction of
motion is realizable; it is not so in a
nonholonomic system (Greenwood, 1965),where
the number of control variables is less than the
problem dimensionality (as, for example in the
car parallel-parking problem).

A number of kinematic holonomic strategies
make use of the artificialpotential field. They
usually require complete information and
analytical presentation of obstacles; the robot’s
motion is affected by the repulsive forces created
by a potential field associated with obstacles, and
by the attractive force associated with the goal
position (Khatib, 1986). A typical convergence
issue here is how to avoid possible local minima
in the potential field. Modifications that attempt
to solve this problem include the use of repulsive
fields with elliptic isocontours (Volpe and
Khosla, 1987), introduction of special global
fields (Koditschek, 1987) and generation of a
numerical field (Barraquand et al., 1992). The
vortex-field method (De Medio and Oriolo,
1991) allows one to avoid undesirable attraction
points, while using only local information; the
repulsive actions are replaced by the velocity
flows tangent to the isocontours, so that the
robot is forced to move around obstacles.

On the incomplete-information side, a variety
of kinematic holonomic techniques originate in
maze-searching strategies (Lumelsky and Stepa-
nov, 1987; Lumelsky and Skewis, 1990; Sank-
aranarayanan and Vidyasagar, 1990); when
applicable, they are usually fast, can be used in
real time and guarantee convergence; the
obstacles may be of arbitrary shape.

The existing kinematic nonholonomic
strategies also require analytical representation
of obstacles, and assume complete (Jacobs et al.,
1991;Latombe, 1991;Barraquand and Latombe,
1991)or partial input information (De Luca and
Oriolo, 1994). These schemes are essentially
open-loop, do not guarantee convergence, and
attempt to solve the planning problem by taking
into account the effect of the nonholonomic
constraints on the obstacle avoidance. In Jacobs
et al. (1991) and Latombe (1991) a two-stage
scheme is considered: first, a holonomic planner
generates a complete collision-free path, and
then this path is modified to account for
nonholonomic constraints. In Barraquand and
Latombe (1991) the problem is reduced to
searching a graph representing the discretized
configuration space. In De Luca and Oriolo
(1994) planning is done incrementally, with

. -

Control of dynamics in real-time motion planning 1221

partial information: first a desirable path is
defined, and then a control is found that
minimizes the error in a least-squares sense.

Dynamic algorithms
To design an exact dynamic algorithm for

sensor-based motion planning, one needs a
single control mechanism—separating. it into
stages as above is likely to destroy convergence.
Convergence has two faces—globally it is a
guarantee of finding a path to the target if one
exists, and locally it is an assurance of collision
avoidance in view of the robot’s inertia. The
former can be borrowed from kinematic
algorithms; the latter requires an explicit
consideration of dynamics.

To illustrate our approach, consider an
example. Imagine a jogger in the city environ-
ment. Taking a run will involve continuous
on-line control and decision making. This will
require a number of mechanisms: first, a global
planning (convergence) mechanism is needed to
assure arriving at the target location in spite of
all deviations and detours that the changes in the
environment may require. Second, since an
instantaneous stop is impossible because of
inertia, in order to maintain a reasonable speed
the jogger needs at any moment an ‘insurance’
option of a safe stopping path. Third, when the
jogger starts turning the street corner and
suddenly sees a heavy large object right on the
intended path, some quick local planning must
occur to take care of collision avoidance. The
jogger’s speed may temporarily decrease, and
the path will smoothly divert from the object.
This path segment is likely to be locally
optimized, to arrive at the street corner quicker
or along a shorter path. Or, other options being
infeasible, the jogger may ‘brake’ to a halt, and
then start a detour path.

Note that sensing, local planning, global
planning, and actual movement in this process
are taking place simultaneously and con-
tinuously. Locally, unless the right relationship is
maintained between the velocity at the time of
noticing the object, the distance to it, and the
jogger’s mass, collision may occur: for example,
a bigger mass may dictate better (further)
sensing to maintain the same velocity. Globally,
unless a ‘grand plan’ is followed, convergence
may be lost.

Although at any moment the robot has
knowledge about the obstacles within its sensing
range, it would not be reasonable to address the
problem as a sequence of smaller problems with
complete information. For one, this would
require computing the whole piece of the path
inside the sensing range, which itself consists of

many steps. Doing that at each step (say, at the
rate of 30–50 steps per second) would be
computationally very expensive. Note that only
the first step of this path is likely to be
executed—the new sensing data will require
changes. Thus, computing the whole path within
the sensing range would be largely a computa-
tional waste.

Our algorithm for step calculation will (a)
place the step on a globally converging
collision-free path, while (b) satisfying the robot
dynamics constraints. Assume that the sensing
range (’radius of vision’) is r,. The general
strategy will be as follows:at the moment (step)
i, the kinematic algorithm chosen identifies an
intermediate target point ~, which is the farthest
visible point on a convergent path—normally at
the boundary of the sensing range rv. Then a
single step is calculated and executed that lies on
a time-optimal trajectory to ~.; the robot moves
from its current position Ci to the next position
Ci+l; then the process repeats.

The fact that no information is available
beyond the sensing range dictates a number of
requirements. The emergency stopping path
must lie inside the current sensing area. Since
some parts of the sensing range may be occupied
or occluded by obstacles, the stopping path must
lie in its visible part. Then, the robot needs a
guarantee of stopping at the intermediate target
~, even if it does not intend to do so. That is,
each step is to be planned as the first step of a
trajectory that, given the current position,
velocity and control constraints, would bring the
robot to a halt at ~.

The step planning task is formulated as an
optimality problem. At each step, a canonical
solution is found that, if no obstacles were
present, would bring the robot from Ci to ~ with
zero velocity and in minimum time. If the
canonical path crosses an obstacle and is thus not
feasible, a near-canonicalsolution path is found
that is collision-free and satisfies the control
constraints. We show that in this case only a
small number of options need be considered, at
least one of which is guaranteed to be
collision-free.

By making use of the L= norm within the
duration of a single step, we decouple the
twodimensional problem into two one-
dimensional control problems and reduce the
task to the bang–bang control strategy. This
results in an extremely fast procedure for finding
the (fairly complex) time-optimal path within the
sensing range, easily implementable in real time.
Only the first step of this path is actually
executed; this decreases the error due to the
control decoupling. At the next moment, new

1222 A. M. Shkel and V. J. Lumelsky

sensing data arrive and the process repeats. A
special case is also considered where the
intermediate target goes out of the robot’s sight
either because of the robot’s inertia or because
of occluding obstacles.

