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Abstract-Control schemes in real-time sensor-based 
systems often operate under tight time constraints de- 
termined by the system sampling rate. One area where 
uch constraints are especially severe is the sensor- 

based motion planning with dynamics in robotics. 
Though very important both theoretically and in prac- 
tice, this problem has not been addressed so far. The 
typical sampling rates in such systems are 20 to 50 
%>er second. This leaves only 20 to 50 msec for the 
whole cycle, including sensing, complex geometric (in- 
telligence) analysis, calculations due to dynamics and 
control, and motion execution. As a Arst attempt to 
solve the problem, we show that the time constraints 
an be met by a combination of a simple model with 

a carefully chosen analytical solution of the dynamic 
equations. The resulting control scheme guarantees 
Convergence and safety of motion, and blends well with 
kinematic path planning algorithms. Two such strate- 
gies are discussed, one using a simple heuristic and the 
other with local optimization. 

I. INTRODUCTION 

Modern real-time control systems often need to combine 
gathering input information, its logical analysis, and cal- 
culation of the control actions within very short time in- 
tervals. This puts severe constraints on the choice of the 
corresponding calculation schemes. 

A good example in point is the Jogger’s Problem in 
robotics, which appears in the context of sensor-based mo- 
tion planning [l]. Imagine a jogger in the city environment 
who takes his usual morning run in the neighborhood. 
This will involve a number of on-line control mechanisms. 
First, a global (convergence) mechanism is needed to as- 
sure that a roughly decided upon path will be executed, 
ending at the target location, in spite of the deviations and 
detours that the changes in the environment may require. 

“This work was supported in part by the NOAA Sea Grant Pro- 
gram, US Dept of Commerce, Grant NA46RG048, and by DOE 
(Sandia Labs) Grant 18-4379C. 

Second, since an instantaneous stop is impossible due to 
inertia, in order to maintain a reasonable speed the jog- 
ger needs at any moment an “insurance” option of a safe 
stopping path. Third, when after turning the street cor- 
ner the jogger suddenly sees a heavy large object right on 
the intended path, a quick local replanning mechanism is 
needed to take care of potential collision: his speed may 
temporarily decrease and the path will smoothly divert 
from the object. This path segment may also be locally 
optimized, to arrive at the street corner quicker or along a 
shorter path. All other options exhausted, the jogger may 
ubrake” to a halt, and then start a detour path. 

The jogger’s path presents a fast sequence of steps, each 
of which involves sensing, logical (intelligent) decision- 
making, control calculations to account for body dynam- 
ics, and execution of motion. Some of those may be further 
intertwined within a single step. A typical sampling rate 
in the mobile robot’s equivalent of our jogger is 20 to 50 
control cycles per second. If it is, say, 40/sec, it amounts 
to 25 msec for the whole cycle, leaving 10-15 msec for the 
control proper. This includes dynamics analysis and cal- 
culation of controls, such as to guarantee the next step 
to be safe, reasonable (or optimal) from the standpoint 
of the local sensing information available, and satisfying 
the global path objectives. Clearly, many computation- 
intensive control techniques that would otherwise qualify 
for the task, will fail these stringent time constraints. One 
can argue that the only way to satisfy these constraints 
is to start with the simplest, and yet realistic, model and 
devise a very simple, and yet satisfactory, control scheme. 

While accounting for body dynamics in sensor-based 
motion control is of serious practical importance, little 
attention has been paid to this connection in literature; 
Most of existing approaches deal solely with the system 
kinematics and geometry and leave out its dynamic prop- 
erties. (Dynamics fares better for the model with complete 
information and off-line computation, see e.g., [2, 3, 41). 

A number of kinematic sensor-based strategies (that is, 
strategies that do not take into account system dynam- 
ics) originate in mazesearching algorithms [5, 61; when 
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Fig. 1. Three operations - sensing, logical (intelligence) 
analysis, and control calculations - have to fit within a sin- 
gle control cycle (step of the robot) bt. Controls calculated 
by the end of the cycle period are applied during the next 
cycle. 

applicable, they are usually fast, can be used for real time 
control, and guarantee convergence; the obstacles can be 
of arbitrary shapes. 

