
The Jogger’s Problem: Accounting for Body Dynamics
in Reid-Time Motion Planning*

Andrei M. Shkel and Vladimir J. Lumelsky
University of Wisconsin-Madison
Ma,dison, Wisconsin 53706, USA

Abstract-The existing approaches to sensor-based motion
planning tend to deal solely with kinematic and geometric is-
sues, and ignore the system dynamics. This work attempts to
incorporate body dynamics into the paradigm of sensor-based
motion planning. We consider the case of a point mass mobile
robot operating in a planar environment with unknown sta-
tionary obstacles of arbitrary shape. Given the constraints on
the robot’s dynamics, sensing, and control means, conditions
are formulated for generating collision-free trajectories with
guaranteed convergence. The approach calls for continuous
computation and is fast enough for real time implementation.
Based on its velocity and sensing data, the robot continuously
plans its motion based on the canonical solution which presents
the time-optimal path within the robot’s current sensing range.
For a special caSe of a sudden potential collision an option of a
safe emergency stopping path is always maintained. Simulated
examples demonstrate the algorithm’s performance.

I. INTRODUCTION

This work studies the effects of body dynainics on robot
sensor-based motion planning, with the goal of designing
provably correct algorithms for motion planning in an un-
certain environment. We consider a mobile point robot
operating in two-dimensional work space, MI C R2, possi-
bly filled with a (locally finite) number of unknown static
obstacles 0 E W . Each obstacle Ok is a simple closed
curve of arbitrary shape, finite length, and such that a
straight line will cross it in only a finite numtber of points.
Obstacles do not touch each other (if they do, they are
considered one obstacle).

The robot is a point mass, of mass m. 1.t has sensors
(say, vision or range finders) which allow it, at its current
location Ci, to detect obstacles, and the distance to them,
within its sensing range - a disc D(Ci,rv) of radius r,
(“radius of vision”) centered at Ci. The task is to move in
W from point S (start) to point T (target) (see Figure 1).
A t moment t,, the robot’s input information includes its
current velocity vector V,, coordinates of C, and T .

*This work is supported in part by the US Sea Grant R/NI-20
and DOE (Sandia Labs) Grant 18-4379C.

Fig. 1. Example of performance of a kinematic algorithm [l].

Motion planning is done in small steps i = 0,1,2, ...,
(say, 30 or 50 times per second), resulting in continuous
motion. Each step i takes time 6 t = ti+l - ti = const; the
path length within time interval 6t depends on the robot’s
velocity Vi. Steps i and i + 1 start at times ti and ti+l,
respectively; CO = S . The motion control means are two
components of the acceleration vector U = 6 = (p ,q) ,
where f the force applied. Controls U are constant within
the step and come from a set U of measurable, piece-
wise continuous bounded functions in S2, U = {U(-) =

ponent p controls forward (backward when braking) mo-
tion; its positive direction coincides with the robot’s ve-
locity vector V . Component q, the steering control, is
perpendicular to p forming a right pair of vectors, Fig-
ure 2.

Besides the usual issues of step-by-step planning and
convergence, an additional component of planning appears
because of the robot’s dynamics. A move reasonable from
the standpoint of the global path - for example, a sharp
turn - may not be physically realizable because of the
robot’s inertia. The control and planning issues that ap-
pear in this model seem quite similar to those faced by

(p (.) , q (.)) / p E [-Pma3C,PmazI, Q E [-4maz, %r”ll. nm-

44 1
0-8186-7108-4/95 $4.00 0 1995 IEEE

a jogger in the city environment - hence the name The
Jogger’s Problem.

When the jogger starts turning a corner and suddenly
sees a heavy large object right on the intended path, some
quick replanning will take place, almost simultaneous with
further sensing and motion execution. His velocity may
temporarily decrease and the path will smoothly divert
from the object. Or, he may “brake” to a halt, and start
a detour path. Unless a right relationship is maintained
between the velocity at the time of noticing the object,
the distance to it, and the runner’s mass, collision may
occur. For a bigger mass, for example, better (further)
sensing is needed to maintain the same velocity. Also,
if obstacles can appear at any time and distance, and if
higher velocities are essential, the control algorithm must
provide an “insurance” option of a safe stopping at all
times.