The terminology and model used are intro-
duced in Section 2, followed by a sketch of the
suggested approach in Section 3. Analysis of the
system dynamics in Section 4 results in
decoupling of the control problem into two
one-dimensional problems, each with a bang–
bang control solution. Although obtaining such a
solution is a relatively simple and known
problem, we have not been able to find in the
literature the derivation of the general-form
solution, or the proof of its sufficiency.
Consequently, those details are given in the
Appendix. Procedures for finding the canonical
and near-canonical solutions appear in Sections 5
and 6. The complete algorithm and its
convergence and complexity properties are
discussed in Sections 7 and 8, and simulated
examples of the algorithm performance are given
in Section 9.

2. THE MODEL

The environment (work space) is two-
dimensional physical space W= (x, y) c R2; it
may include a finite set of locally finite static
obstacles 0 ● W. Each obstacle Q ● 0 is a simple
closed curve of arbitrary shape and of finite
length, such that a straight line will cross it in
only a finite number of points. Obstacles do not
touch each other (if they do, they are considered
as one obstacle).

The robot is a point mass, of mass m. The
robot is equipped with sensors that allow it, at its
current location Ci) to detect any obstacles and
the distance to them within its sensing range—a
disc D(Ci, rv) of radius r, (’radius of vision’)
centered at Ci. At moment tijthe robot’s input
information includes its current velocity vector
Vi) and the coordinates of Ci and of its target
location T.

The robot’s means for motion control are two
components of the acceleration vector u = f/m =
(P, 9), where m is the robot’s mass, and f is the
force applied. Controls u come from a set
u(”) G U of measurable, piecewise-continuous
bounded functions in lR2, U= {u(s)= (p(”),
9(”)) IP ● [–PmaX~PmaX~96 [–qmax~9M=I}”‘Y
taking the mass m = 1, we can refer to the
components p and q as control forces, each

1<within a fixed range 1P Is pm~~, q 1—qmax; Pmaxt

qmax >0. The force P COntrOISthe forward (or
backward when braking) motion; its positive
direction coincides with the robot’s velocity

vector V. The force q, the steering control, is
perpendicular to p, forming a right pair of
vectors (see Fig. 2 below). There is no friction:
for example, given the velocity V, the control
values p = q = Owill result in a constant-velocity
straight-line motion along vector V.

Without loss of generality, we assume that no
external forces except p and q act on the system.
Note that, under this assumption, our model and
approach can still handle other external forces
and constraints, using, for example, the tech-
nique suggested in Fraichard and Scheuer
(1994), whereby various dynamic constraints
such as curvature, engine force, sliding and
velocity appear in dhe inequality describing the
limitations on the components of acceleration.
The use of such inequalities defines a convex
region of the (-i,y) space. In our case the control
forces act within the intersection of the box
[-P~~.,PA x [-q~.., %..1withthehalf-planes
defined by those inequalities.

The task is to move in W from point S (start)
to point T (target); see Fig. 1. The control of
robot motion is done in steps i = 0.1.2, Each
step i takes a time St= ti+l– ti= const; the path
length within the time interval St depends on the
robot’s velocity Vi. Steps i and i + 1 start at
times tiand ti-l respectively; CO=S. The control
forces U(O)= (p, q) E U are constant within the
step.

We define three coordinate systems (follow
Fig. 2).

● The world frame (x, y) is fixed at the point S.

● The primary path frame (t,n) is a moving
(inertial) coordinate frame. Its origin is
attached to the robot; the axis t is aligned with
the current velocity vector V; the axis n is
normal to t.Together with the axis b, which is
the cross-product b = t x n, the triple (t, n, b)

FbtJu’smuh

i /’
P

(“

, /\

.............. ...”
...,,...’

...”
..,,;:”

s: M-line
... ;“... ,?

~:%, ...”“.......-.+.-......’

Fig. 1. Example of performance of a kinematic algorithm
(Lumelsky and Skewis, 1990).

, - - - - ,. - - -

Control of dynamics in real-time motion planning 1223

●

forms the Frenet trihedron,with the plane oft
and n forming the osculatingplane (Kern and
Kern, 1968).

The secondary path frame, (~i,qi), is a
coordinate frame that is fixed during the time
interval of the step i. The frame’s origin is at
the intermediate target ~, with the axis ~i
aligned with the velocity vector Vi at time tij
and the axis qi normal to ~i.

For convenience, we combine the require-
ments and constraints that affect the control
strategy into a set, called Q. A solution (a path, a
step or a set of control values) is said to be
!Q-acceptableif, given the current position Ci and
velocity Vi,

(i) it satisfies the constraints Iplsp~,. and
191= 9maxonthecontrolforces>

(ii) it guarantees a stopping path, and

(iii) it results in a collision-freemotion.

3. THE APPROACH

The algorithm developed below is to be
executed at each step of the robot’s path. The
procedure combines the convergence mechanism
of a kinematic sensor-based motion-planning
algorithm with a control mechanism for handling
dynamics, resulting in a single operation. During
the step time interval i, the robot will maintain
within its sensing range an intermediate target
point ~, usually on an obstacle boundary or on
the desired path—say, a straight line. At its
current position Ci$ the robot will plan and
execute its next step towards ~, then at Ci+l
analyze new sensory data and define a new
intermediate target Ti+l, and so on. At times the
current T may go out of the robot’s sight
because of its inertia or due to occluding
obstacles. In such cases the robot will rely on
temporary intermediatetargetsuntil it can see the
point X again.

The kinematicpart
In principle, any maze-searching procedure

can be utilized for the kinematic part of the
algorithm, so long as it allows an extension to
distant sensing. For the sake of specificity, we
use here the VisBug algorithm (Lumelsky and
Skewis, 1990). Below, the M line (Main line) is
the straight line connecting the points S and T; it
is the robot’s desired path. When, while moving
along the M line, the robot senses on its way an
obstacle, this point on the obstacle boundary is
called a hit point, Z-1. The corresponding
intersection point between the M line and the
obstacle ‘on the other side’ of the obstacle is a

leave point, L. Roughly, the algorithm revolves
around two steps (see Fig. 1).

1.

2.