To design a provably-correct dynamic algorithm for 
sensor-based motion planning, one needs a single control 
mechanism - separating it into stages is likely to destroy 
convergence. Convergence translates into two require- 
ments - globally, a guarantee of finding a path to the 
target if one exists, and locally, an assurance of collision 
avoidance in view of the obstacles and the robot's inertia. 
The former can be borrowed from kinematic algorithms. 
The latter is the question of controllability: a controllable 
system can reach any free point if needed in spite of the 
dynamics and the presence of obstacles. This property re- 
quires an explicit consideration of dynamics in the control 
law. 

In principle, any maze-searching algorithm can be uti- 
lized for the kinematic part, so long as it allows an exten- 
sion to distant sensing. For the sake of specificity, here 
we make use of the VisBug algorithm [5]. Assume the 
robot is a point in the plane; let S and T be the starting 
and target positions, r, -the radius of the robot's sensing 
range, i - the current step, M-line -the straight line (ST) ,  
see Figure 2. The VisBug procedure revolves around two 
steps: (1) Walk from S toward T along the M-line until, 
at some point C, detect an obstacle crossing the M-line, 
say at point H go to Step 2. (2) Using sensors, define 
the farthest visible intermediate target Ti on the obsta- 
cle boundary; make a step toward Ti; iterate Step 2 until 
detect M-line; go to Step 1. 

Consider now the operations that need be done within 
one step, Figure 1. These are (a) sensing, (b) defining the 
current intermediate target, (c) control calculations due to 
body dynamics, and (d) execution of motion. Usually the 
control commands found within the current step are ap- 
plied during the next step, simultaneously with the other 
three operations. For the corresponding times, this means 
6t = 6ta -k 6tp + 6 t d .  

As said, the sequence (a) and (b), sensing and Ti cal- 
culation, may execute a number of times, before going to 
Step 2 of the algorithm. If needed, the number of such 
repetitions can be reduced to save time - which is equiv- 
alent to a loss in system efficiency due to inferior sensors. 
There is no such flexibility in the operation (c). Because 
of the local character of sensing, in addition to the usual 
computations due to dynamics the control scheme in (c) 
has to also include safety considerations, such as a pro- 
vision for a safe stopping path, and a constraint on the 
maximum velocity the robot can safely maintain during 
its motion. 

To speed up the control algorithms for real-time plan- 
ning, we assume that (1) the robot is a mass point, and 
(2) control actions are constant within the step interval. 
Though simple, this model is already of practical value 
as long as the robot's dimensions can be ignored. This 
model allows us to find an analytical solution of the dy- 
namic equations. Then, a control scheme that emphasizes 
a single step calculation is added, resulting in a signifi- 
cant speedup of the control calculations. On this latter 
mechanism, note that with a reasonably large radius of 
vision r, , one can use a single sensing reading to calculate 
a relatively long - say a 10-step or 20-step long - piece of 
the robot's trajectory. This has its advantages - e.g., that 
piece of the path can be optimized. It is, however, com- 
putationally costly and largely wasteful since the sensing 
reading at  the next step is likely to require changes in the 
path. 

This leads to a class of fast control algorithms. The 
general strategy is as follows: at moment (step) i, the 
kinematic algorithm chosen identifies an intermediate tar- 
get point, Ti, which lies on a convergent path and is far 
enough from the robot - normally at the boundary of the 
sensing range r,. Because of the dynamics, a straight 
line step toward Ti may not be possible, thus requiring a 
smooth transition. Each step is planned as the first step 
of a trajectory which, given the current position, velocity, 
and control constraints, would bring the robot to a halt 
at  Ti (even if the robot has no intention to stop at Ti). 