Most approaches to automatic motion planning ad-
here to one of two paradigms differing in their assump-
tions about the input information available. In the first
paradigm, called motion planning with complete informa-
tion (or the Piano Mover’s problem), one assumes perfect
information about the robot and obstacles, and algebraic
representation of objects; motion planning is a one-time
off-line operation (see, e.g., [2, 31). Dynamics and con-
trol constraints can be incorporated into this model as
well [4, 51, for example by introducing a two-stage plan-
ning process and time-optimal trajectories [6, 71.

This paper is concerned with the second paradigm,
called motion planning with incomplete information, or
sensor-based motion planning. Here, objects in the en-
vironment can be of arbitrary shape, and the (sensory)
input information is typically of local character [l]. This
paradigm naturally fits the methodology of control theory
due to its notion of sensor feedback.

Techniques that ignore system dynamics can be called
kinematic, as opposed to the dynamic techniques which
do take dynamics into account. The existing kinematic
techniques can be divided into two groups - those for holo-
nomic systems and for nonholonomic systems [8]. A num-
ber of kinematic strategies for holonomic systems originate
in maze-searching algorithms [l, 91; when applicable, they
are usually fast, can be used for real time control, and
guarantee convergence; the obstacles can be of arbitrary
shape. Below we make use of such algorithms.

To design a provably-correct dynamic algorithm for
sensor-based motion planning, one needs a single control
mechanism - separating it into stages is likely to destroy
convergence. Our algorithm will operate as a single step-
by-step procedure which (a) places each step on a glob-
ally converging collision-free path, while (b) satisfying the
robot dynamics constraints, as follows. At the moment
(step) i , the kinematic algorithm identifies an intermedi-

ate target point, Ti, which lies on a convergent path and,
for local path optimization, is far enough from the robot
- normally at the boundary of the sensing range. Then, a
step is attempted toward Ti, and the process repeats. If
due to inertia and occluding obstacles the current Ti goes
out of the robot’s sight, the robot will use temporary in-
termediate targets until it can see point Ti again. Because
of dynamics, the step toward Ti may not be possible and
is thus modified. Once a step is physically executed, new
sensing information appears and the process repeats.

In principle, any maze-searching strategy can be utilized
for the kinematic part of the algorithm. For the sake of
specificity, below we make use of the VisBug algorithm [l].
Roughly, VisBug operates as follows (see Fig. 1): (1) Walk
from S toward T along a straight line (called M-line) until
detect an obstacle crossing the M-line, say at point H .
(2) Using sensors, define the farthest visible intermediate
target .Ti on the obstacle boundary; make a step toward
Ti; iterate Step 2 until detect M-line; go to Step 1. In
Fig. 1, note that while trying to pass the obstacle from
the left, at point P the robot will make a sharp turn.

The step planning task is formulated as an optimal-
ity problem. At each step, a canonical solution is found
which, with no obstacles present, would bring the robot
from Ci to Ti with zero velocity and in minimum time.
If the canonical path crosses an obstacle and is thus not
feasible, a near-canonical solution path is found which
is collision-free and satisfies the control constraints. We
show, first, that in this case only a finite number of option
paths needs be considered, and second, there exists at least
one path solution that is collision-free. By decoupling the
two-dimensional control problem into two one-dimensional
control problems, an extremely fast procedure, easily im-
plementable in real time, is produced for finding the multi-
step time-optimal path within the sensing range.

We define three coordinate systems (follow Figure 2):
- The world frame, (x, y), fixed at point S .
- The primary path frame, (t, n), is a moving (inertial)

coordinate frame. Its origin is attached to the robot; axis
t is aligned with the current velocity vector V , axis n is
normal to t . Together with axis b, which is a cross product
b = t x n, the triple (t, n, b) forms the Frenet trihedron,
with the plane o f t and n forming the osculating plane [lo].

- The secondary path frame, (<i,qi), is a coordinate
frame that is fixed during the time interval of the step
i.The frame’s origin is at the intermediate target Ti, with
axis & aligned with the velocity vector Vi at time ti , and
axis qi normal to ti.

For convenience, we combine the requirements and con-
straints that affect the control strategy into a set, called
Q. A solution (a path, a step, or a set of control values)
is said to be R-acceptable if, given the current position Ci
and velocity Vi, (i) it satisfies the constraints on controls,

442

lpl I p,,,, 141 5 qmaz; (ii) it guarantees a stopping path;
(iii) it results in a collision-free motion.