Walk from S toward T along the M line until,
at some point detecting an obstacle crossing
the M line, say at point 1?. Go to Step 2.

Define a farthest visible intermediate target ~
on the obstacle boundary in the direction of
motion; make a step toward ~. Iterate Step 2
until detecting the M line. Go to Step 1.

The actual algorithm includes other mechanisms,
such as a finite-time target-reachability test and
local path optimization. In the example shown in
Fig. 1, note that, while trying to pass the obstacle
from the left, at the point P the robot would
make a sharp turn—the algorithm assumes
holonomic motion. In our case, however, such
motion will not be possible because of the
robot’s mass and velocity—the motion is non-
holonomic (the dotted path beyond the point P).

The effectof dynamics
Dynamics affects three algorithmic issues:

safety considerations, step planning and conver-
gence. We consider these separately.

Safety considerations. These appear in a
number of ways. Since no information about the
obstacles is available beyond distance r, from the
robot, guaranteeing collision-free motion means
assuring at any moment at least one ‘last-resort’
stopping path. Otherwise, at the next step new
obstacles may appear in the sensing range, and
collision will be imminent no matter what
control is used. This dictates a certain relation-
ship between the velocity V, mass m, radius r,
and controls u = (p, q). Under a straight-line
motion, the range of safe velocities must satisfy

v s @Z, (1)

where d is the distance from the robot to the
stop point. That is, if the robot moves with the
maximum velocity, the stop point of the stopping
path must be no further than rvfrom the current
position C. In practice, (1) can be interpreted in
a number of ways. Note that the maximum
velocity is proportional to the acceleration due
to control, which is in turn directly proportional
to the force applied and inversely proportional
to the robot’s mass. For example, if the mass m
becomes larger, while other parameters stay the
same, the maximum velocity will decrease.
Conversely, if the limits on (p, q) increase (say,
because more powerful motors) then the
maximum velocity will increase as well. Or, an
increase in the radius r, (say, due to better

1224 A. M. Shkel and V. J. Lumelsky

sensors) allows one to increase the maximum
velocity, by virtue of utilizing more information
about the environment.

Consider the example in Fig. 1. When
approaching the point P along its path, the robot
will see it at distance r, and will designate it as its
next intermediate target ~. Along this path
segment, the point ~ happens to stay at P
because no further point on the obstacle
boundary will be visible until the robot arrives at
P. Though there maybe an obstacle right around
the corner P, the robot need not slow down,
since at any point of this segment there is a
possibility of a stopping path ending somewhere
around the point Q. That is, in order to proceed
with maximum velocity, the availability of a
stopping path has to be ascertained at every step
i. Our stopping path will be a straight line path
along the corresponding vector Vi. If a candidate
step cannot guarantee a stopping path, it is
discarded. (Note that a deeper, multistep
analysis would be hardly justifiable here because
of high computational costs, though occasionally
it could produce locally shorter paths.)

Step planning. Normally the stopping path is
not used—it is only an ‘insurance’ option. The
actual step is based on the canonicalsolution, a
path that would bring the robot from Ci to Z
with zero velocity and in minimum time,
assuming no obstacles. The optimization prob-
lem is set up based on Pontryagin’s optimality
principle. We assume that within a step-i.e.
within the time interval [tijti+l)—the system’s
controls (p, q) are bounded in the L. norm, and
apply it with respect to the secondary coordinate
frame (~i, ~i). The result is a fast computational
scheme that is easily implementable in real time.
Only the very first step of the solution is used for
the actual motion; then, another solution is
calculated using new sensory information, and so
on. With such a step-by-step execution of the
optimization scheme, on the one hand, a good
approximation of the globally time-optimal path
from Ci to T is produced, and, on the other
hand, little computation is wasted on the part of
the path solution that will not be utilized.

If the step suggested by the canonical solution
is not feasible because of obstacles, a close
approximation, called the near-canonical
solution, is found that is both feasible and
Q-acceptable. For this case, we show, first, that
only a finite number of path options need be
considered, and, second, that there exists at least
one path solution that is Cl-acceptable.A special
case here is when the intermediate target goes
out of the robot’s sight either because of the
robot’s inertia or because of occluding obstacles.

Convergence.Once a step has been physically

executed, new sensing information appears and
the process repeats. The procedure for a detour
around a sudden obstacle is tied to the issue of
convergence, and is constructed similarly to the
case of normal motion. Because of the effect of
dynamics, the convergence mechanism borrowed
from a kinematic algorithm—here VisBug—will
need some modification. The intermediate target
points ~ produced by VisBug lie either on the
boundaries of obstacles or on the M line, and are
visible from the corresponding robot positions.
However, the robot’s inertia may cause it to
move so that ~ will become invisible, either
because it goes outside the sensing range r. (as
after the point P on Fig. 1), or because of
occluding obstacles (as in Fig. 5 below). This
may endanger path convergence. A safe but
inefficient solution would be to slow down or to
keep the speed small at all times to avoid such
overhsoots. The solution chosen (see Section 7)
is to keep the velocity high and, if the
intermediate target ~ does go out of sight, to
modify the motion locally until ~ is found again.

4. DYNAMICS AND COLLISION AVOIDANCE

Consider a time sequence m,= {to,tl,t2,...}of
the starting moments of steps. Step i takes place
within the interval [tijti+l)jti+l— ti= &. At the
moment tithe robot is at the position Ci) with
the velocity vector Vi. Within this interval, based
on the sensing data, the intermediate target ~
(supplied by the kinematic planning algorithm)
and the vector Vi) the control system will
calculate the values of the control forces p and q.
The forces are then applied to the robot, and the
robot executes step i, finishing it at the point
Ci+l at the moment ti+l, with the velocity vector
Vi+l; then the process repeats.

The analysis that leads to the procedure for
handling dynamics consists of three parts. First,
in the remainder of this section we incorporate
the control constraints into the robot model and
develop the transformations between the pri-
mary path frame and world frame, and between
the secondary path frame and world frame.
Then, in Section 5 we develop the canonical
solution, and, finally, in Section 6 the near-
canonical solution, for the case when the
canonical solution would result in a collision.
The resulting algorithm operates incrementally,
and computes the forces p and q at each step.
The remainder of this section refers to the time
interval [tijti+I) and its intermediate target ~,
and so the the index i is often dropped.

Denote by (x, y) ● R2 the robot’s position in
the world frame, and by 8 the (slope) angle
between the velocity vector V = (Vx,V,) =(~,y)

.

