Compact Roll-Pitch-Yaw Gyroscope Implemented in Wafer-level Epitaxial Silicon Encapsulation Process

Alexandra Efimovskaya\(^1\), Yushi Yang\(^2\), Eldwin Ng\(^3\), Yunhan Chen\(^4\), Ian Flader\(^4\), Thomas W. Kenny\(^4\), and Andrei M. Shkel\(^1\)

\(^1\)MicroSystems Laboratory, University of California, Irvine, CA, USA
\(^2\)Integrated Device Technology, Inc., San Jose, CA, USA
\(^3\)InvenSense, Inc., San Jose, CA, USA
\(^4\)Stanford University, Palo Alto, CA, USA

Abstract—This paper presents for the first time the design and characterization of an ultra-compact 3-axis roll-pitch-yaw gyroscope which employs a single vibrational element with a torsional drive mode and a multi-directional sense modes. Implemented in wafer-level Epitaxial Silicon Encapsulation (Epi-Seal) process, device occupies an area of 1.2 mm\(^2\). Initial characterization reported in this paper includes a scale factor, a noise level, and a cross-axis error measurement.

Introduction

MEMS gyroscopes find a wide scope of applications as rotation sensors in consumer electronics and gaming devices, for example for activity detection, virtual and augmented reality, optical and electronic image stabilization.

In general, in order to determine the orientation of a moving platform, it is necessary to measure rotation around three perpendicular axes: roll, pitch, and yaw. The most conventional method to provide three axes of sensitivity is based on mounting of single-axis gyroscopes along the three non-collinear axes, [1]. Such discrete assembly approach usually results in increased size and weight of the system. Another common trend is to fabricate three single-axis sensors on a die, [2]. This approach allows for minimizing volume of the system, however miniaturization is still limited by the size of individual sensors.

During the last few years, several multi-axis solutions have entered the market, for example, [3]. An "all-in-one-sensor" approach, which involves measuring rotation around three axes using a single structural element, is very attractive for applications where low power and extremely small volume are required, such as, for example, wearable devices. In this paper, we report an ultra-compact three-axis angular rate sensor with a footprint of 0.8x1.49 mm\(^2\), fabricated in wafer-level Epitaxial Silicon Encapsulation (Epi-Seal) process.

Design and Fabrication

We consider a design approach which employs a torsional drive and multi-directional sense modes. The single driving structure consists of two shuttles connected by means of the central rigid frame and four flaps linked to the frame, Fig. 1(a). Each of the shuttles is suspended relative to the anchors by four springs, restricting motion of the driving shuttles to their respective axes. The drive mode consists of a torsional motion of the single driving structure around the Z axis, Fig. 1(b).

Abstract—This paper presents for the first time the design and characterization of an ultra-compact 3-axis roll-pitch-yaw gyroscope which employs a single vibrational element with a torsional drive mode and a multi-directional sense modes. Implemented in wafer-level Epitaxial Silicon Encapsulation (Epi-Seal) process, device occupies an area of 1.2 mm\(^2\). Initial characterization reported in this paper includes a scale factor, a noise level, and a cross-axis error measurement.

Introduction

MEMS gyroscopes find a wide scope of applications as rotation sensors in consumer electronics and gaming devices, for example for activity detection, virtual and augmented reality, optical and electronic image stabilization.

In general, in order to determine the orientation of a moving platform, it is necessary to measure rotation around three perpendicular axes: roll, pitch, and yaw. The most conventional method to provide three axes of sensitivity is based on mounting of single-axis gyroscopes along the three non-collinear axes, [1]. Such discrete assembly approach usually results in increased size and weight of the system. Another common trend is to fabricate three single-axis sensors on a die, [2]. This approach allows for minimizing volume of the system, however miniaturization is still limited by the size of individual sensors.

During the last few years, several multi-axis solutions have entered the market, for example, [3]. An "all-in-one-sensor" approach, which involves measuring rotation around three axes using a single structural element, is very attractive for applications where low power and extremely small volume are required, such as, for example, wearable devices. In this paper, we report an ultra-compact three-axis angular rate sensor with a footprint of 0.8x1.49 mm\(^2\), fabricated in wafer-level Epitaxial Silicon Encapsulation (Epi-Seal) process.