Safety considerations due to dynamics appear in a
number of ways. Since no information about the obstacles
is available beyond distance r , from the robot, guarantee-
ing collision-free motion means assuring at any moment at
least one “last resort” stopping path path that, would bring
the robot to a halt within the radius r , if needed. If this
rule is violated, at the next step new obstacles may ap-
pear in the sensing range, such that collision will become
imiminent no matter what control is used. This dictates
a certain relation between the velocity V , mass m, and
controls U = (p, q): if the robot moves with tlhe maximum
velocity, the stop point of the stopping path[must be no
further that at distance r , from the current position C.
This relation is V,,, = J-.

In Fig. 1, when approaching point P, the robot will
designate it as its next intermediate target Tt. For awhile
T, will stay at P because no other visible point on the
obstacle boundary appears until the robot arrives a t P.
During this time, unless a stopping path is possible a t
any time, the robot would have to plan to stop at P.
Otherwise, it may arrive at P with a non-zero velocity,
start turning around the corner, and suddenly uncover an
obstacle invisible so far, making a collision unavoidable.

Convergence. Because of dynamics, the convergence
mechanism borrowed from a kinematic algorithm needs
some modification. For example, the robot’s inertia may
cause it to move so that the intermediate target T, will
become invisible, either because it goes outside the sens-
ing range r, (as after point P , Fig. l), or due to occluding
obstacles (Fig. 5), and so the robot may lose it (and the
path convergence with it). The solution chosen is to keep
the velocity high and, if the intermediate target Ti does
go out of sight, modify the motion locally until T, is found
again.

11. DYNAMICS AND COLLISION AVOIDANCE.

Consider a time sequence vt = {to,tl,ta, ...}. Step i cor-
responds to the interval [ti, ti+l). At moment ti the robot
is at the position Ci, with the velocity vector Vi. Within
this interval, based on the sensing data, the intermediate
target Ti (supplied by the VisBug procedure), and vector
Vi, the control system calculates the values of controls p
and q, applies them to the robot, and the ralbot executes
step i, finishing it at point Ci+l at moment with the
velocity vector Vi+l; then the process repeaits.

Below, we first develop the equations of motion for a
step interval i. Then the canonical solution is obtained,
and finally, the near-canonical solution, for tlhe case when
obstacles interfere with the canonical solution.

“orme details and proofs, omitted due to space limitations, can
be found in [Ill.

Fig. 2. Coordinate frames: (x,y) is the world frame, with
its origin at S; (t,n) is the primary path frame; for the
current position Ci, (ti, si) is the secondary path frame.

The equations of motion. The remainder of this sec-
tion refers to the time interval [ti, & + I) , and so the index
i can be dropped. Denote (z,y) E R2 the position of the
robot in the world frame, and 6 the (slope) angle between
the velocity vector V = (Vz, V,) = (2 , $) and z-axis of the
world frame (see Fig. 2). The planning process involves
computation of the controls U = (p, q) , which for every
step defines the velocity vector and eventually the path,
x = (z, y), as a function of time. The angle -9 between vec-
tor V = (Vz, V,) and z-axis of the world frame is found
as

e = { arctan(k) , v, 2 0
arctan(e) + T, V, < 0

Given that the control components p and q act along the
t and n directions, respectively, the equations of motion
with respect to the path frame are V = p , e = q/V.
Since vector (p , q) is constant over time interval [ti, ti+l),
within this interval the solution for V (t) and e(t) becomes

V (t) = p t + vo,

where Oo and V o are constants of integration and are equal
to the values of O(ti) and V (t i) , respectively. By parame-
terizing the path by the value and direction of the veloc-
ity vector, the path can be mapped onto the world frame
(x, y) using the following vector integral equation:

k + l
r(t) = li Vtdt (2)

Here r(t) = (z (t) , g (t)) , and t = (cos(O),sin(e)) is a pro-
jection of unit vector along the V direction. After inte-
grating equation (2), we obtain the set of solutions of the

443

form:

V2(t) + A 2pcosB(t) + qsinB(t)
4p2 + 42

Z(t) =

Vz(t) + B (3)
qcosB(t) - 2psinB(t)

4p2 + q 2
Y(t) = -

where terms A and B are
Vo2 (2p cos(00) + q sin(80))

4p2 + 42

vo2 (q cos(eo) - 2 p sin(Bo))
4p2 + q 2

A z= Z O - ,

B = y o +

V(t) and B(t) in equations (3), which are directly con-
trolled by the values of p and q , are given by equation (1).