Control of dynamics in real-time motion planning 1225

........... y“”””’””-””””””””””’”””........... ,... ““...#.
./””

,..”” dt“ ““””...,
/’”

...”” /’:, .../ \ ./ j
RdiuIof i:

~:” ...
vm~ rv

w
v,

q :. e,

.“”””ci,..

4’

~i ~ ~
2

:: /“
..,. ,.”

Y ““’”..,. .“””””

1-

...
. Otutlcle...;:s.%.

s x “’........“’”.........,..-
.-”””

Fig. 2. The coordinate frame (x,y) is the worldframe with its
origin at S; (t,n)isthe primarypathframe, and (&,qj) is the

secondarypath frame for the current robot position Ci.

and the x axis of the world frame (Fig.2). The
planning process involves computation of the
controls u = (p, q), which for every step define
the velocity vector and eventually the path
(x(t),y(t)) as a function of time. Taking the
mass m = 1, the equations of motion become

J =p sin@+ q COS 0.

The angle 0 between the vector V = (VxjVY)and
the x axis of the world frame is found as

{
arctan (VY/Vx) (u =0),

e = arctan (VY/Vx)+Z, (Vx<0).

The transformations between the world frame
and the secondary path frame, from (x, y) to
($, ~) and from (& q) to (x, y), are given by

(:)=4;:;;)
(;)=R’(;)+(;:)>

where

R=
(

Coso sinf3
)–sin 0 cos 0 ‘

(2)

(3)

R’ is the transpose of the matrix of the rotation
matrix between the frames (~,q) and (x, y), and
(x~,y~) the coordinates of the (intermediate)
target in the world frame (x, y).

To define the transformations between the
world frame (x, y) and the primary path frame
(t, n), write the velocity in the primary path
frame as V = Vt. To find the time derivative of
the vector V with respect to the world frame
(x, y), note that the time derivative of the vector
tinthe primary path frame (see Section 2) it not
equal to zero, and can be defined as the

cross-product of the angular velocity co= db of
the primary path frame and the vector t itself:
t = u x t, where the angle 6 is between the unit
vector t and the positive direction of the x axis.
Given that the control forces p and q act along
the tand n directions respectively, the equations
of motion with respect to the primary path frame
are

v=p,

e=qlv.

Sincep and q are constant over the time interval
t ● [ti, ti+l)) the solution for V(t) and t)(t) within
the interval becomes

v(t) =pt + v~,

q log (1 + tp/y.) (4)
e(t) = e~+

P

where 00 and VOare constants of integration and
are equal to the values of @(ti) and V(ti)
respectively. By parameterizing the path by the
value and direction of the velocity vector, the
path can be mapped into the world
using the vector integral equation

f

t;+,
r(t) = V “tdt.

t{

frame (x, y)

(5)

Here r(t) = (x(t), y(t)), and t is a unit vector in
the direction of V, with the projections
t = (COS0, sin 0) onto the world frame (x, y).
Integration (5) gives the set of solutions,

2p cos O(t)+ q sin e(t)
x(t) =

4p2+ qz
V*(t) + A,

(6)
q cos @(t)–2p sin O(t) z

y(t) = –
4p2+ qz

V (t)+ B,

where

A =XO –
V3(2pcos60+q sin 6.)

4p2+ qz

B = yO+
V~(qcos8.) –2p sin f30)

4p2+qz ‘

and V(t) and f3(t)are given by (4).
Equations (6) describe a spiral curve. Note

two special cases: when p # O and q = O, (6)
describe straight-line motion under the force
along the velocity vector; when p = O, q #O, the
force acts perpendicularly to the vector of
velocity, and (6) produce a circle of radius V~/lql
centered at the point (A, B).

1226 A. M. Shkel and V. J. Lumelsky

5. THE CANONICAL SOLUTION

Given the current position Ci = (xi,yi), the
intermediate target ~. and the velocity vector
Vi = (ii, ji), the canonical solution presents a
path that, assuming no obstacles are present, will
bring the robot from Ci to ~ with zero velocity
and in minimum time. The L.-norm assumption
allows us to decouple the bounds on the
accelerations in the ~ and q directions, and thus
treat the two-dimensional problem as a set of
two one-dimensional problems, one for control p
and the other for control q. For details on the
solution of a one-dimensional control problem,
refer to the Appendix.

The optimization problem is formulated based
on Pontryagin’s (1962) optimality principle with
respect to the secondary frame (~,q). We seek
to optimize a criterion F that signifies time.
Assume the trajectory being sought starts at time
t = Oand ends at time t= tf(for ‘final’).Then the
problem in hand is

F(g(.), q(”),tJ =t~-+w,

j ‘P, IIPII ‘Pm..,

‘i = 9) 11911s 9max7

g(o) = g., ‘q(o)= q., g(o)= go, ?j(o)= ?j.,

q(tf) = q(tf) = g(ff)= 7j(tf)= o.

Analysis shows (see the details in the Appendix)
that the optimal solution of each one-
dimensional problem corresponds to ‘bang-
bang’ control, with at most one switching along
each of the directions ~ and q, at the times t,.g
and t,,~(’s’ for ‘switching’)respectively.

The switchingcurves for control stitchings are

Point of

switr.hing

Final
/ .

pmition

Swikb
Culve

(a)

two connected parabolas in the phase space
(4o

[

t-J- (g>o),
2Pmax(= (7)

& (g<o)

and in the phase space (q, O)

[

-: (?j>o),
q= (8)

& (i <0)

(see Fig. 3). The time-optimal solution is then
obtained using the bang–bang strategy for g and
q, depending on whether the starting points,
($}~) and (T, d) are above or below their
corresponding switch curves, as follows:

{
a,pmax (O=t=ts,f),

p(t) =
a,pmax (t,,gctstf),

{

(9)
a,qmax (O=t=ts,q),

g(t) =
Cl,qmax(t.,q<t<tf),

where al = –1 and a2 = 1 if the starting point,
(&i% or (q, O). respectively, is above its switch
curves, and al = 1 and az = –1 if the starting
point is below its switch curves. For example, if
the initial conditions for $ and q are as shown in
Fig. 3 then

p(t)=
{

‘Pmax (0= t = L,f),

+pmax (t.,gctstf),
(lo)

+qmax (O=t=t,,q),
~(t)= {-qmax (t,,q<tstf),

‘/I

/

9

Final / .
position

storl
poaition

(b)

dq
.
dt

Fig. 3. (a) The start position in the phase space (g, ~) is above the switchingcurves. (b) The start position in the phase space
(~, 4) is under the switchingcurves.

