
Proceedings of the 34th
Conference on Decision & Control
New Orleans, LA - December 1995 TA02 1 1 :20

The Role of Time Constraints in the Design of
Control for the Jogger’s Problem*

Andrei M. Shkel and Vladimir J. Lumelsky
University of Wisconsin-Madison
Madison, Wisconsin 53706, USA

shkel@robios .me. wisc. edu and lumelsky@engr . wisc. edu

Abstract-Control schemes in real-time sensor-based
systems often operate under tight time constraints de-
termined by the system sampling rate. One area where
uch constraints are especially severe is the sensor-

based motion planning with dynamics in robotics.
Though very important both theoretically and in prac-
tice, this problem has not been addressed so far. The
typical sampling rates in such systems are 20 to 50
%>er second. This leaves only 20 to 50 msec for the
whole cycle, including sensing, complex geometric (in-
telligence) analysis, calculations due to dynamics and
control, and motion execution. As a Arst attempt to
solve the problem, we show that the time constraints
an be met by a combination of a simple model with

a carefully chosen analytical solution of the dynamic
equations. The resulting control scheme guarantees
Convergence and safety of motion, and blends well with
kinematic path planning algorithms. Two such strate-
gies are discussed, one using a simple heuristic and the
other with local optimization.

I. INTRODUCTION

Modern real-time control systems often need to combine
gathering input information, its logical analysis, and cal-
culation of the control actions within very short time in-
tervals. This puts severe constraints on the choice of the
corresponding calculation schemes.

A good example in point is the Jogger’s Problem in
robotics, which appears in the context of sensor-based mo-
tion planning [l]. Imagine a jogger in the city environment
who takes his usual morning run in the neighborhood.
This will involve a number of on-line control mechanisms.
First, a global (convergence) mechanism is needed to as-
sure that a roughly decided upon path will be executed,
ending at the target location, in spite of the deviations and
detours that the changes in the environment may require.

“This work was supported in part by the NOAA Sea Grant Pro-
gram, US Dept of Commerce, Grant NA46RG048, and by DOE
(Sandia Labs) Grant 18-4379C.

Second, since an instantaneous stop is impossible due to
inertia, in order to maintain a reasonable speed the jog-
ger needs at any moment an “insurance” option of a safe
stopping path. Third, when after turning the street cor-
ner the jogger suddenly sees a heavy large object right on
the intended path, a quick local replanning mechanism is
needed to take care of potential collision: his speed may
temporarily decrease and the path will smoothly divert
from the object. This path segment may also be locally
optimized, to arrive at the street corner quicker or along a
shorter path. All other options exhausted, the jogger may
ubrake” to a halt, and then start a detour path.

The jogger’s path presents a fast sequence of steps, each
of which involves sensing, logical (intelligent) decision-
making, control calculations to account for body dynam-
ics, and execution of motion. Some of those may be further
intertwined within a single step. A typical sampling rate
in the mobile robot’s equivalent of our jogger is 20 to 50
control cycles per second. If it is, say, 40/sec, it amounts
to 25 msec for the whole cycle, leaving 10-15 msec for the
control proper. This includes dynamics analysis and cal-
culation of controls, such as to guarantee the next step
to be safe, reasonable (or optimal) from the standpoint
of the local sensing information available, and satisfying
the global path objectives. Clearly, many computation-
intensive control techniques that would otherwise qualify
for the task, will fail these stringent time constraints. One
can argue that the only way to satisfy these constraints
is to start with the simplest, and yet realistic, model and
devise a very simple, and yet satisfactory, control scheme.

While accounting for body dynamics in sensor-based
motion control is of serious practical importance, little
attention has been paid to this connection in literature;
Most of existing approaches deal solely with the system
kinematics and geometry and leave out its dynamic prop-
erties. (Dynamics fares better for the model with complete
information and off-line computation, see e.g., [2, 3, 41).

A number of kinematic sensor-based strategies (that is,
strategies that do not take into account system dynam-
ics) originate in mazesearching algorithms [5, 61; when

1618
03-2685-7/95 $4.00 0 1995 IEEE

Obtaining Processing
information information
c L

k+l
Control uk executed

k-1 t k

I I
' i s ' i r i ' i d I

I d
s t

Measurement Calculation of Analysis of
(sensing) intermediate dynamics,

target control calculation

Fig. 1. Three operations - sensing, logical (intelligence)
analysis, and control calculations - have to fit within a sin-
gle control cycle (step of the robot) bt. Controls calculated
by the end of the cycle period are applied during the next
cycle.

applicable, they are usually fast, can be used for real time
control, and guarantee convergence; the obstacles can be
of arbitrary shapes.

