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Abstract— This paper reports a method of mode ordering in 
tuning fork structures, effectively inducing a negative coupling 
stiffness between the resonant proof masses. The coupling 
mechanism selectively stiffens the undesirable in-phase resonance 
mode and softens the desirable out-of-phase resonance, thus 
widening the frequency separation between the desirable and 
undesirable modes of vibration in tuning fork structures. In 
gyroscopes, the approach leads to improved robustness to 
fabrication imperfections and immunity to environmental 
vibrations, while at the same time enhancing the scale factor and 
reducing the noise. Advantages of the method are illustrated on a 
Quadruple Mass Gyroscope (QMG) architecture, which was 
previously reported. It is experimentally demonstrated that the 
common-mode g-sensitivity can be reduced by over 20 times with 
design modifications resulting in mode re-ordering.  

Keywords—mode ordering, g-sensitivity, negative coupling 
stiffness, Coriolis Vibratory Gyroscopes. 

I. INTRODUCTION 
 The noise and stability of high-performance 
micromachined inertial sensors such as gyroscopes and 
accelerometers are limited by the Quality factor (Q) of devices 
[1]. The mechanical scale factor of Coriolis vibratory 
gyroscopes, as well as amplitude modulated accelerometers, is 
inversely proportional to natural frequency of the devices. The 
Q-factor can be improved by reducing the natural resonance 
frequency and thereby reducing thermoelastic damping [1]. 
However, reduction of operational frequency increases the 
influence of external acceleration, which is a disadvantage for 
high-performance inertial sensors. 

 The influence of external common-mode acceleration can 
be minimized by using the anti-phase vibratory mode of the 
tuning fork resonators, without raising the natural frequency 
of the device. However, the in-phase vibratory mode is always 
the lower in frequency than the operational anti-phase mode, 
when conventional flexures are used. Such mode ordering [2] 
leads to a higher than desired anti-phase operational mode, 
which effectively reduces the mechanical scale factor. The 
design configuration also leaves the frequency of the in-phase 
vibratory mode lower in order of resonant frequencies, which 

is most sensitive to external acceleration, and most likely to 
respond to common-mode external acceleration. 

 In this paper, we demonstrate that mode ordering is 
necessary to improve the performance of inertial sensors. Our 
study includes both analytical modeling and experimental 
results. A dual-axis anti-phase tuning fork resonator is used 
for this purpose. Mode ordering is achieved by designing a 
suitable coupling structure that switches the in-phase and anti-
phase resonances of the tuning fork resonator in the frequency 
spectrum. This leads to a low anti-phase resonance with a high 
mechanical scale factor, while pushing the acceleration-
sensitive in-phase resonance to high frequencies, the 
frequencies of perturbation that the device is less likely to 
experience. 

II. A DUAL-AXIS ANTI-PHASE TUNING FORK RESONATOR 
 A dual-axis tuning fork resonator with eight degrees of 
freedom uses the same design principals of a classic Coriolis 
vibratory gyroscope with a higher degree of symmetry. An 
example of a dual-axis tuning fork device is shown in Fig. 1. 

 
Fig. 1. An optical photograph of a fabricated and packaged QMG devices with 
SEM images of the supporting and coupling springs.  

 This is an in-house fabricated and packaged Quad-Mass-
Gyroscope (QMG), [3]. As it can be seen in this image, the 
structure consists of four identical proof masses (individual 
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mass, m ), which are grounded to a substrate with supporting 
springs of an equal stiffness, Ak . The four proof masses are 
also mechanically coupled to their adjacent counterparts using 
mechanical coupling springs of value Ck , also shown in the 
Fig. 1.  

 A conceptual schematic of Fig. 1 is shown in Fig. 2. There 
are four primary mode shapes that are associated with the 
quad-mass tuning fork resonator, as shown in Fig. 1, including 
in-phase, anti-phase, opposing in-phase, and double anti-phase 
modes. While the in-phase mode is sensitive to acceleration, 
the opposing in-phase mode is particularity sensitive to 
external torque. This can be seen from Fig. 2. The resonance 
frequencies of each vibratory mode shapes can be expressed 
by 
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Fig. 2. Conceptual schematic of a double-axis tuning fork with external 
coupling levers. 