In the general case, equations (3) describe a spiral curve.
Note two special cases: when q = 0,p # 0, equations (3)
describe a straight line motion along the vector of velocity;
when p = 0,q # 0, they produce a circle of radius !L?

IQ1
centered at the point (A , B) .

Canonical solution. This solution presents a path
which, assuming no obstacles, will bring the robot from
Ci to Ti with zero velocity and in minimum time. The
assumption of L,-norm allows us to decouple the bounds
on accelerations in (and 7 directions, and thus treat the
two-dimensional problem as a set of two one-dimensional
problems.

The optimization problem is formulated based on the
Pontryagin’s optimality principle, with respect to the sec-
ondary frame (I, 7). We seek to optimize the criterion F
which signifies time. Assume the trajectory being sought
starts at time t = 0, at point ((0,qo,i0,7jo), and ends
at time t = tf (f for “final”), at the phase-space origin.
Then, the problem in hand is described as follows:

g I (M .) , t f) = tf + inf,
I = P,
ii = 4 ,
((0) = t o , 7(0) = 7 0 , i(0) = io, ? i (O) = 6 0 ,

7(tf) = 7(tf) = i(td = il(tf) = 0

l l ~ l l L Pmax,
llqll I qmax,

Analysis shows that the optimal solution of each one-
dimensional problem corresponds to the “bang-bang” con-
trol, with at most two switches along the (and 7 direc-
tions, at times ts,< and ts,q (“s” for “switch”), respectively.

The switch curves for control switchings are two con-
nected parabolas:

1 b>O li2 p = --
%ma,

(4)

where y and gmax are to be replaced by < and p,,,,
respectively, in case of (6, I) space, and by 7 and qmax, in
case of (~ , 7 j) space.

Fig, 3. Examples of star! positions for both phase spaces,
(< , E) and (q,+). For (<,<), the start position is above the
switch curves; for (q,+) it is under the switch curves.

The time optimal solution is then obtained using the
bang-bang strategy for 5 and for 7 , respectively, depend-
ing on whether the starting points, (&,,[,) and (q0,q0)
are above or below their corresponding switch curves, as
follows:

‘Pmax,
a 2 ’Pmax,

0 L t L ts,c
t s , ~ c t L t j

(5)

where a1 = -1,m = 1 if ((,,,(,) is above (respectively,
ai = 1 , a 2 = -1 if (&,io) is below) its switch curve, and
01 = -1,Pz = 1 if (q,,7j,) is above (PI = I,,& = -1
if (qo,?jO) is below) its switch curve. For example, if the
initial conditions for and q are as shown in Figure 3,
then a1 = -1,aa = 1 and p1 = 1,Pz = -1.

The time, position and velocity of the control switching
for the E components are described by

Ymax

(Cs,is) = + QPmax

and those for the 7 components by

Ymax
/

The number, time, and locations of switchings can be
uniquely defined from the initial and final conditions. It

444

can be shown [ll] that for every position of the robot
in the phase space X4 - space of position and velocity,
(5, q, i,rj) - the obtained control law will guarantee time-
optimal motion in both t and 77 directions, ais long as the
time interval considered is sufficiently small. Substituting
this control law in the equations of motion (3) produces
the canonical solution.

In summary, the procedure is as follows: (a) Substitute
the current position/velocity (c , ~ , 5, q) for p in (4); see if
the starting point is above or below the switch curves. (b)
Depending on (a), take one of the four bang-bang control
pairs (p , q) , as in (5). (c) With this pair (p ,q) , find from
(3) the position C,+l and from (1) the velocity Vz+l and
angle &+I at the end of the step. If this step to C,+l
crosses no obstacles, and if there exists a stopping path
in the direction V,+l, the step is accepted; otherwise, a
near-canonical solution is sought, see below.

Note that though the canonical solution defines a fairly
complex multi-step path from C, to T,, only one - the very
first - step of that path is calculated explicitly. The switch
curves (4) and the position and velocity equations (l), (3)
are quite simple. The whole computation is remarkably
fast.