We show two examples of such algorithms, one using 
a simple heuristics and the other relying on a local opti- 
mization scheme (many details and proofs, omitted here 
due to the lack of space, can be found in [l, 71). In the 
first algorithm, called Maximum Turn Strategy, the objec- 
tive is to align the direction of the robot's motion with 
the direction toward the intermediate target Ti as soon as 
possible. That is, if the angle between the current velocity 
vector and the direction toward Ti is larger than the max- 
imum turn the robot can make in one step, the robot will 
maintain the maximum turning rate until the directions 
align (hence the name of the strategy). 

In the second algorithm, called Time-Optimal Strategy, 
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Fig. 2. Example of performance of a kinematic algorithm 
[51. 

step planning is formulated as an optimization problem. 
At the current step, a canonical solution is found which, 
1 ;ith no obstacles present, would bring the robot from its 
current position Ci to Ti with zero velocity and in mini- 
mum time. If the canonical path crosses an obstacle and 
thus not feasible, a near-canonical collision-free path seg- 
inent is planned. It can be shown, first, that only a finite 
;,umber of path options need be considered, and second, 
.:itit the controllability is guaranteed -there always exists 
at least one path solution that is collision-free. Further, 
the two-dimensional control problem is divided into two 
one-dimensional control problems, each with a bang-bang 
control solution; this results in an extremely fast proce- 
dure, easily implementable in real time, for finding the 
(fairly complex) multi-step time-optimal path within the 
sensing range. 

11. THE MODEL 

The environment (work space) is two-dimensional physical 
space W c X2; it may include a finite set of locally finite 
s,atic obstacles 0 E W .  Each obstacle 0 k  E 0 is a simple 
closed curve of arbitrary shape and of finite length, such 
that a straight line will cross it in only a finite number of 
points. If obstacles touch each other, they are considered 
one obstacle. 

The robot is a poznt mass of mass m. Its sensors allow it 
at its current location Ci to detect any obstacles and the 
distance to them within its sensing range - a disc of radius 
rV (“radius of vision”) centered at Cj. At moment t i ,  
the robot’s input information includes its current velocity 
I zctor Vi and coordinates of Ci and target T .  

Motion control is done via two components of the accel- 
eration vector U = = (p, q), where f is the force applied. 
Controls U come from a set U(-) E U of measurable, piece- 

wise continuous bounded functions in X2, U = {U(.) = 

taking mass m = 1, we can refer to the components p 
and q as control forces. Force p controls the forward (or 
backward when braking) motion; its positive direction co- 
incides with the robot’s velocity vector V. Force q, the 
steering control, is perpendicular to p forming a right pair 
of vectors, Figure 3. We assume no friction and no other 
external forces, except p and q; both can be incorporated 
if needed [8]. 

The task is to move from point S (start) in W to point 
T (target), Figure 2. The control of robot motion is done 
in steps i = 0,1,2, ..., each of time 6t = ti+l - t i  = const; 
p and q are constant within step i. The step length within 
time bt thus depends on the velocity Vi; CO = S. We 
define three coordinate systems, Figure 3: 

(P(.>,q.(->)/ZJ E [-Pma,,Pma,], q E [-4mas, Qmarl}. BY 

0 fixed world frame, (z, y),  with its origin at  S; 

0 primary path frame, (t,n); the origin of this mov- 
ing (inertial) frame is attached to the robot; axis t 
is aligned with the current velocity vector V, axis 
n is normal to t. Together with axis b, which is a 
cross product b = t x n, the triple (t, n, b) forms the 
h n e t  trihedron, with the plane of t and n forming 
the osculating plane [9]; 

0 secondary path frame, (ti, qi) ,  is fixed during the time 
interval of step i. The frame’s origin is at the inter- 
mediate target Ti, with axis & aligned with vector Vi 
at time ti, and axis vi normal to &. 

