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Abstract—Glassblown 3D micro shells are released by a 
multi-step mechanical lapping process, introducing structural 
imperfections to the sensing element. We present an analytical 
model predicting the frequency mismatch in micro shells due to 
imperfections induced by the release process. The analytical 
model of such micro shells was derived based on inextensional 
assumption. Mode shapes and the resonant frequencies were 
calculated and compared to results from both Finite Element 
Analysis (FEA) and experiments. The predictive frequency of the 
n=2 wineglass mode shape was within 10% of the finite element 
results and 20% of the experimental results for thin shells, 
showing the fidelity of the model. The effect of imperfections of 
the shell release process on frequency mismatch was studied both 
analytically and experimentally.  

Keywords—3D micro shell; MEMS; frequency mismatch; 
release by lapping; imperfection of release. 

I. INTRODUCTION 

Inspired by the performance of macro-scale Hemispherical 

Resonator Gyroscope (HRG) [1], there has been an increased 

interest in the development of 3D micro-scale resonators for 

vibratory inertial MEMS devices. Fused Quartz micro 

wineglass resonators [2] and micro birdbath shell resonators 

[3] have been fabricated by MEMS technology, demonstrating 

a potential of micro 3D structures, implemented by 

glassblowing, for exceptional symmetry, survivability to 

external vibrations, mechanical shock, and low energy losses. 

Wafer-scale MEMS fabrication of 3D structures, however, 

remains a challenge due to a necessary mechanical release step 

and a wafer-level assembly by bonding of released structures to 

an electrode wafer. The process of fabricating the 3D sensing 

element integrated with electrode is more difficult as compared 

to conventional micro-machining, which is limited to 2D 

architectures. However, the efforts to overcome the 

technological challenges of 3D shell micro-systems are well 

justified, as demonstrated devices are already exhibiting lower 

damping, frequency mismatches, and a potential for resistance 

to shock and vibration, opening a door of opportunities to high 

performance sensors, such as gyroscopes operating in rate 

integrating and mode-matched angular rate modes [4]. 

The frequency and frequency mismatch estimations of 

macro-machined hemispherical shells have been thoroughly 

studied in [5]. Micro-fabricated shells, however, take shapes 

closer to hemi-torus than hemi-sphere (Fig. 1). Directly 

applying the models developed for hemispherical shells to 

hemi-toroidal shells may lead to large errors (over 50% error 

for shells with comparable thickness and outer radius), and no 

models predicting the frequency of hemi-toroidal shells have 

been previously developed. This paper intends to fill this gap. 

In this paper, an analytical model of hemi-toroidal shell 

was introduced based on inextensional wineglass mode shape 

assumption. Natural frequency of a perfect shell was derived 

by applying Rayleigh’s energy method and verified 

experimentally. The response of shells with imperfections due 

to release was investigated analytically and experimentally. 

II. ANALYTICAL MODEL 

A. Derivation of Mode Shapes 
Fig. 2 shows a thin hemi-toroidal shell with thickness h and 

radius R. In spherical coordinates, the shape of the shell can be 

expressed as r=2Rsin ș, where r is the radial distance and ș is 

the polar angle. Since the shell is axisymmetric, r is 

independent of ĳ, and the latter is defined as the azimuth angle. 

The local displacement components are įr, įș, and įĳ, where 

įr is the linear displacement along r, while įș and įĳ are the 

angular displacement of ș and ĳ, respectively. In the wineglass 

mode, the displacement components are expressed as                                   
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for two matched modes, where n is the mode number, Ȧ is the 

angular frequency of the mode, and U, V, and W are mode 
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Fig. 1.  Hemi-toroidal shell fabricated using high temperature micro-

glassblowing process of Fused Quartz. 
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shape functions of variable ș [6], and they are to be determined 

later in the paper. The terms in (1) containing ĳ define the 

orientation of the mode shape and the terms containing Ȧ 

define the frequency. 

Inextensional assumption is applied to calculate the mode 

shape, which means the strain of the middle surface of the shell 

remains zero during the deformation. This assumption holds if 

thickness of the shell is much smaller than the other 

dimensions [6]. In the case of glassblown structures, the 

thickness of the shell is on the order of 100ȝm, while the outer 

radius is on the order of 10mm and the height is about 3mm 

(Fig. 1). Hence, due to the ratio of dimensions, the 

inextensional assumption is justifiable to apply for the 

structures of interest. Movement of the shell structure is 

completely described by the movement of its middle surface. 

Let us consider an arbitrary line element ds on the middle 

surface of the shell at position (r, ș, ĳ), with the length 

components of dr, dș, and dĳ.  After deformation of the shell, 

the coordinates of the element become r+įr, ș+įș, and ĳ+įĳ, 

respectively. The length of the line element can be expressed as 
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We expand the differential elements in displacement and 

geometry with respect to coordinates ș and ĳ as follows: 
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where z is the coordinate variable and it applies to r, ș, and ĳ. 

Consider only the lowest order terms in (2). The resulting 

equation for the deformation of the line element takes the form: 

( )

2

2

2

2

2 2 2 2

2

2 2 2

2

sin sin cos sin 3

sin

d s dr r dr r r
ds d ds

dr r r r
ds

dr r d dr r
d ds

δ δ δθ θδ
θ θ θ

δϕ ϕδ θ θ θδθ θ
ϕ

δ δθ δϕ θ ϕθ
θ ϕ ϕ θ

∂ ∂§ ·= + + +¨ ¸∂ ∂© ¹
§ ·∂+ + +¨ ¸∂© ¹
§ ·∂ ∂ ∂+ +¨ ¸∂ ∂ ∂© ¹

 

According to the inextensional assumption, the length after 

deformation should not change no matter what values dr, dș, 

and dĳ would take, which implies that the coefficients of all 

terms on the right hand side of (3) are zero. 