To design a provably-correct dynamic algorithm for
sensor-based motion planning, one needs a single control
mechanism - separating it into stages is likely to destroy
convergence. Convergence translates into two require-
ments - globally, a guarantee of finding a path to the
target if one exists, and locally, an assurance of collision
avoidance in view of the obstacles and the robot's inertia.
The former can be borrowed from kinematic algorithms.
The latter is the question of controllability: a controllable
system can reach any free point if needed in spite of the
dynamics and the presence of obstacles. This property re-
quires an explicit consideration of dynamics in the control
law.

In principle, any maze-searching algorithm can be uti-
lized for the kinematic part, so long as it allows an exten-
sion to distant sensing. For the sake of specificity, here
we make use of the VisBug algorithm [5]. Assume the
robot is a point in the plane; let S and T be the starting
and target positions, r, -the radius of the robot's sensing
range, i - the current step, M-line -the straight line (ST) ,
see Figure 2. The VisBug procedure revolves around two
steps: (1) Walk from S toward T along the M-line until,
at some point C, detect an obstacle crossing the M-line,
say at point H go to Step 2. (2) Using sensors, define
the farthest visible intermediate target Ti on the obsta-
cle boundary; make a step toward Ti; iterate Step 2 until
detect M-line; go to Step 1.

Consider now the operations that need be done within
one step, Figure 1. These are (a) sensing, (b) defining the
current intermediate target, (c) control calculations due to
body dynamics, and (d) execution of motion. Usually the
control commands found within the current step are ap-
plied during the next step, simultaneously with the other
three operations. For the corresponding times, this means
6t = 6ta -k 6tp + 6 t d .

As said, the sequence (a) and (b), sensing and Ti cal-
culation, may execute a number of times, before going to
Step 2 of the algorithm. If needed, the number of such
repetitions can be reduced to save time - which is equiv-
alent to a loss in system efficiency due to inferior sensors.
There is no such flexibility in the operation (c). Because
of the local character of sensing, in addition to the usual
computations due to dynamics the control scheme in (c)
has to also include safety considerations, such as a pro-
vision for a safe stopping path, and a constraint on the
maximum velocity the robot can safely maintain during
its motion.

To speed up the control algorithms for real-time plan-
ning, we assume that (1) the robot is a mass point, and
(2) control actions are constant within the step interval.
Though simple, this model is already of practical value
as long as the robot's dimensions can be ignored. This
model allows us to find an analytical solution of the dy-
namic equations. Then, a control scheme that emphasizes
a single step calculation is added, resulting in a signifi-
cant speedup of the control calculations. On this latter
mechanism, note that with a reasonably large radius of
vision r, , one can use a single sensing reading to calculate
a relatively long - say a 10-step or 20-step long - piece of
the robot's trajectory. This has its advantages - e.g., that
piece of the path can be optimized. It is, however, com-
putationally costly and largely wasteful since the sensing
reading at the next step is likely to require changes in the
path.

This leads to a class of fast control algorithms. The
general strategy is as follows: at moment (step) i, the
kinematic algorithm chosen identifies an intermediate tar-
get point, Ti, which lies on a convergent path and is far
enough from the robot - normally at the boundary of the
sensing range r,. Because of the dynamics, a straight
line step toward Ti may not be possible, thus requiring a
smooth transition. Each step is planned as the first step
of a trajectory which, given the current position, velocity,
and control constraints, would bring the robot to a halt
at Ti (even if the robot has no intention to stop at Ti).

We show two examples of such algorithms, one using
a simple heuristics and the other relying on a local opti-
mization scheme (many details and proofs, omitted here
due to the lack of space, can be found in [l, 71). In the
first algorithm, called Maximum Turn Strategy, the objec-
tive is to align the direction of the robot's motion with
the direction toward the intermediate target Ti as soon as
possible. That is, if the angle between the current velocity
vector and the direction toward Ti is larger than the max-
imum turn the robot can make in one step, the robot will
maintain the maximum turning rate until the directions
align (hence the name of the strategy).

In the second algorithm, called Time-Optimal Strategy,

1619

Fig. 2. Example of performance of a kinematic algorithm
[51.

step planning is formulated as an optimization problem.
At the current step, a canonical solution is found which,
1 ;ith no obstacles present, would bring the robot from its
current position Ci to Ti with zero velocity and in mini-
mum time. If the canonical path crosses an obstacle and
thus not feasible, a near-canonical collision-free path seg-
inent is planned. It can be shown, first, that only a finite
;,umber of path options need be considered, and second,
.:itit the controllability is guaranteed -there always exists
at least one path solution that is collision-free. Further,
the two-dimensional control problem is divided into two
one-dimensional control problems, each with a bang-bang
control solution; this results in an extremely fast proce-
dure, easily implementable in real time, for finding the
(fairly complex) multi-step time-optimal path within the
sensing range.