Control of dynamics in real-time motion planning 1227

where the ‘hat’ indicates the parameters under
optimal control. The time, position and velocity
of the control switchingfor the ~ components are
given by

t.,(= Wfo)2 + foPmax+ go
Pmax ‘

&=&+5
2’

‘.=-”6
H— + gopmax,

2Pmax

and those for the q components are given by

w~o)’–T09111L3X–40t%7 =
9max ‘

The number, time and locations of stitchings
can be uniquely defined from the initial and final
conditions. It can be shown (see the Appendix)
that for every position of the robot in
R4(&~, & fi), the control law obtained guar-
antees time-optimal motion in both the ~ and q
directions, as long as the time interval
considered is sufficientlysmall. Substituting this
control law into the equations of motion (6)
produces the canonical solution.

To summarize, the procedure for obtaining the
first step of the canonical solution is as follows.

1.

2.

3.

Substitute the current position/velocity
(f, n, 1, i) into (7) and (8) and see if the
starting point is above or below the switching
curves.

Depending on the above/below information,
take one of the four possible bang–bang
control pairs p, q from (9).

With this pair (P, q), find from (6) the
position Ci+l and’-fro-rn(4) the velocity Vi+l
and angle ei+l at the end of the step. If this
step to Ci+l crosses no obstacles, and if there
exists a stopping path in the direction Vi–l,
the step is accepted; otherwise, a near-
canonical solution is sought (see Section 6).

Note that though the canonical solution defines a
fairly complex multistep path from Ci to ~, only
one—the very first-step of that path is

calculated explicitly. The switching curves (7)
and (8) and the position and velocity equations
(6) and (4) are quite simple. The whole
computation is therefore very fast.

6. NEAR-CANONICAL SOLUTION

As discussed above, unless a step being
considered for the next moment guarantees a
stopping path along its velocity vector, it will be
rejected. This step will be always the very first
step of the canonical solution. Therefore, if the
stopping path of this candidate step happens to
cross an obstacle within the distance found from
(l), the controls are modified into a near-
canonicalsolution that is both Cl-acceptableand
reasonably close to the canonical solution. The
near-canonical solution is one of the nine
possible combinations of the bang-bang control
pairs (klp~,x, k2q~.x), where kl and k2 are
chosen from the set {–1, O,1} (see Fig. 4). Since
the canonical solution takes one of those nine
control pairs, the near-canonical solution is to be
chosen from the remaining eight pairs. This set is
guaranteed to contain an Q-acceptable solution:
since the current position has been chosen
so as to guarantee a stopping path, such a last-
resort path—for example, under the control
(-Pm*x?O)—alwaysexists. Further, the position
of the intermediate target ~ relative to the
vector Vi—in its left or right half-plane—
suggests an ordered and thus shorter search
among the control pairs. For step i, denote the
nine control pairs u{, j = O,1, 2, ... , 8, as shown
in Fig. 4. If, for example, the canonical solution
is u; then the near-canonical solution will be the
first f2-acceptable control pair u~= (p, q) from

“a

Y

I
Fig. 4. Near-canonical solution. The controls (p, q) are
assumed to be L.-norm bounded on the small interval of
time. The choice of (p, q) is among eight ‘bang–bang’

solutions shown.

. . , - . - .. , - - .. - -.

1228

the sequence (U3,u], U4,U“,U8,
that us is always Q&acceptable.

A. M. Shkel and V. J. Lumelsky

U5,u’, U6);note

7. THE ALGORITHM

The complete motion-planning algorithm is
executed continuously at every step of the path,
and generates motion by computing canonical or
near-canonical solutions at each step. It includes
four procedures.

(i) The Main Body procedure monitors the
general control of motion towards the
intermediate target ~.

In turn, Main Body makes use of three
procedures.

(ii)

(iii)

(iv)

Procedure Define Next Step chooses the
controls (p, q) for the next step.

Procedure Find Lost Target deals with the
special case when the intermediate target ~
goes out of the robot’s sight.

Main Body also uses the procedure called
Compute ~, taken directly from the
kinematic algorithm (Lumelsky and Skewis,
1990), which computes the next intermedi-
ate target T+l so as to guarantee the global
convergence, and also performs the test for
target reachability.

As before, S is the starting point, T is the
robot’s target; at step i, Ci is the robot’s current
position and the vector Vi is the current velocity
vector. Initially, i = O, Ci = ~ = S.

ProcedureMain Body. At each step i:
If Ci = T, stop.
Find T from Compute z.
If T is found unreachable, stap.
If ~ is visible, find Ci+l from DefineNext Step;
make a step towards Ci+l; iterate; else.
Use Find Lost Target to produce T visible;
iterate.

ProcedureDefine Next Step. At step i:

S1. Find the canonical solution (the switch
curves and controls (p, q)) using (7)-(9). If
it is Q-acceptable, exit; else go to S2.

S2. Find the near-canonical solution as in
Section 6; exit.

Procedure Find Lost Target. This is executed
when T becomes invisible. The last position Ci
where ~ was visible is then stored until T
becomes visible again. Various heuristics can be
used here, as long as convergence is preserved.
One simple strategy would be to come to a halt
using a stopping path, then come back to Ciwith

zero velocity, and then move directly toward ~.
The procedure chosen below is a bit smarter: if
the robot loses ~, it keeps moving ahead while
defining temporary intermediate targets T} on
the visible part of the line segment (Ci, ~), and
continuing looking for ~. Then, if it finds ~., it
moves directly toward it (Fig. 5a) otherwise, if
the whole segment (Ci, TJ becomes invisible, the
robot brakes to a stop, returns to Ci with zero
velocity, and then moves directly toward ~
(Fig.5b) as follows.

S1.

S2.

While at C~,k > i, find on the segment
(Cij ~) the visible point closest to ~; denote
it by Tj. If there is no such point (i.e. if the
whole segment (Cij ~) is not visible), go to
S2. Else, using Define Next Step, compute
and execute the next step using T} as the
temporary intermediate target; iterate.

Initiate a stopping path, then go back to Ci;
exit.