 For conventional spring coupling, the stiffness is always 
positive. This leads to anti-phase and double anti-phase 
vibratory modes that are always higher in frequency than the 
in-phase and opposing in-phase modes. In addition, the 
double-axis tuning fork contains degenerate mode shapes 
along each individual axis (i.e., In-phase Opposing In-phaseZ Z  
and Anti-phase Double Anti-phaseZ Z ). This effect leads to high energy 
coupling between each degenerate mode under static 
conditions. A reordering of the mode shapes using suitable 
coupling mechanisms is necessary to eliminate the excitation 
of undesirable modes. 

III. COUPLING STRUCTURES FOR TAILORED MODE 
ORDERING 

 In order to solve the mode ordering challenge, two 
techniques are implemented, including external lever coupling 
and internal lever coupling. These two techniques are 
presented next.  

A. External Lever Coupling 

 In order to isolate each individual mode shape within the 
frequency spectrum, external levers are used, as shown in Fig. 
2. The coupling beams are designed to be robust to translation, 
yet compliant to rotation. The levers behave as anti-phase 
stiffness elements, forcing the anti-phase motion of 
neighboring proof masses. The modal frequencies of such a 
system can be calculated as 
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 Eq. (2) shows that with the inclusion of this additional 
design element the four primary modal frequencies can now 
be isolated from one another. The placement of these 
frequencies is still not ideal, though. Using the lever coupling 
method, Opposing In-phaseZ  is now the vibratory mode with lowest 
frequency, which is still sensitive to an external torque. The 
simulated frequency spectrum of such a device is shown in 
Fig. 3a.  

(a)  

(b)  
Fig. 3. Simulated frequency spectrums of a dual-axis tuning fork with (a) 
External lever only, (b) with both external levers and negative-stiffness 
internal levers 



B. Internal Lever Coupling 
 Even though the external lever coupling is able to separate 
all the mode shapes of a quad-mass resonator, the placement 
of the modal frequencies is still not ideal. In this section, an 
alternative internal coupling mechanism with negative 
stiffness is applied between two proof masses, replacing the 
traditional beam springs with positive structural stiffness. 

 Eq. (2) shows that if Ck  is designed to be negative 
( 0)Ck d  with positive values of  and A Lk k , the mode 
ordering changes, making the anti-phase mode to be the 
lowest of the four and the in-phase mode-shape to be the 
highest. Thus, the design requirement for rejection of 
common-mode acceleration is achieved. The frequency 
placement of all the mode shapes of the quad-mass resonator 
after mode-ordering using negative-stiffness internal levers is 
shown in Fig. 3b. 

IV. ANALYTICAL MODEL OF INTERNAL LEVER COUPLING 
WITH NEGATIVE STIFFNESS 

In order to create a negative coupling stiffness, a secondary 
resonator is introduced along with the primary tuning fork 
resonator to selectively stiffen the in-phase motion of the 
primary resonators with respect to the anti-phase motion. In 
this paper, the first two mode shapes of a simple clamped-
clamped beam are used to create a negative coupling stiffness 
for the primary resonator. A schematic of this secondary 
resonator is shown in Fig. 4, along with a model of the 
equivalent parameters. Due to anchoring of the structure, an 
additional grounding stiffness is applied to each proof-mass, 
which increases the total individual stiffness applied to each 
mass: INAk k k � . 

 
Fig. 4. Conceptual schematic of a negative stiffness coupling (top), along with 
an equivalent mass-spring system (bottom). 

 Fig. 4 also shows the critical dimensions of one-half of the 
coupling structure. The coupling structure is formed with two 
parts: 1) levers with dimensions w and h , which are used to 
transform the displacement of the proof-masses, and 2) a 
clamped-clamped beam, which absorbs this transformed 
displacement. The in-phase and anti-phase resonances of the 
primary structure excite two different mode shapes within the 

secondary resonator. These mode shapes are shown in Fig. 
5(a-b). 

 For anti-phase motion of the proof masses, the clamped-
clamped beam is forced in the same direction by the proof 
masses, but torqued in opposite directions, Fig. 5a. For in-
phase motion, the clamped-clamped beam is forced in 
opposite directions by the proof masses, but torqued in the 
same direction, Fig. 5b. Because an anti-phase resonance of 
the primary structure forces the first mode shape of the beam, 
while an in-phase resonance forces the second mode shape, it 
can be intuitively seen that the in-phase resonance will have a 
higher stiffness.  

 
Fig. 5. Mode shapes of a clamped-clamped beam used as a coupling structure, 
(a) the first mode shape or the lowest frequency mode is excited during the 
anti-phase motion of the primary resonator; (b) the second mode shape with 
higher frequency is excited during the in-phase motion of the primary 
resonator. 