111. PATH FRAME TO WORLD FRAME 
TRANSFORMATION 

Consider the time sequence ct = {to, tl ,  t2, ...} of the start- 
ing moments of steps; at moment ti the robot is at the po- 
sition Ci, with the velocity vector Vi. Within the interval 
S t ,  based on the sensing data, intermediate target Ti (sup- 
plied by the kinematic planning algorithm), and vector 
Vi, the control system will calculate controls p and q and 
apply them to execute step i, finishing at point Ci+l at 
moment ti+l , with the velocity vector Vi+l. Then the pro- 
cess repeats, resulting in a continuous path, (z( t ) ,  y ( t ) ) ,  as 
a function of time. The remainder of this section refers to 
the time interval [ t i , t i+ l )  and its intermediate target Ti, 
and so index i can be dropped. 

Denote (z,y) E R2 the robot’s position in the world 
frame, and 0 the (slope) angle between vector V = 
(Vz, V,) = (2,  $) and x-axis of the world frame, Figure 3. 
Taking mass m = 1, the equations of motion become 

x = pcos0 - qsin0 
y =psinO + qcos0 
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Fig. 3. The coordinate frame (x, y) is the world frame with 
its origin at S; (t, n) is the primary path frame, and (ti, 7;)  
is the secondary path f”e for the current robot’s position 
C; . 

The angle 8 between vector V = (Vx,V,) and z-axis of 
the world frame is found as 

vx L 0 

The transformations between the world frame and sec- 
ondary path frame, from (z, y) to  ((, 7 )  and from ((, 7 )  to  
(z, g), are given by 

where 

) cos8 sin8 
-sin8 cos8 ’ R =  ( 

R is the rotation matrix between the frames ( 5 , ~ )  and 
(x, y), and ( E T ,  y ~ )  the coordinates of the (intermediate) 
target in the world frame (x, y). 

To define the transformations between the world frame 
(z, y) and the primary path frame ( t ,  n), write the velocity 
in the primary path frame as V = V t .  Given that the 
control forces p and q act along the t and n directions, 
respectively, the equations of motion with respect to  the 
primary path frame are: 

v = p ,  
e = q/v 

Since p and q are constant over the time interval t E 
[ti, ti+l), the solution for V ( t )  and 8( t )  within the interval 
becomes 

where 80 and Vo are constants of integration and are equal 
to the values of 8( t i )  and V( t i ) ,  respectively. By parame- 
terizing the path by the value and direction of the velocity 
vector, the path can be mapped into the world frame (x, y) 
using the vector integral equation 

ti+1 

r(t)  = Li V . t . d t  (3) 

Here r ( t )  = (z( t ) ,y( t ) ) ,  and, t is a unit vector of direc- 
tion V, with the projections t = (cos(O),sin(e)) onto the 
world frame (x, y). After integrating equation (3), obtain 
the set of solutions, 

V2(t )  + A  
2pcos8(t) + qsinO(t) 

4p2 + 42 
x ( t )  = 

V 2 ( t )  + B ( 4 )  
qcosB(t) - 2psin8(t) 

4p2 + 42 = - 

where V ( t )  and 8( t )  are defined by controls p and q in 2), 
and terms A and B are 

vo2 ( 2 p  cos(&) + q sin(8o)) 
4 p 2  + q 2  

vo2 ( q  - 2 p  sin(8o)) 
4p2 + 42 

A = 20- 

B = yo+ 

7 

Equations (4 )  describe a spiral curve. Note two special 
cases: when p # 0 and q = 0, (4)  describe a straight line 
motion under the force along the vector of velocity; when 
p = 0, q # 0, the force acts perpendicular to the vector of 
velocity, and (4 )  produce a circle of radius G22/1q1 centered 
at  the point (A,  B) .  

