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Abstract 

This work addresses the problem of finding the short- 
est path for a vehicle (say, a mobile robot or a car) 
moving in a limited workspace. The proposed approach 
makes we of a tool dubbed the Reflective Unfolding op- 
erator which has a clear geometric interpretation and 
provides an interesting means for solving other tmjec- 
tory design problems. Our previosly reported result [l], 
which relates to the special case of a car maneuvering 
within a disc-shaped area, is extended here to the gen- 
eral case of an arbitrarily shaped area. The approach 
i s  illustrated b y  computer simulations. 

1 Introduction 

We pose the following two questions (see Fig. 1): 
Given two points, start and target, within a closed 
planar area W c R2, each with a prescribed direc- 
tion of motion in it, and assuming a possibility of 
reversals of motion, (i) what is the shortest path of 
bounded curvature that connects the points and lies 
completely in W? (ii) what is the minimum number 
of motion reversals (path cusps) one needs to arrive at 
the target point with the prescribed orientation? This 
kind of questions appear in various applications with 
nonholonomic motion constraints, such as in motion 
planning for driverless cars. 

The proof of existence of a path between any two 
configurations lying in the same workspace was shown 
by J.P. Laumond [2]. The idea of the proof is to ap- 
proximate the path by a sequence of short back and 
forth motions (reversals, cusps). As shown in [3], such 
approximations may produce long paths, perhaps with 
very many reversals. It would therefore be of interest 
to attempt to find the "best" motion - one that mini- 
mizes the path length and the number of reversals. 
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Figure 1: From its initial configuration S = (qo,40) ,  the 
car is to arrive at the final configuration T = ( q f , 4 f ) ,  
along the path of the shortest length possible and of the 
lowest complexity. 

For the case with unlimited operational space, Du- 
bins [4] showed how to compute the shortest smooth 
path, with no motion reversals. The Reeds and Shepp 
work [5] presents an extension of this result by Du- 
bins to the more complex case with cusps. A w e  
important for applications (e.g. mobile robots on the 
factory floor, or driverless, or teleoperated transporta- 
tion systems) involves planning motion with reversals 
in a constrained environment. This general w e  of an 
optimal path in a limited space, left open by the works 
above, is the subject of this paper. 

The text below is organized as follows. The prob- 
lem statement and necessary definitions are given in 
Section 2. The transformation and the RU operator 
that form the basis of the proposed approach appear in 
Section 3. The overall strategy for designing the path 
in the workspace W is derived in Section 4; its con- 
vergence properties are discussed in Section 5, and the 
optimality of solutions that it produces is discussed 
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in Section 6. The resulting algorithm is summarized 
in Section 7. An illustration of the algorithm perfor- 
mance appears in Section 8, A summary and discus- 
sion of the obtained results in Section 9 completes the 
paper. The details that have been left out due to  lack 
of space can be found in [SI. 

2 The Approach 

We introduce a new tool called the Reflective Un- 
folding operator (RU operator - see Section 3) which 
maps the original problem of planning a path with re- 
versals in the domain W into an equivalent problem 
of planning a smooth cuspless path in an unlimited 
space. A successive application of the RU operator 
yields the optimal solution with reversals in the origi- 
nal limited space. 

The idea is as follows. Assume for the moment that 
the path connecting the initial configuration and the 
final configuration does already exist and consists of 
n arcs, each of radius pmjn, and thus of n - 1 cusps. 
Order all cusps sequentially, starting with the initial 
configuration. In a single application of the RU oper- 
ator, it keeps the first of two arcs adjoining the first 
cusp, and "unfolds" the second arc so as to produce 
a smooth cuspless piece of circle, while preserving the 
original tangent to both arc segments, Figure 2. The 
next cusp is then treated in a similar fashion, and so 
on, eventually transforming the set of arc segments 
into a large circular arc C = (0, pmin) of radius pmjn 
centered at some point 0, with multiple copies of the 
domain W superimposed on it (see Section 4 and Fig- 
ure 4). Once the process reaches the final configura- 
tion, one only needs to fold all the arc segments back 
into the W - and the actual path is complete. 

The RU operator possesses a number of properties 
that make it a good tool for calculating optimal paths. 
For example, since the car's initial and final orienta- 
tions define uniquily the corresponding tangent lines 
to the circle C = (O,pmin), by measuring the dis- 
tance along the circle C between those two configura- 
tions one can quickly calculate the number of segments 
- and, therefore, the number of cusps and the total 
length - in the optimal path, even without calculating 
the actual path. 