8. CONVERGENCE. COMPUTATIONAL
COMPLEXITY

Convergence
The collision-free motion along the path is

guaranteed by the design of the canonical and
near-canonical solutions. To prove convergence,
we need to show that the algorithm will find a
path to the target position T if one exists, or it
will infer in finite time the nonreachability of T if
true. This is guaranteed by the convergence
properties of the kinematic algorithm (Lumelsky
and Skewis, 1990). The following statements
hold.

Claim 1. Under the algorithm, assuming zero
velocity V~= O at the start position S, at each
step of the path there exists at least one stopping
path.

To see this, recall that, according to our
model, the stopping path lies along a straight
line. Guaranteeing a stopping path implies two
requirements: a safe direction and the velocity
value such as to allow a stop within the visible
area. Because the latter is assured by the choice
of the system parameters in (l), we focus now on
the existence of safe directions. We proceed by
induction: we have to show that if a safe
direction exists at the start point and on an
arbitrary step i then there is a safe direction on
step i + 1.

Since at the start point S the velocity is zero,
any direction of motion at S will be a safe
direction—this gives the basis of induction. The
induction step is as follows.Under the algorithm,

., - - . - - - - - . .. - -

Control of dynamics in real-time motion planning 1229

(a)

T,

c, “+1
.,....y””””%ck.........%ck

.... :

,%
-.,...”

/“” k+l
T,:,

,.””
t ...

,,: ...
~“

~“ ...
J ...e “’s..T,

(b)

Fig. 5. In these examples, because of the system inertia, the robot temporarily ‘loses’the intermediate target point ~. In (a), it
keeps movingforward until at Ckit sees ~. In (b), at Ckit sees ~. In (b), at Ckthe robot initiates a stoppingpath, stops at Ck+l,

returns back to Ci and moves toward ~ along the line (Cl, ~).

a candidate step is accepted for execution only if
its direction guarantees a safe stop for the robot
if needed. Namely, at the point Ci) step i is
executed only if the resulting vector Vi+l at Ci+l
will point in a safe direction. Therefore, at step
i + 1, at the least this very direction can be used
for a stopping path.

Remark. Claim 1 will hold for V~# O as well if
there exists at least one stopping path originating
at the start point S.

Claim2. Thealgorithmguaranteesconvergence.

To see this, note that at each step i at its current
position Ci the robot uses its sensing to generate
the next intermediate target point x. That point
~ is known to lie on a convergent path of the
kinematic algorithm (Lumelsky and Skewis,
1990). At the moment when ~ is generated, it is
visible (see above). The only way the robot can
get lost then is if at the next step(s) Ci+l the
point ~ becomes invisiblebecause of the robot’s
inertia or an obstacle occlusion: this would make
it impossible to generate the intermediate target
~+1 as required by the kinematic algorithm. But,
if indeed point ~ becomes invisible, the Find
Lost Targetprocedure (above) is invoked, and a
set of temporary intermediate “targets T~+land
associated steps are executed until point ~ again
becomes visible (see Fig. 5a). Thus the robot is
always moving toward a point which lies on a
convergent path and itself converges to the
target T.

Computationalcomplexity
As with other on-line sensor-based algorithms,

it is not very informative to assess the algorithm
complexity in the way it is usually done for

algorithms with complete information (Canny et
al., 1990).This is because in the latter one deals
with one-time computation, whereas in the
former the important complexity measure is the
amount of computations at each step; the total
computation time is simply a linear function of
the path length. (Recall that with a sampling rate
or, say, 50 per second, each step calculation must
be done within the 20ms interval.)

As shown in Section 5, though the canonical
solution found by the algorithm at each path step
is the solution of a fairly complex time-optimal
problem, its computational cost is remarkably
low, thanks to the (optimal) bang–bang control.
This computation includes substituting the initial
conditions (& q, ~, ij) into the equations for
parabolas (7), and (8) to see if the start point is
above or below the corresponding parabola, and
then simply taking the corresponding control
pair @, ~) from the four choices in (9). The
parabola equations themselves are found before-
hand, only once. The near-canonical solution,
when needed, is similar and as fast. Note that a
single-step computation is of constant time:
though the canonical solution represents the
whole multistep trajectory within the sensing
range of radius r,, the computational time is
independent of the value r, and the length of
path within the sensing range.

9. EXAMPLES

Figure 6 illustrates the performance of the
proposed algorithm in simulated examples. The
robot’s mass m and the constraints on the
control parameters p and q are the same for all
examples: p~~X= q~~X and p~Jm = 1. The
generated paths are shown by thicker lines. For
comparison, also shown as thin lines are the

1230 A. M. Shkel and V. J. Lumelsky

(c)

(b)

~:\,

! 9

-%,#

(e) (f)
Fig. 6. Simulated examples of the algorithm’sperformance. (a) and (b) differ in that more obstacles are added in (b). (c) and (d)
relate to the same respective scenes, and have larger radius of vision r,. (e) and (f) relate to a different scene. Note the stopping

points along the paths.

corresponding paths produced under the same obstacles that the robot suddenly uncovers at a
conditions by the kinematic algorithm VisBug close distance when turning around a corner.
(Lumelsky and Skewis, 1990). Note that in Fig. 6(b) the path becomes tighter

In both Figs. 6 (a) and (b) the radius of vision and shorter, though it takes longer: measured in
r, is the same; the difference is in the the number of steps, the path in Fig. 6(a) takes
environment: in Fig. 6(b) there are additional 242 steps, and in Fig. 6(b) 278 steps; one might

Control of dynamics in real-time motion planning 1231

say the robot becomes more cautious in Fig.
6(b). A similar pair of examples shown in Figs
6(c, d) illustrates the effect of the radius of
vision: in (c) and (d) r, is twice that of Figs
6(a, b). The times to execute the path are 214
and 244 steps respectively—shorter than in the
corresponding examples in Figs 6(a, b). That is,
in these examples better sensing (larger r,)
results in shorter time to complete the task;
more crowded space results in longer time
(though perhaps in shorter paths).

Note that at a few points the system found it
necessary to make use of the stopping
path—those points are usually easy to recognize
from the sharp turns in the path. For example, in
Fig. 6(a) the robot came to a halt at the points A
and D, and in Fig. 6(b) it stopped at the points
A, B, C, D, E and F. The algorithm’s
performance in a more complicated environment
is shown in Figs 6(e, f): in (f) the radius of vision
r, is 1.4 times that of (e). N“oteagain
input information (further sensing
likely to translate into shorter paths.