11. THE MODEL

The environment (work space) is two-dimensional physical
space W c X2; it may include a finite set of locally finite
s,atic obstacles 0 E W . Each obstacle 0 k E 0 is a simple
closed curve of arbitrary shape and of finite length, such
that a straight line will cross it in only a finite number of
points. If obstacles touch each other, they are considered
one obstacle.

The robot is a poznt mass of mass m. Its sensors allow it
at its current location Ci to detect any obstacles and the
distance to them within its sensing range - a disc of radius
rV (“radius of vision”) centered at Cj. At moment t i ,
the robot’s input information includes its current velocity
I zctor Vi and coordinates of Ci and target T .

Motion control is done via two components of the accel-
eration vector U = = (p, q), where f is the force applied.
Controls U come from a set U(-) E U of measurable, piece-

wise continuous bounded functions in X2, U = {U(.) =

taking mass m = 1, we can refer to the components p
and q as control forces. Force p controls the forward (or
backward when braking) motion; its positive direction co-
incides with the robot’s velocity vector V. Force q, the
steering control, is perpendicular to p forming a right pair
of vectors, Figure 3. We assume no friction and no other
external forces, except p and q; both can be incorporated
if needed [8].

The task is to move from point S (start) in W to point
T (target), Figure 2. The control of robot motion is done
in steps i = 0,1,2, ..., each of time 6t = ti+l - t i = const;
p and q are constant within step i. The step length within
time bt thus depends on the velocity Vi; CO = S. We
define three coordinate systems, Figure 3:

(P(.>,q.(->)/ZJ E [-Pma,,Pma,], q E [-4mas, Qmarl}. BY

0 fixed world frame, (z, y), with its origin at S;

0 primary path frame, (t,n); the origin of this mov-
ing (inertial) frame is attached to the robot; axis t
is aligned with the current velocity vector V, axis
n is normal to t. Together with axis b, which is a
cross product b = t x n, the triple (t, n, b) forms the
h n e t trihedron, with the plane of t and n forming
the osculating plane [9];

0 secondary path frame, (ti, qi) , is fixed during the time
interval of step i. The frame’s origin is at the inter-
mediate target Ti, with axis & aligned with vector Vi
at time ti, and axis vi normal to &.

111. PATH FRAME TO WORLD FRAME
TRANSFORMATION

Consider the time sequence ct = {to, tl , t2, ...} of the start-
ing moments of steps; at moment ti the robot is at the po-
sition Ci, with the velocity vector Vi. Within the interval
S t , based on the sensing data, intermediate target Ti (sup-
plied by the kinematic planning algorithm), and vector
Vi, the control system will calculate controls p and q and
apply them to execute step i, finishing at point Ci+l at
moment ti+l , with the velocity vector Vi+l. Then the pro-
cess repeats, resulting in a continuous path, (z(t) , y (t)) , as
a function of time. The remainder of this section refers to
the time interval [t i , t i+ l) and its intermediate target Ti,
and so index i can be dropped.

Denote (z,y) E R2 the robot’s position in the world
frame, and 0 the (slope) angle between vector V =
(Vz, V,) = (2, $) and x-axis of the world frame, Figure 3.
Taking mass m = 1, the equations of motion become

x = pcos0 - qsin0
y =psinO + qcos0

1620

Fig. 3. The coordinate frame (x, y) is the world frame with
its origin at S; (t, n) is the primary path frame, and (ti, 7;)
is the secondary path f”e for the current robot’s position
C; .

The angle 8 between vector V = (Vx,V,) and z-axis of
the world frame is found as

vx L 0

The transformations between the world frame and sec-
ondary path frame, from (z, y) to ((, 7) and from ((, 7) to
(z, g), are given by

where

) cos8 sin8
-sin8 cos8 ’ R = (

R is the rotation matrix between the frames (5 , ~) and
(x, y), and (E T , y ~) the coordinates of the (intermediate)
target in the world frame (x, y).