3 Reflective Unfolding Operator 

The Reflective Unfolding operator, or RU opera- 
tor, presents the main tool for solving the problem of 

4 i,; 
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Figure 2: The RU operator, Q, eliminates a cusp at the 
wrier qi+l and maps segment 7i+1 into segment -yik\, 
formdy, uqi+l : 7i 7i 

motion in a constrained environment. The term mo- 
tion flow below uniquely defines in a parametric form 
the configuration, position and orientation, of a non- 
holonomic system. Consider a motion flow consisting 
of two segments, r i ( t )  and ~ y i + ~  ( t ) ,  Figure 2. As pa- 
rameter t increases, the flow continues from segment 
-yi(t) to segment ri+l ( t ) .  Note different orientations at 
both segments: when switching from ~yi( t )  to 7i+l(t),  
the car reverses the direction of motion. 

4 Control strategy and dual problem 

We are now ready to formulate the control strategy 
for generating the shortest path of bounded curvature 
within a limited workspace. First, the control strategy 
will be defined, and then it will be proven to be the 
optimal strategy. The proof is based on the analysis 
of duality of the original problem in the domain W 
and the equivalent problem in the chain of domains 
WI, Wa, Ws, .... The transformation from the orig- 
inal problem to its dual is obtained by sequentially 
applying the RU operator. 

Control strateerv. Assume that the closed domain 
W C R2 in which the car operates is small enough, 
so that the assumption of an unlimited space neces- 
sary for obtaining Reeds-Shepp solutions [5] does not 
apply. To solve the problem of maneuvering within 
W, a natural recipe to follow would be to (1) move 
along path segments of maximum curvature (arcs of 
circles of radius pmin),  and (2) use most effectively the 
free space available - that is, try to extend each path 
segment up to the boundary - f W; we will call this a 
boundary-to-boundary strategy. 

That is, the car should move (forward or backward) 
along an arc of radius Pmin to the boundary of W, 
then make a reversal, move along another arc of ra- 
dius pmjn until the boundary is reached again, and 
so on. Intuitively, the boundary-to-boundary strat- 
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Figure 3: The mapping is defined as a central symmetry 
with respect to the reflection point. Here, the central s 
metry with respect to point q1 maps point qa into qz , 
into A('), and B into E#('); disc D is mapped into the disc 
D('). The motion flow qo + q1 + qz -+ qo within the disc 
D(q0, R) is equivalent to the flow qo -+ ql + q p )  -+ q r )  
that corresponds to the arc of radius pmin centered at 0. 

('Ti 

egy should give the fastest possible convergence to the 
car's desired final orientation (this fact will be proven 
in the next section). However, the question is how to 
construct a strategy that will result in the final con- 
figuration (position and orientation). Another part of 
our goal is to produce the shortest path possible. The 
algorithm for choosing the points of reversal of motion 
is discussed below. 

The dual problems For the purpose of illustra- 
tion, consider the workspace W to be a disc D of 
some radius R; the car's initial position qo is at the 
center 0 of D; the car's final orientation is horizontal. 
(The general case, for an arbitrarily-shaped workspace 
W and arbitrary initial/final positions/orientations is 
discussed in Section 8). A typical path in the disc 
D(q0, R) is shown in Figure 3. Starting at the config- 
uration po = (qo, &), the car first moves along an arc 
of radius pmin and reaches the boundary of W at point 
q1 E aW, with orientation 4: (equivalently, with the 
unit velocity vector v;'). Then the car reverses and 
moves backward along the second arc segment, with 
the initial velocity vector v;, reaching aW at point 
q2 ,  with orientation v$. The path from po = (qo,c#Jo) 
to pz = (42, $9) thus contains two arcs, 71 and 72, con- 
nected by a cusp with the common tangent at q1 (Fig- 
ure 3). 

By applying mapping (the RU operator) uql to the 
path 71 Hq1 72, a smooth subpath 71 kJ 72) is ob- 
tained. Similarly, by applying mapping uqa to sub- 

Figure 4: Motion with reversals within the domain W = 
D(q0, R) is equivalent to the motion along a circle of radius 
pmin centered at point 0. 

paths 71 and connected by cusp q t ) ,  obtain 
the subpath 71 $) W That is, the RU operator 
maps the boundary-to-boundary motion flow within a 
disc into an equivalent motion flow along a circle and 
without cusps. 

Note that the equivalent problem is tantamount to 
covering the equivalent path by discs of radius R fol- 
lowing the mapping rules. Once this is done, the arc 
segments of the equivalent path can be "folded back" 
into the actual workspace W = D(q0, R)  to complete 
the construction of the sought path. Below the equiv- 
alent problem is studied in more detail. 