10. CONCLUSIONS

that richer
range) is

As the existing approaches to real-time
(sensor-based) motion planning tend to deal
solely with kinematic and geometric issues, one
has difficultyusing them in situations where the
system dynamics cannot be ignored. This work
has attempted to incorporate body dynamics into
the paradigm of sensor-based motion planning.
While the accepted assumption of a point-mass
mobile robot is still a simplification of some
real-world problems, it does catch the basic
relation between dynamics and motion planning,
and gives a basic paradigm for other, perhaps
more complex, problems of this kind. Other
properties of the accepted model are quite
realistic; the robot is assumed to operate in an
environment with unknown stationary obstacles
of arbitrary shapes. Given the constraints on the
robot’s dynamics, sensing and control means,
conditions have been formulated for generating
locally optimal collision-free trajectories with
guaranteed convergence. The approach calls for
continuous computation, and is fast enough for
real-time implementation.

Based on its velocity and sensing data, the
robot continuously plans its motion based on
canonical solutions, each of which presents a
time-optimal path within the robot’s sensing
range. For a special case of a sudden potential
collision, an option of a safe emergency stopping
path is always maintained. As the convergence
properties come from an appropriate static
procedure of motion planning, the resulting

strategy guarantees that, in spite of various
constraints on velocity, mass, etc., our ‘jogger’
will always arrive at the destination if a path
exists, or infer in finite time that the destination
is not reachable if such is the case. Simulated
examples demonstrate good performance of the
algorithm.
Ac,4nowledgemertts-This work is supported in part by the
U.S. Sea Grant R/NI-20 and DOE (Sandia Labs) Grant
18-4379C.

REFERENCES
Barraauand. J. and Latombe. J. C. (1991) Nonholonomic

mul~ibody mobile robots: Contro~labili’tyand motion
planning in the presence of obstacles.. In Proc. IEEE
International Conf on Robotics and Automation,
Sacramento, CA, pp. 2328-2335.

Barraquand, J., Langlois, B. and Latombe, J. C. (1992)
Numerical potential fields techniques for robot path
planning. IEEE Trans. Syst., Man, Cyber. SMC-22,
224-241.

Canny, J. (1987) A new algebraic method for robot motion
planning and real geometry. In Proc. 28thIEEE Symp. on
Foundationsof Computer Science, Los Angeles, CA, pp.
39-48.

Canny, J., Rege, A. and Reif, J. (1990) An exact algorithm
for kinodynamicplanning in the plane. In Proc. 6thAnnual
Symp. on ComputationalGeometry, Berkeley, CA, pp.
271-280.

Donald, B. and Xavier, P. (1989) A provably good
approximation algorithm for optimal-time trajectory
planning. In Proc. IEEE InternationalCon$ on Robotics
and Automation,Scottsdale, AZ, pp. 958–964.

De Luca, A. and Oriolo, G. (1994) Local incremental
planning for nonholonomic mobile robots. In Proc. IEEE
International Corrf on Robotics and Automation, San
Diego, CA, pp. 104-110.

De Medio, C. and Oriolo, G. (1991) Robot obstacle
avoidance using vortex fields. In Advances in Robot
Kinematics, ed. S. Stifter and J. Lenarcic, pp. 227-235.
Springer-Verlag,New York.

Fraichard, T. and Scheuer, A. (1994) Car-like robots and
moving obstacles. In Proc. IEEE InternationalConf on
Roboticsand Automation,San Diego, CA, pp. 64-69.

Greenwood, D. T. (1%5) Principlesof Dynamics. Prentice-
Hall, New York.

Hocking, L. (1991) Optimal Control. Clarendon Press,
Oxford.

Jacobs, P., Laumond, J. P. and Taix, M. (1991) Efficient
motion planners for nonholonomicmobile robots. In Proc.
IEEE International Conf on Intelligent Robots and
Systems(IROS), Osaka, Japan, pp. 1229-1235.

Khatib, O. (1986) Real-time obstacle avoidance for
manipulators and mobile robots. ht. J. Robotics Res. 5,
90-99.

Koditschek, D. (1987) Exact robot navigation by means of
potential functions: Some topological considerations. In
Proc. IEEE International Conf on Robotics and
Automation,Raleigh, NC, pp. 1-6.

Kern, G. and Kern, T. (1%8) MathematicalHandbook.
McGraw-Hill,New York.

Latombe, J. C. (1991) A fast path planner for a car-like
indoor mobile robot. In Proc. 9th National Conf on
ArtificialIntelligence,Anaheim, CA, pp. 659-665.

Lumelsky, V. and Skewis, T. (1990) Incorporating range
sensing in the robot navigation function. IEEE Trans.
Syst., Man, Cyber. SMC-2Q,1058-1069.

Lumelsky, V. and Stepanov, A. (1987) Path planning
strategies for a point mobile automation moving amidst
unknown obstacles of arbitrary shape. Algorithmic 2,
403-430.

Pontryagin, L. S. (1962)TheMathematicalTheoryof Optimal
Processes.Interscience, New York.

Sankaranarayanan, A. and Vidyasagar, M. (1990) Path
planning for moving a point object amidst unknown

1232 A. M. Shkel and V. J. Lumelsky

obstacles in a plane. In Proc. 29th IEEE Conj on
Decisionsand Control,Honolulu, HI, pp. 1111-1120.

Schwartz, J. and Sharir, M. (1983) On the ‘Piano Movers’
problem. 11.General techniques for computing topological
properties of real algebraic manifolds.Adu. Appl. Math.4,
298-351.

Shiner, Z. and Dubowsky,S. (1991)On computing the global
time optimal motions of robotic manipulators in the
presence of obstacles. IEEE Trans.Robotics Automation,
RA7, 785-797.

Shiner, Z. and Lu, H. H. (1992) Computation of path
constrained time optimal motions along specified paths.
ASME J. Dyn. Syst. Meas., Control114,34–40.

Volpe, R. and Khosla, P. (1987) Artificial potential with
elliptical isopotential contours for obstacle avoidance. In
Proc. 26th IEEE Conf on Decision and Control, Los
Algeles, CA, pp. 180-185.