Near-canonical solution. If the stopping path of the
candidate step happens to cross an obstacle within the dis-
tance d < v,"/2pmax, the controls are modified into a near-
canonical solution that is both R-acceptable and reason-
ably close to the canonical solution. The near-canonical
solution is one of the nine possible combin,ztions of the
bang-bang control pairs (kl 'p,,,, k2 . q m a z) , where k l , k2
come from the set { - l , O , 1) (see Figure 4) This set is
guaranteed to contain an R-acceptable solution: since the
current position has been chosen so as to guarantee a stop-
ping path, such a solution - for example, with (-p,,,, 0)
- always exists. Further, the position of the intermediate
target T, relative to vector V, - in its left or the right
semi-plane - suggests an ordered and thus shorter search
among the control pairs.

111. THE ALGORITHM

The algorithm includes three procedures: the Main body
analyzes the path towards the intermediate t,arget Ti; De-
fine Next Step chooses the components p and q; Find Lost
Target deals with the case when Ti goes out of the robot's
sight. Also used is a procedure called Compute Ti, from
the VisBug algorithm [l], for computing the next inter-
mediate target Ti+l and analyzing the target reachability.
Vector Vi is the current vector of velocity, T is the robot's
target.

Procedure Main Body: At each step i:

U6

S-X

Fig. 4. Near-canonical solution. Controls (p , q) are assumed
to be &,-norm bounded on the small interval of time. The
choice of (p , q) is among eight "bang-bang'' solutions shown.

If Ci = T , stop.
Find Ti from Compute Ti.
If T is found unreachable, stop.
If Ti is visible, find Ci+l from Define Next Step;
make a step towards Ci+l; iterate; else,
Use Find Lost Target to make Ti visible; iterate.

Procedure Define Next Step: At step i:

0 Step 1: Find the canonical solution (the switch curves
and controls (p , q)) using equations (4), (5). If it is
R-acceptable, exit; else go to S2.

0 Step 2: Find the near-canonical solution as described
above; exit.

Find Lost Target is executed when Ti becomes invisible.
The last position Ci where Ti was visible is stored until
Ti becomes visible again. After losing Ti, the robot keeps
moving ahead while defining temporary intermediate tar-
gets on the visible part of the line segment (Ci,Ti), and
continuing looking for Ti. If it finds Ti, it moves directly
toward it, Fig. 5a; otherwise, if the whole segment (Ci,Ti)
becomes invisible, the robot brakes to a stop and returns
to Ci etc., Fig. 5b. The procedure includes these steps:

0 Step 1: If segment (Ci,Ti) is visible, define on it
and move toward temporary intermediate targets T!,
while looking for Ti. If current position Cj = T , exit;
else if Ci lies in the segment (Ci, Ti), exit. Else go to
Step 2.

0 Step 2: If segment (Ci, Ti) is invisible, initiate a stop-
ping path and then go back to Ci; exit.

445

Fig. 5. In these examples, because of the system inertia the
robot temporarily “loses” the intermediate target point Ti.

Convergence. The collision-free motion along the path
is guaranteed by the design of the canonical and near-
canonical solutions. To prove convergence, we need to
show that the algorithm will find a path to the target
position T if one exists, or it will infer in finite time the
nonreachability of T if true. This is guaranteed by the
convergence properties of the kinematic algorithm [l]. The
following statements hold:

Claim 1 Under the algorithm, assuming zero velocity at
the start point, Vs = 0, at every step of the path there
exists at least one stopping path.

Claim 2 The algorithm guarantees convergence.

Computational complexity. As with other on-line
sensor-based algorithms, it is not very informative to as-
sess the algorithm complexity the way it is usually done
with algorithms with complete information [12]. This is
because in the latter one deals with one-time computation,
whereas in the former the important complexity measure
is for the computations at each step - the total computa-
tion time is simply a linear function of the path length.

(Recall that with the sampling rate, say, 50 per second,
each step calculation must be done within the 20 msec
interval .)