5 Convergence to final configuration 

Here we develop the control strategy which makes 
use of the composite transformation process described 
above, and guarantees that the car reaches its final 
configuration from its initial configuration, while keep 
ing the path within the domain W. The correspond- 
ing procedures are developed below: the orientation 
alignment; position alignment; boundary-teboundary 
motion; and calculation of the nonstandard finishing 
maneuvers inside the domain W. 

segments to the arcs of radius pmin is the fastest way 
to reach the final orientation. Indeed, assuming a unit 
velocity, the orientation changes as 

Orientation alignment. Observe that limiting path 

A4J = t / P  (1) 

where A 4  is the change in the orientation angle, t - a 
parameter of length, and p - radius of the arc. Equa- 
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Figure 5: This path, from the car’s initial configuration 
(qo ,$o)  to its final configuration ( q j , t $ f )  requires two re- 
versals of motion. At points q1 and qa the car touches the 
workspace boundary. 

tion (1) simply states that, with A+ fixed, the shortest 
path is obtained when the radius of curvature is mini- 
mum. That is, if the car moves along a circle of larger 
radius, the angle between the vector of velocity and 
the initial orientation changes slower than it would 
along a circle of smaller radius. 

Position alignment. The shortest possible path 
connecting two configurations can be simply calcu- 
lated based on the difference between the initial and 
h a l  orientation angles: 

This gives the lower bound on all possible paths 
connecting configurationspo = (QO, &) andpf = ( q f ,  +f). 
The question now is whether this lower bound is achiev- 
able - or equivalently, whether there exists a control 
strategy that would brings the car to the final config- 
uration while delivering the path of length (2). 

6 Qptimality of the control strategy 

Proposition 1 The motion pow generated by the pro- 
posed control strategy i s  a geodesic pow. 

The proof of this proposition makes use of the fol- 
lowing geometrically obvious auxiliary statement (see 
Figure 6): 

Proposition 2 (auxiliary) Let 71 and r)z be two cir- 
cular arcs of radii €21 and €22, respectively. Suppose 
71 connects some initial configuration (MO, ao) with 
the final configuration ( M ~ , ( Y I ) ,  and q2  connects the 
same initial configuration (MO, (YO) with the final con- 
figumtion ( M z ,  az). Then, if R2 > €21 and the final 

Figure 6: If a1 = a2, and 171 and 7)2 are circular arcs of 
the radii RI and R2, and Rz > R I ,  then arc r)a is longer 
than xc 171 

Figure 7: This example illustrates that the optimal solu- 
tion is to move along a path of maximum curvature (small- 
est radius); both paths achieve the final orientation, but 
path “1” is shorter than ‘2”. 

orientations are the same, a1 = a2, then arc % i s  
longer than an: q1. 

According to  the control strategy, the car moves 
along a path of maximum curvature, l / p m i n .  For 
the equivalent problem this corresponds to the mo- 
tion along a circle of radius pmjn. Assume this is path 
“1” in Figure 7. The task is complete when the car 
arrives at the final configuration with zero angle orien- 
tation. In the equivalent problem, this corresponds to  
arriving at the top point on circle C(O,pmjn), where 
the tangent to C is horizontal. 

There are inhitely many paths that would bring 
the car from its initial to the final orientation (path 
“2” in Figure 7 is one example). According to the 
equivalent problem setup, all points of those other 
paths will appear outside the circle C(O,pmin). By 
Proposition 2, any path outside circle C has to be 
longer. In the previous section it was also shown that 
if the radius of curvature is larger or equal to  the 
workspace diameter, one can always construct a snake. 
connecting the initial and final configurations. This 
completes the proof of Proposition 1 - that the path 
produced by the proposed algorithm is the shortest 
possible path. 
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7 The Algorithm 

The algorithm consists of two procedures: InitiaZ- 
ization, which sets up system parameters, and Main 
Body. The latter, in turn, makes use of procedures 
Unfolding (which realizes the Reflective Unfolding op- 
erator) and Finishing Maneuvers (which handles the 
last two maneuvers to complete the task). An exam- 
ple of the algorithm performance will be considered in 
Section 8. Assume that the initial and final configu- 
rations are given. 

Initialization: 
- Initialize workspace W. Based on sensory data, con- 
struct the occupancy grid or map. 
- Construct circle C(O,pmi,) (Section 4) tangent to the 
initial orientation. Choose the origin of system {XU} at 
center 0 of C(O,pmin), and X-axis to coincide with the 
final orientation. 
- Set the maneuvers counter to i = 1. 

Main Body: The procedure is executed at each step; 
it operates with respect to  the world coordinate sys- 
tem {XU}. It uses two arc segments: Tj(Z,g), the 
trimmed arc for step i, and rf(z, y), the trimmed arc 
portion between the final position and the point on W 
boundary where the arc originates: 

If Tj = Tf, stop. 
Find yj(z, y); Find xi=, Length(Yj(z, y)). 
If 

Then call Unfolding; 
Else call Finishing Maneuvers; 
Iterate i = i + 1. 