APPENDIX—TIME-OPTIMAL SOLUTION FOR A
SINGLE-DEGREE-OF-FREEDOM SYSTEM

Consider a single-degree-of-freedomsystem described by a
linear second-order differential equation x = u(t), where
llu(t)[[5 u~,, and u(t) is a scalar control function. By
introducing new variables x, = x and X2= i, the system’s
motion can be rewritten as i, =X2 and -t2= u(t), and its
behavior described in the phase space (xl, XZ).

The problem to address is as follows: find a piecewise
control t2(.) G{u(.) [Ilu(.)11= um,X}such that the system can
be steered from its initial position (xl(to), xz(t~~))= (xl),x$ to
the origin (x,(tf),x2(tf))=(O,O)in the minimal time tf. This
can be written as

7(X,(.),X*(.),tf) = tf+ =,

i, = x*, i~ = u(r), Ilu(t)ll= Um.x;

Xl(to)= x!, X*(to)= x!,

Xl(tf) = xi = o, x2(rf)=x! = o.

Below, the optimal solution quantities are indicated by a hat.
The followingoptimal control strategy can be obtained using
I?ontryagin’smaximum principle, which presents a necessary
condition for optimality (see e.g. Hocking, 1991). The
resulting bang–bang control strategy has just one switching,
and thus two options:

[
(f{,s f<t.),

ii+(c)= y“
~ax (t.<tsrf),

{
+umax(tost-=t.),

11-(f) = –[t
ma. (t,< r s rf),

where f. is the time of switching of the control. To
understand the behavior of this system, note that for
u(t)= —umax,the solution for the dynamic system i, =X2
and Xz= u(t)with initial conditionsx,(t,,) = x’;and Xz(t,,)=x!
is

(x,)’ + (x!)’ +x,;,

“ = –2umax 2umax
(Al)

Equation (Al) indicates that. under the control u(t)=
–Umax,themotion in phase space is along a parabola of the
family (Al), in the direction of decreasing X2:hence, from
(Al), XZ= –u~.,. Similarly, for our control system, the
motion along the parabola

(x,)’ - (x:)’ + x(;

“ = 2um4.# 2ummx
(A.2)

will be defined by u(f) = u~tiX. The motion along the
parabolas (Al) and (A.2) will correspond to increasing
values of X2.As shown above. the origin of the phase space
can be reached only by moving either along a half of the
parabola x, = (xz)2/2u.,,,.with controi u(t)= –u~~*.or along
x, = (.r2)’/2un,.x with control u(f) = u~.,. The parabolas

themselves define the switch curve of the control function
G(t):

{-

- (x,)’
— (x’= O),
2umax

(A.3)

“ = (x’)’
2umax

(X2so). (A.4)

The resulting control strategy is therefore as follows.

Theoptimal controlstrategy. If in the phase space the initial
position is above the switch curve (A.3), (A.4), first move
along the parabola (Al) with control 0 = –um.X, until
hitting the switchingcurve, then move with control Q= u~a.
to the origin along the switching curve (A.3). If the initial
position is below the switchingcurve, first move with control
n = Umaxtoward the switching curve, and, after meeting it,
move with control fi = –u~.. to the origin along the
switchingcurve (A.4).

With the optimal control strategy established, we can now
find the coordinates (x~,x~)of the switchingpoint, the time}.
of arrival at the switching point, and the optimal time tf.
There are two possibilities to consider, depending on
whether the initial position lies on or off the switchingcurve.

(i) If the initial position is on the switchingcurve then the
time of arrival at the phase-space origin is tf= \x~l/u~aX;
the optimal control is t2= urn,,sign(xl).

(ii) If the initial position is off the switchingcurve then the
time of switchingwill be the solution of one of the set of
equations (Al), (A.4) or (A.2), (A.3). In particular, if
the initial position is above the switching curve, the
optimal control is

{
a+(t)= ;:m” (0=t<f.),

~ax (t, <tstf),

the switchingpoint is

(x;)’ + ~
‘: ‘4umax 2 ‘

X$=-G

(A.5)

and, using the optimal control strategy and the switching
points (A.5), the switchingtime is

t =v(x;)’/2umax+x’;umax+x:
s u

(A.6)
ma.

If the initial position is below the switching curve, the
corresponding optimal control, the switching point and the
switchingtime are

{
+Umax (o= t -==t.),

ti-(t)= –u
~ax ([. <1 stf),

(x!)’ +Xj,—
‘“ = –4umax 2 ‘

(A.7)

d.&= 1#-x(;umax, (A.8)
ma.

t,=
v(x:)’/2umax- X’jumax- x;

Umax
(A.9)

Pontryagin’s optimality principle is only a necessary
condition. For the system at hand, it is also possible to show
that the derived control law is sufficientas well—that is, that
it indeed produces the absolute minimumtime. To prove this
fact, we have to show that there is no other control process
that would generate motion from the position (x’/,x!) to the
position (O,O)in time less than if.

Proceeding by contradiction, assume thereAis another
control process, (x(.), y(”), tf), withtimetf<r,.Definea
functionx(.) on the interval [tf,if]as x(.)= O.Without loss of
generality, assume that the initial position is above the

I

Control of dynamics in real-time motion planning 1233

switchingcurve. Integrating by parts and taking into account
the initial conditions gives

J%(t - s)%(s)ds = -f,.t(to) + x(rJ - X(t(,).
to

Therefore the function x(.) at the switching time t,can be
presented in the form

J
X(f,)= “(t, -S)x(s)ds + 7X(O)+x(t,,).

h
Since 1(s) = –u Inax=~(~) v~ ~ [~(r!L]!

It(ts) -x(t,) = ‘s(t,-s)[-umax-x(s)]dr=O.(A.1O)
4)

By analogy,considering the final conditions, the functionx(.)
at the time t,is given by

Jif
x((,)= (s -t.)+)ds,

h
and since ~(s) = u~ax21(s) Vs ● [ts,If],

f
f(t,)-x(t,)= “(r~-s)[-u~,X- x(s)]ds=O. (All)

to
The conditions (A.1O) and (All) are compatible if
t(t) – x(t)= O.From the mntinuity principle, the condition
(A.1O) holds only if -t(s)= -u~,,, and then f(t) =x(t)
W G [0,tJ.By analogy, the equality (All) is possible only if
l’(s) = L&ax; then -f(f) = x(t) W IS[t,, if]. That is a
contradiction, which was obtained from the assumption that
there exists an optimal control process with a completion
time less than our if. This completes the proof of sufficiency
of our optimal control strategy.

. , A - A -