 In order to confirm and quantify this variability in 
stiffness, analytical expressions for the anti-phase and in-
phase stiffness of the coupling structure were calculated with 
respect to motion of the primary resonator. The results are 
shown in Eqs. (3) and (4) for the anti-phase and in-phase 
mode shapes, respectively. 
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 When Anti-phase In-phase( ) 1k k �  , Ck  is negative, which 
effectively forces the in-phase motion of the proof masses to 
be stiffer than the anti-phase motion. By plotting the Ck value 
versus L g  for various values of g , Fig. 6, it can be seen that 
for 1L g  , Ck k � . As L g increases, Ck  quickly 
becomes less negative as it approaches 0.25Ck k � � . Then, 
as a function of ,  and h w g , Ck  starts becoming more negative 
again, approaching a value of 0.5Ck k � � . 

w = 100 μm 
h = 1000 μm 
g = 5 μm 
L = 200 um 

(a) 

(b) 



V. EXPERIMENTAL RESULTS 
 In this section, the effect of negative coupling stiffness for 
gyroscope mode ordering and rejection of common-mode 
acceleration is demonstrated with experimental results. 

 Two nearly identical single-axis tuning fork devices were 
experimentally tested, one with a traditional spring coupling 
structure and another with the described lever coupling. Both 
resonators were fabricated using the SOI fabrication process 
and vacuum packaged using the process described in [4]. The 
only substantial difference in the design of the two resonators 
was how the masses were coupled. The resonator with the 
spring coupling was shown to have an anti-phase resonance 
frequency of 2.16 kHz, along with an in-phase frequency of 
2.03 kHz. A resonator with the lever coupling had an anti-
phase resonance frequency of 1.80 kHz, along with an in-
phase frequency of 3.02 kHz. In order to quantify their degree 
of sensitivity to external acceleration, both devices were 
placed on a linear shaker and given a precise amplitude of 
vibration of 4g at 100 Hz along the sense-mode of the 
resonator. The frequency spectrum of the output of the 
resonator was recorded. 

 
Fig. 6. Plot of the value of the equivalent coupling spring ( )Ck  versus 

( )L g  for h  = 1000 µm and w  = 100 µm. 

 By centering the frequency spectrum upon the operational 
frequency of the resonator, sidebands appear within this 
spectrum, set at a frequency offset of plus and minus the 
frequency of the external acceleration. The difference in 
magnitude between the primary resonance peak and the 
sidebands can then be used to identify the acceleration 
sensitivity according to Eq. (5), [5]. 

 � � � �� �1020log 2V VL f a f f * �<  , (5) 

  where, Vf  and a  are the frequency and amplitude of the 
physical vibration, f  is the frequency of the resonator, and *  
is the acceleration sensitivity of the resonator.  

 The frequency spectrums of both resonators along with the 
side bands are shown in Fig. 7. As can be seen from these 
results, the magnitude between the primary resonance and 
sidebands was 82 dB for the spring coupled device and 110 
dB for the negative-stiffness-lever coupled resonator. Using 
Eq. (5), this corresponds to acceleration sensitivities of  2 × 

10-6 g-1  and 9 × 10-8 g-1, respectively. Therefore, the negative-
stiffness-lever coupling has been shown to improve the 
common-mode acceleration rejection by approximately 22 
times. 

 
Fig. 7. Experimental g-sensitivity data of two resonators illustrating 
advantages of the method. 

VI. CONCLUSIONS 

 Resonant MEMS structures fundamentally have a potential 
for higher performance due to their lower operational 
frequencies and high amplitudes of motion. A significant 
disadvantage to this, however, is an acceleration sensitivity or 
g-sensitivity. 

 In this paper, we investigated a method for mitigation of 
this sensitivity by using the mode ordering of anti-phase 
resonances, using as an example the quad-mass tuning fork 
structures. Mode ordering is accomplished by raising the in-
phase frequency as high as possible, while leaving the useful 
anti-phase frequency low in the order of resonance modes. In 
this paper, a novel coupling structure is introduced that is 
capable of accomplishing this goal, which is believed to 
achieve the highest in-phase / anti-phase frequency separation 
of a tuning fork structure to date. This structure has also been 
shown experimentally to reduce the acceleration sensitivity by 
over 20 times, which is consistent with predicted results. 
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