Length(Tj(z, Y)) + Length(rf(t))  < Length(T(t)) 

Unfolding: The procedure operates on two arc seg- 
ments, yj(z, y) and rj+l (z, y), with respect to  the cusp 
qj in the frame XjYj: 

- Find qj (intersection of 7i(z,y) and C(0, pmin)) with 
respect to {X Y}; 
- Project qc onto system XiK; 
- Apply the centro-symmetric transformation to Wi 
with respect to qj ;  

- Describe Wi+l analytically; 
- Transform Wj+l to {XU}; 
- Find -p+l(z,y) (intersection of C ( 0 , p )  and Wj+l; 
- Return T i + l ( ~ ,  9). 

Finishing Maneuvers. The procedure is called by 
Main Body when condition 

is not satisfied (which happens when Wi n Wf # 0). 
It uses the final position on i-th iteration, Tj E Wj, 
and the final position Tf  E Wf. It returns to Main 
Body the final configuration: 

c;=1 L e n g t h ( . y h  Y) ) - l eng th( r f  ( t ) )  < Length(r ( t ) )  

+ - Define vector TiTf; 
- Define chord [qi+l qi+z] E C(0,pmin); 
- Call Unfolding, with qi+l as input; 
- Call Unfolding, with qi+2 as input. 

Remark: The resulting sequence of maneuvers is 
recorded in the seqience {q)j, where q1, - , qn are re- 
flection (cusp) points. An illustration of the algorithm 
performance for the general case is given in Section 8. 

8 Example 

The general algorithm (Section 7) is illustrated here 
on a simulated example, shown in Figure 1. For conve- 
nience, the final orientation is taken along the horizon- 
tal line (which is always possible by properly rotating 
W). There are two important differences compared 
to  the special case discussed in [l]: (a) from its ini- 
tial configuration the car is required to arrive at the 
different, both in position and orientation, final con- 
figuration (positions S and T in Figure 1); (b) the 
workspace is of some arbitrary shape. 

The procedure presents a sequence of geometric 
constructs leading to the overall solution obtained in 
a closed form. 

The task thus is: given the car's initial and find 
configurations in its workspace W, Figure 1, find the 
shortest possible path for the car's center of mass that 
lies fully inside W, subject to the restriction on the 
path radius of curvature, p = pmin. Use Figure 8 to  
follow the solution process. 

S tep  1: Construct a circle of radius pmin tangent 
to  the car's initial orientation vector. 

Step 2: Copy domain W by translating it so that 
point T coincides with point T f ;  this produces Wf (in 
Figure 8, Wf = W7). 

Step  3: Going back to WI, apply the central sym- 
metry (RU operator) with respect to the point where 
the boundary aW intersects the virtual path, obtain- 
ing the workspace prototype Wa. 

Step 4: Repeat Step 3 few more times until the 
current prototype overlaps with Wf (in Figure 8 this 
will take three more reflections, ending with wg. 

Step 5: Draw a line segment between points T5 
in Wg and T7 = Tf in domain Wf. Draw the chord 
equal half of the line segment T5T7 and parallel to it. 
The endpoints of the chord are the reflection q-points 
of the last two W prototypes. 

S tep  6: Fold back all the Wj prototypes into W 
in the descending order (here, W7 + WS + W5 + 
wq + ws + wz + w. 

The path is complete. The portions of the vir- 
tual path (Figure 8) now form elements of the actual 
(shortest possible) path in the original limited space 
(Figure 9). 
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Figure 8: (a) The geometric solution. Six r e v d s  are 
required to complete the task. (b) Enlarged view of the 
last two reversals. 

9 Discussion 

This paper proposes an approach for solving the 
problem of motion planning for a vehicle operating 
within a limited twedimensional workspace, subject 
to a nonholonomic constraint - the car’s path curva- 
ture cannot exceed a given value. For given initial and 
final configurations of the car, the method produces 
the shortest path possible. The Reflective Unfolding 
(RU) operator that forms the base of the approach can 
be effectively used to obtain the optimal path in an an- 
alytic form. An important advantage of the method is 
that it allows one to estimate the path length and its 
complexity beforehand, based only on the initial and 
final configuration. 

One can also see the presented results as a build- 
ing block for solving the general problem of motion 
planning in a constrained environment. Namely, the 
constraints on the car workspace can in general in- 
clude obstacles in the car environment. The approach 
described will fit well those real-world applications in 
which the area for maneuvering is limited, or where 

Figure 9: The representation of the shortest path between 
the initial and final configuration. 

information is obtained via sensors and the environ- 
ment is known only partially at all times. Then, the 
vehicle must use the limited (known at the moment) 
surrounding area to calculate the nearest maneuvers. 
Or, in the case of obstacles, one can “carve out” a 
closed domain around the car that is free of obstacles, 
and calculate the maneuvers necessary to  get out of 
that area. 
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