Substituting (1) in (3) and canceling the two variables įr 

and įș would cancel the common orientation term and the 

frequency term. The resulting fundamental equation of the 

mode shape of the hemi-toroidal shell will be 
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where rĳ=r W(ș) sin ș represents the linear displacement along 

the azimuth angle. We are solving for rĳ instead of W(ș) to 

avoid the singularity of the third term on the left hand side of 

(4), since rĳ is also second order infinitesimal when ș=0.  

Equation (4) is a linear second-order ordinary differential 

equation with varying coefficients. Clamped boundary 

condition was assumed and collocation method was applied to 

solve the equation numerically [7]. Hermite polynomials of 

order three were used to approximate the solution. The solution 

is shown by the blue solid line in Fig. 3. The red dashed line in 

Fig. 3 is the normalized result from Finite Element Analysis; 

COMSOL Multiphysics was used for the FEA model. The 

largest error was about 1% of the maximum displacement, 

where ș was about 0.5rad. The small error indicates the fidelity 

of the developed analytical model.  

B. Calculation of Resonant Frequency 
Resonant frequency of the shell was derived by Rayleigh's 

energy method [5]. First, the kinetic energy K0 and the strain 

energy U0 of the shell were calculated based on the mode shape 

and arbitrary amplitude of motion A: 
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where ȍ is the integration region, which is the shape of the 

shell. Then, the Lagrangian was expressed as L= U0maxíK0max, 

where U0max and K0max are the maximum of kinetic energy and 

strain energy, respectively. Finally, solving Rayleigh’s 

equation 0L A∂ ∂ = gave us the angular frequency of the shell. 

 As shown in Fig. 4, the analytical model matches well with 

the finite element model for the n=2 mode. The error is within 

10% for the shell with thickness less than 400ȝm. Since 

inextensional assumption can only be applied to thin shells, 

larger errors for thicker shells are expected. 

C. Calculation of Frequency Mismatch 
The shell release is a step in the fabrication process where 

the substrate of glassblown structure is physically removed [2]. 

Mechanical lapping is the method used for release. Additional 

 

Fig. 2.   Coordinate system, middle surface (dashed line) and 

parameters of hemi-toroidal shell. 

           

Fig. 3.   Comparison of n=2 mode shapes from analytical model and 

finite element model. Displacements in ĳ direction are normalized. 



frequency mismatch may be introduced if the lapping plane is 

not strictly vertical to the stem of the shell, Fig. 5 (a). This 

phenomenon is studied both analytically and experimentally. 

The mode shape of a resonator can be considered 

unaffected by small shape disturbance [5]. Therefore, in this 

study we only have to change the integration regions in (5) and 

(6) from axisymmetric region to the actual shape of the shell, 

without recalculating the mode shape itself. The frequencies of 

two mode shapes will be different due to the asymmetric 

integration region. The relation between the angular lapping 

error (ȕ) and the frequency mismatch is shown in Fig. 5 (a). 

III. EXPERIMENTAL RESULTS 

A. Resonant Frequency 
Frequencies of micro shells with outer diameter of 7mm 

and thickness of 70ȝm, 150ȝm, and 250ȝm were tested to 

verify the analytical model. The shells were actuated along the 

stem by piezoelectric element temperorily attached to the shell 

by Field’s metal and characterized optically by Laser Doppler 

Vibrometer (LDV) in vacuum chamber under pressure on the 

order of 20ȝTorr. The results are presented in Fig. 4, showing 

the maximum errors of about 20%, when the shell thickness is 

less than 150ȝm. The errors are possibly due to non-

uniformity of the thickness and over-release of shells. For 

thick shells, the errors are relatively large because the shells 

are not fully developed during glassblowing and the shape 

consequently deviates from hemi-torus. 

B. Frequency Mismatch 
Special lapping fixtures were designed and fabricated by 

3D printing to release shells with specific lapping angle, Fig. 5 

(b). The lapping fixtures were designed to create tilted angle of 

1 degree. This allows the lapping angular error to increase 1 

degree after each subsequent lapping. The micro-fabricated 

shells were first attached to a silicon die by Crystalbond 509-3. 

The silicon die was used as a reference plane coinciding with 

the edge of the shell. Then, the silicon die together with the 

shell was attached to the lapping fixture. The shell was cleaned 

and characterized after each asymmetric lapping. 

The results shown in Fig. 5 (b) illustrate the predicted 

effect.  The model confirms the trend of changes, however, 

experimental change of frequency mismatch increases faster 

than the model predicts. One possible reason might be the fact 

that the thickness of the rim of the shell is much larger than in 

other regions of the shell. Therefore, the real effects of 

asymmetric lapping on the frequency mismatch might be larger 

than predicted. The other reason might be the large original 

frequency mismatches of the two shells tested, which are 

105Hz and 202Hz for the two shells tested. The large 

frequency mismatch causes the shape of the shell to deviate 

from the model, and consequently the error between the model 

and the experiment might be significant. 

IV. CONCLUSIONS 

An analytical model predicting the frequency of wineglass 

mode of hemi-toroidal shell was derived for the first time. The 

predictive frequency of the n=2 wineglass mode shape was 

within 10% of the finite element results and 20% of the 

experiment results for thin shells. Predictive model of 

imperfections during the release was derived and compared to 

experimental results. 
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Fig. 5.  (a). Modeled relation between the lapping error (ȕ) and frequency 

mismatch. (b). Experiment results of the relation between the lapping error 

and frequency mismatch. 

                

Fig. 4.  Relation between resonant frequency of n=2 mode and the 

thickness of the shell. 