Though the canonical solution found at each path step
by the algorithm is the solution of a fairly complex time-
optimal problem, its computational cost is remarkably
low, thanks to the (optimal) bang-bang control. This com-
putation (see Section 11) includes substituting the initial
conditions (I , v, i, 4) into the equations for parabolas (4)
to see if the start point is above or below the correspond-
ing parabola, and then simply taking the corresponding
control pair ($,G from the four choices in (5). The parabo-
las equations themselves are found beforehand, only once.
The near-canonical solution, when needed, is similar and
very fast. Note that a single step computation is of con-
stant time: though the canonical solution represents the
whole multi-step trajectory within the sensing range of ra-
dius r , , the computation time is independent of the value
r, and the length of path within the sensing range.

IV. EXAMPLES

In the simulated examples in Figure 6, the robot’s mass
and constraints on the control parameters are the same for
all cases. The generated paths are shown in thicker lines.
For comparison, thin lines show the corresponding paths
produced under the same conditions by the kinematic al-
gorithm VisBug [l].

The difference between the examples in Figures 6a,b is
that in (b) there are additional obstacles which the robot
suddenly uncovers at a close distance when turning around
corner; the radius of vision r , is the same for both (a) and
(b). Note that in (b) the path becomes tighter, shorter,
though it takes longer: measured in the number of steps,
the path in (a) takes 242 steps, and in (b) 278 steps; one
might say the robot becomes more cautious in (b). A
pair of examples in Figures 6c,d illustrate the effect of
sensing distance: in (c) and (d) r, is twice that of (a)
and (b). The path execution times are 214 and 244 steps,
respectively, shorter then in the corresponding examples
(a), (b). That is, better sensing (larger r,) resulted here
in shorter time to complete the task; more crowded space
resulted in longer time, though perhaps in shorter paths.
Note that few times - such as at points A,B,C,D,E,F,
Figure 6b -the robot found it necessary to make use of the
stopping path - those points are usually easy to recognize
from the sharp turns in the path (this would be impossible
with a nonzero velocity).

REFERENCES
[1] V. Lumelsky and T. Skewis. Incorporating range

sensing in the robot navigation function. IEEE Trans.
o n Systems, Man, and Cybernetics, 20(5):1058-1069,
September 1990.

446

[2] J . Schwartz and M. Sharir. On the “Piano Movers”
problem. 11. General techniques for computing topo-
logical properties of real algebraic manifolds. Ad-
uances in Applied Mathematics, 4:298-:151, 1983.

[3] J . Canny. A new algebraic method for robot motion
planning and real geometry. Proc. 28th IEEE Sym-
posium on Foundations of Computer Science, 1987.
Los Angeles, CA.

[4] E. Gilbert and D. Johnson. Distance functions and
their applications to robot path planning in the pres-
ence of obstacles. IEEE Journal of Robotics and Au-
tomation, March 1985.

[5] Z. Shiller and H.H. Lu. Computation of path con-
strained time optimal motions along splecified paths.
ASME Journal of Dynamic Systems, Measurement
and Control, 114(3):34-40, 1992.

[6] B. Donald and P. Xavier. A provably good approx-
imation algorithm for optimal-time trajectory plan-
ning. Proc. IEEE Intern. Conf. on Robotics and Au-
tomation, May 1989. Scottsdale, AZ.

[7] Z. Shiller and S. Dubowsky. On computing the global
time optimal motions of robotic manipulators in the
presence of obstacles. IEEE Trans. on Robotics and
Automation, 7(6):785-797, 1991.

[8] D.T. Greenwood. “Principles of Dynamics”.
Prentice-Hall, New York, 1965.

[9] A. Sankaranarayanan and M. Vidyasagar. Path plan-
ning for moving a point object amidst unknown ob-
stacles in a plane: A new algorithm and a general
theory for algorithm development. Proc. 29th IEEE
Intern. Conf. on Decision and Control, 1990. Hon-
olulu, HI.

[lo] G. Korn and T. Korn. “Mathematicac! Handbook”.
McGraw-Hill, New York, 1968.

[ll] A. Shkel and V. Lumelsky. The Jogger’s Problem:
Accounting for body dynamics in real-time motion
planning. Technical Report RL-94007, Ftobotics Lab-
oratory, University of Wisconsin-Madison, December
1994.

[12] J. Canny, A. Rege, and J. Reif. An exact algorithm
for kinodynamic planning in the plane. Proc. 6th An-
nual Symposium on Computational Geometry, June
1990. Berkeley, CA.

’. ..

(4
Fig. 6 . Simulated examples of the algorithm’s performance.

447