To define the transformations between the world frame
(z, y) and the primary path frame (t , n), write the velocity
in the primary path frame as V = V t . Given that the
control forces p and q act along the t and n directions,
respectively, the equations of motion with respect to the
primary path frame are:

v = p ,
e = q/v

Since p and q are constant over the time interval t E
[ti, ti+l), the solution for V (t) and 8(t) within the interval
becomes

where 80 and Vo are constants of integration and are equal
to the values of 8(t i) and V(t i) , respectively. By parame-
terizing the path by the value and direction of the velocity
vector, the path can be mapped into the world frame (x, y)
using the vector integral equation

ti+1

r(t) = Li V . t . d t (3)

Here r (t) = (z(t) ,y(t)) , and, t is a unit vector of direc-
tion V, with the projections t = (cos(O),sin(e)) onto the
world frame (x, y). After integrating equation (3), obtain
the set of solutions,

V2(t) + A
2pcos8(t) + qsinO(t)

4p2 + 42
x (t) =

V 2 (t) + B (4)
qcosB(t) - 2psin8(t)

4p2 + 42 = -

where V (t) and 8(t) are defined by controls p and q in 2),
and terms A and B are

vo2 (2 p cos(&) + q sin(8o))
4 p 2 + q 2

vo2 (q - 2 p sin(8o))
4p2 + 42

A = 20-

B = yo+

7

Equations (4) describe a spiral curve. Note two special
cases: when p # 0 and q = 0, (4) describe a straight line
motion under the force along the vector of velocity; when
p = 0, q # 0, the force acts perpendicular to the vector of
velocity, and (4) produce a circle of radius G22/1q1 centered
at the point (A, B) .

IV. ALGORITHMIC ISSUES

Safety considerations. Due to lack of information about
the obstacles beyond distance r, from the robot, for
collision-free motion at least one “last resort” stopping
path should be assured at any moment. Under continuous
control and straight line motion, the following relation-
ship ties the maximum velocity V, mass m, radius T,,

and controls U = (p, q): the velocity must not exceed

(5)

However, after accounting for the discrete nature of our
control, the maximum velocity can be shown to decrease
to

Vmaz = JpkazSt2 + 2pmaxrv - pmazdt

These equations show how changes in the system param-
eters - e.g. an increase in T, due to better sensing, or an
increase in p , q due to more powerful motors - will effect

1621

the maximum velocity that the robot c m afford without
endangering safety.

Convergence. Because of the effect of dynamics, the con-
vergence mechanism borrowed from a kinematic algorithm
- say VisBug - needs some modification. The intermedi-
ate target points Ti produced by VisBug lie either on the
boundaries of obstacles or on the M-line, and are visible
from the corresponding robot’s positions. However, the
robot’s inertia may cause it to move so that Ti will be-
come invisible, either because it goes outside the sensing
range r, (as after point P, Figure 2), or due to occluding
obstacles, The solution chosen is to keep the velocity high
and, if point Ti does go out of sight, modify the motion
locally until Ti is spotted again.

Step planning. The last step in the outlined method-
ology is to choose the step planning procedure proper.
This part is what distinguishes between different control
strategies. Two examples of such procedures are sketched
below.

V. THE CONTROL ALGOMTHMS
The Maximum Turn Strategy. It includes three pro-

cedures (see details in [7]): (1) the Main body analyzes the
path towards the intermediate target Ti; (2) Define Next
Step chooses the forces p and q; (3) Find Lost Target deals
with the case when Ti goes out of the robot’s sight. Also
used is a procedure called Compute Ti, from the VisBug
algorithm [5], for computing the next intermediate target
Ti+l and for analyzing the target reachability. Vector Vi
is the current vector of velocity, T is the robot’s target.
For brevity, we sketch the Main body only.

Main Body: The procedure is executed at each step,
and includes two steps:

Step 1: Move in the direction specified by Define Next
Step, while executing Compute T,. If Ti is visible do:
if Ci = T the procedure stops; else if T is unreachable
the procedure stops; else if Ci = Ti go to Step 2.
Otherwise, use Find Lost Target to make Ti visible.
Iterate Step 1.

0 Step 2: Make a step along vector Vi while executing
Compute Ti: if Ci = T the procedure stops; else if
the target is unreachable the procedure stops; else if
C, # Ti go to Step 1.

The Time-Optimal Algorithm. As mentioned
above, at each step of this procedure a canonical solution
is found which, with no obstacles present, would bring the
robot from its current position Ci to the current interme-
diate target Ti with zero velocity and in minimum time.
If the canonical path is not feasible because it crosses an
obstacle, a near-canonical collision-free path segment is
planned.