IV. ALGORITHMIC ISSUES 

Safety considerations. Due to lack of information about 
the obstacles beyond distance r, from the robot, for 
collision-free motion at  least one “last resort” stopping 
path should be assured at any moment. Under continuous 
control and straight line motion, the following relation- 
ship ties the maximum velocity V, mass m, radius T,,  

and controls U = (p, q): the velocity must not exceed 

(5) 

However, after accounting for the discrete nature of our 
control, the maximum velocity can be shown to decrease 
to 

Vmaz = JpkazSt2 + 2pmaxrv - pmazdt 

These equations show how changes in the system param- 
eters - e.g. an increase in T,  due to better sensing, or an 
increase in p ,  q due to  more powerful motors - will effect 
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the maximum velocity that the robot c m  afford without 
endangering safety. 

Convergence. Because of the effect of dynamics, the con- 
vergence mechanism borrowed from a kinematic algorithm 
- say VisBug - needs some modification. The intermedi- 
ate target points Ti produced by VisBug lie either on the 
boundaries of obstacles or on the M-line, and are visible 
from the corresponding robot’s positions. However, the 
robot’s inertia may cause it to move so that Ti will be- 
come invisible, either because it goes outside the sensing 
range r, (as after point P, Figure 2), or due to occluding 
obstacles, The solution chosen is to keep the velocity high 
and, if point Ti does go out of sight, modify the motion 
locally until Ti is spotted again. 

Step planning. The last step in the outlined method- 
ology is to choose the step planning procedure proper. 
This part is what distinguishes between different control 
strategies. Two examples of such procedures are sketched 
below. 

V. THE CONTROL ALGOMTHMS 
The Maximum Turn Strategy. It includes three pro- 

cedures (see details in [7]): (1) the Main body analyzes the 
path towards the intermediate target Ti; ( 2 )  Define Next 
Step chooses the forces p and q; (3) Find Lost Target deals 
with the case when Ti goes out of the robot’s sight. Also 
used is a procedure called Compute Ti, from the VisBug 
algorithm [5], for computing the next intermediate target 
Ti+l and for analyzing the target reachability. Vector Vi 
is the current vector of velocity, T is the robot’s target. 
For brevity, we sketch the Main body only. 

Main Body: The procedure is executed at  each step, 
and includes two steps: 

Step 1: Move in the direction specified by Define Next 
Step, while executing Compute T,. If Ti is visible do: 
if Ci = T the procedure stops; else if T is unreachable 
the procedure stops; else if Ci = Ti go to Step 2. 
Otherwise, use Find Lost Target to make Ti visible. 
Iterate Step 1. 

0 Step 2: Make a step along vector Vi while executing 
Compute Ti: if Ci = T the procedure stops; else if 
the target is unreachable the procedure stops; else if 
C, # Ti go to Step 1. 

The Time-Optimal Algorithm. As mentioned 
above, at each step of this procedure a canonical solution 
is found which, with no obstacles present, would bring the 
robot from its current position Ci to the current interme- 
diate target Ti with zero velocity and in minimum time. 
If the canonical path is not feasible because it crosses an 
obstacle, a near-canonical collision-free path segment is 
planned. 

The algorithm is executed continuously, at each step of 
the path, and includes three procedures (see details in [I]. 
(1) The Main Body procedure monitors the general control 
of motion towards the intermediate target Ti. In turn, 
Main Body makes use of three procedures: ( 2 )  Define Next 
Step chooses controls (p, q)  for the next step. (3) Find Lost 
Target deals with the special case when the intermediate 
target Ti goes out of the robot’s sight. In turn, Main Body 
also uses the procedure Compute Ti [5], which computes 
the next intermediate target Ti+! and performs the test 
for target reachability. Initially, z = 0,Ci = S. We now 
sketch the Main Body procedure: 

Procedure Main Body: At each step i: 

0 Step 1: If Ci = T ,  stop. 

0 Step 2: Find Ti from Compute Ti. If T is found 
unreachable, stop. If Ti is visible, find Ci+l from 
Define Next Step; make a step towards Cit-1; iterate; 
Else, use Find Lost Target to make Ti visible; iterate. 

The convergence of the algorithm is guaranteed by the 
design of the canonical and near-canonical ’solutions, and 
also by the convergence properties of the kinematic al- 
gorithm [5]. Its computational complexity is quite low, 
thanks to the use of a moving reference frame and to lim- 
iting the explicit computation to a single step constant 
time calculation in each control cycle. That is, although 
the canonical solution represents the whole multi-step tra- 
jectory within the sensing range of radius r,, its compu- 
tation time is independent of that trajectory and of r,. 

VI. EXAMPLES 
We show a set of simulated examples for the Time- 
Optimal strategy only, Figure 4; other examples can be 
found in [7, 11. The generated paths are shown in thicker 
lines. For comparison, also shown in a thin line are the 
corresponding paths produced under the same conditions 
by the kinematic algorithm VisBug [5]. 

The examples demonstrate the effect of the radius of 
sensing rV and the effect of additional obstacles. Note that 
in Figure 4b the path becomes tighter, shorter, though it 
takes longer compared to (a): measured in the number 
of steps, the path in (a) takes 242 steps, and in (b) 278 
steps. One might say the robot becomes more cautious 
in (b). A similar pair of examples, shown in Figures 4c,d 
illustrates the effect of the radius of vision: in (c) and 
(d) r, is twice that of (a) and (b). The times to execute 
the path are 214, and 244 steps, respectively, shorter than 
in the corresponding examples (a), (b). That is, better 
sensing (larger r,) results in these examples in shorter 
time to complete the task; more crowded space resulted 
in longer time (though perhaps in shorter paths). 
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Note that from time to time the system found it neces- 
sary to make use of the stopping path - those points are 
easy to spot by the sharp turns in the path (those would 
be impossible with a nonzero velocity). For example, in 
Figure 4a the robot had to stop only twice, at points A,B; 
in the more crowded scene of Figure 4 it had to stop six 
times, at points A,B,C,D,E,F. 

REFERENCES 
A. Shkel and V. Lumelsky. The Jogger’s Problem: 
Accounting for body dynamics in real-time motion 
planning. IEEE/RSJ Intern. Workshop On Intelligent 
Robots and Systems, August 1995. Pittsburgh, PA. 

B. Donald and P. Xavier. A provably good approxima- 
tion algorithm for optimal-time trajectory planning. 
Proc. IEEE Intern. Conf. on Robotics and Automa- 
tion, May 1989. Scottsdale, AZ. 

Z. Shiller and S. Dubowsky. On computing the global 
time optimal motions of robotic manipulators in the 
presence of obstacles. IEEE 13-ans. on Robotics and 
Automation, 7(6):785-797, 1991. 

J. Canny, A. Rege, and J. Reif. An exact algorithm for 
kinodynamic planning in the plane. Proc. 6th Annual 
Symposium on Computational Geometry, June 1990. 
Berkeley, CA. 

V. Lumelsky and T. Skewis. Incorporating range sens- 
ing in the robot navigation function. IEEE Trans. 
on Systems, Man, and Cybernetics, 20(5):1058-1069, 
September 1990. 

A. Sankaranarayanan and M. Vidyasagax. Path plan- 
ning for moving a point object amidst unknown obsta- 
cles in a plane: A new algorithm and a general theory 
for algorithm development. Proc. 29th IEEE Intern, 
Conf. on Decision and Control, 1990. Honolulu, HI. 

V. Lumelsky and A. Shkel. Incorporating body 
dynamics into the sensor-based motion planning 
paradigm. The maximum turn stratedy. Proc. IEEE 
Intern. Conf. on Robotics and Automation, May 1995. 
Nagoya, Japan. 

T. Fraichard and AScheuer. Car-like robots and mov- 
ing obstacles. Proc. IEEE Intern. Conf. on Robotics 
and Automation, May 1994. San Diego,CA. 

G. Korn and T. Korn. 
McGraw-Hill, New York, 1968. 

“Mathematical Handbook”. 

Fig. 4. Example of performance of the Time-Optimal Algo- 
rithm. 

1623 