The algorithm is executed continuously, at each step of
the path, and includes three procedures (see details in [I].
(1) The Main Body procedure monitors the general control
of motion towards the intermediate target Ti. In turn,
Main Body makes use of three procedures: (2) Define Next
Step chooses controls (p, q) for the next step. (3) Find Lost
Target deals with the special case when the intermediate
target Ti goes out of the robot’s sight. In turn, Main Body
also uses the procedure Compute Ti [5], which computes
the next intermediate target Ti+! and performs the test
for target reachability. Initially, z = 0,Ci = S. We now
sketch the Main Body procedure:

Procedure Main Body: At each step i:

0 Step 1: If Ci = T , stop.

0 Step 2: Find Ti from Compute Ti. If T is found
unreachable, stop. If Ti is visible, find Ci+l from
Define Next Step; make a step towards Cit-1; iterate;
Else, use Find Lost Target to make Ti visible; iterate.

The convergence of the algorithm is guaranteed by the
design of the canonical and near-canonical ’solutions, and
also by the convergence properties of the kinematic al-
gorithm [5]. Its computational complexity is quite low,
thanks to the use of a moving reference frame and to lim-
iting the explicit computation to a single step constant
time calculation in each control cycle. That is, although
the canonical solution represents the whole multi-step tra-
jectory within the sensing range of radius r,, its compu-
tation time is independent of that trajectory and of r,.

VI. EXAMPLES
We show a set of simulated examples for the Time-
Optimal strategy only, Figure 4; other examples can be
found in [7, 11. The generated paths are shown in thicker
lines. For comparison, also shown in a thin line are the
corresponding paths produced under the same conditions
by the kinematic algorithm VisBug [5].

The examples demonstrate the effect of the radius of
sensing rV and the effect of additional obstacles. Note that
in Figure 4b the path becomes tighter, shorter, though it
takes longer compared to (a): measured in the number
of steps, the path in (a) takes 242 steps, and in (b) 278
steps. One might say the robot becomes more cautious
in (b). A similar pair of examples, shown in Figures 4c,d
illustrates the effect of the radius of vision: in (c) and
(d) r, is twice that of (a) and (b). The times to execute
the path are 214, and 244 steps, respectively, shorter than
in the corresponding examples (a), (b). That is, better
sensing (larger r,) results in these examples in shorter
time to complete the task; more crowded space resulted
in longer time (though perhaps in shorter paths).

1622

Note that from time to time the system found it neces-
sary to make use of the stopping path - those points are
easy to spot by the sharp turns in the path (those would
be impossible with a nonzero velocity). For example, in
Figure 4a the robot had to stop only twice, at points A,B;
in the more crowded scene of Figure 4 it had to stop six
times, at points A,B,C,D,E,F.

REFERENCES
A. Shkel and V. Lumelsky. The Jogger’s Problem:
Accounting for body dynamics in real-time motion
planning. IEEE/RSJ Intern. Workshop On Intelligent
Robots and Systems, August 1995. Pittsburgh, PA.

B. Donald and P. Xavier. A provably good approxima-
tion algorithm for optimal-time trajectory planning.
Proc. IEEE Intern. Conf. on Robotics and Automa-
tion, May 1989. Scottsdale, AZ.

Z. Shiller and S. Dubowsky. On computing the global
time optimal motions of robotic manipulators in the
presence of obstacles. IEEE 13-ans. on Robotics and
Automation, 7(6):785-797, 1991.

J. Canny, A. Rege, and J. Reif. An exact algorithm for
kinodynamic planning in the plane. Proc. 6th Annual
Symposium on Computational Geometry, June 1990.
Berkeley, CA.

V. Lumelsky and T. Skewis. Incorporating range sens-
ing in the robot navigation function. IEEE Trans.
on Systems, Man, and Cybernetics, 20(5):1058-1069,
September 1990.

A. Sankaranarayanan and M. Vidyasagax. Path plan-
ning for moving a point object amidst unknown obsta-
cles in a plane: A new algorithm and a general theory
for algorithm development. Proc. 29th IEEE Intern,
Conf. on Decision and Control, 1990. Honolulu, HI.

V. Lumelsky and A. Shkel. Incorporating body
dynamics into the sensor-based motion planning
paradigm. The maximum turn stratedy. Proc. IEEE
Intern. Conf. on Robotics and Automation, May 1995.
Nagoya, Japan.

T. Fraichard and AScheuer. Car-like robots and mov-
ing obstacles. Proc. IEEE Intern. Conf. on Robotics
and Automation, May 1994. San Diego,CA.

G. Korn and T. Korn.
McGraw-Hill, New York, 1968.

“Mathematical Handbook”.

Fig. 4. Example of performance of the Time-Optimal Algo-
rithm.

1623