Design and Fabrication

We consider a design approach which employs a torsional drive and multi-directional sense modes. The single driving structure consists of two shuttles connected by means of the central rigid frame and four flaps linked to the frame, Fig. 1(a). Each of the shuttles is suspended relative to the anchors by four springs, restricting motion of the driving shuttles to their respective axes. The drive mode consists of a torsional motion of the single driving structure around the Z axis, Fig. 1(b).

Abstract—This paper presents for the first time the design and characterization of an ultra-compact 3-axis roll-pitch-yaw gyroscope which employs a single vibrational element with a torsional drive mode and a multi-directional sense modes. Implemented in wafer-level Epitaxial Silicon Encapsulation (Epi-Seal) process, device occupies an area of 1.2 mm\(^2\). Initial characterization reported in this paper includes a scale factor, a noise level, and a cross-axis error measurement.

Introduction

MEMS gyroscopes find a wide scope of applications as rotation sensors in consumer electronics and gaming devices, for example for activity detection, virtual and augmented reality, optical and electronic image stabilization.

In general, in order to determine the orientation of a moving platform, it is necessary to measure rotation around three perpendicular axes: roll, pitch, and yaw. The most conventional method to provide three axes of sensitivity is based on mounting of single-axis gyroscopes along the three non-collinear axes, [1]. Such discrete assembly approach usually results in increased size and weight of the system. Another common trend is to fabricate three single-axis sensors on a die, [2]. This approach allows for minimizing volume of the system, however miniaturization is still limited by the size of individual sensors.

During the last few years, several multi-axis solutions have entered the market, for example, [3]. An "all-in-one-sensor" approach, which involves measuring rotation around three axes using a single structural element, is very attractive for applications where low power and extremely small volume are required, such as, for example, wearable devices. In this paper, we report an ultra-compact three-axis angular rate sensor with a footprint of 0.8x1.49 mm\(^2\), fabricated in wafer-level Epitaxial Silicon Encapsulation (Epi-Seal) process.

Design and Fabrication

We consider a design approach which employs a torsional drive and multi-directional sense modes. The single driving structure consists of two shuttles connected by means of the central rigid frame and four flaps linked to the frame, Fig. 1(a). Each of the shuttles is suspended relative to the anchors by four springs, restricting motion of the driving shuttles to their respective axes. The drive mode consists of a torsional motion of the single driving structure around the Z axis, Fig. 1(b).
Frequency response characterization of the sensors was performed using electrostatic excitation with a DC voltage of 2 V applied to the proof mass and 100 mV AC signal applied to the drive electrodes. Resonant peaks were measured at 63.26 kHz (roll mode), 63.43 kHz (pitch mode), 65 kHz (yaw mode), and 67.41 kHz (drive mode).

Gyroscope scale factors along three axes were derived using a testing platform with the Ideal Aerosmith rate-table and a two-axes Ideal Aerosmith tilt-table. Fig. 3. A carrier signal at the frequency of 550 kHz was applied to the proof-mass, resulting in amplitude modulation of the sensor output. The output signal was then demodulated to reveal the low frequency changes in capacitance. The amplitude of the drive-mode motion was stabilized, using an Automatic Gain Control (AGC). All loops were realized using a Zurich Instruments HF2LI digital lock-in amplifier.

The gyroscope was calibrated to compensate for the misalignment relative to the testing platform. The experimentally derived scale factors were 0.12 μV/dps, 0.09 μV/dps, and 0.3 μV/dps for the roll, pitch, and yaw modes. The sensor responses to the angular rates along the directions perpendicular to the sensitivity axes are shown in the inserts of Fig. 3. After initial calibration was performed, a cross-axis sensitivity of less than 0.3% was measured for all three axes.

The Root Allan Variance Analysis (r-AVAR) was used for identification of random noise characteristics, Fig. 4. Experimental characterization of the yaw channel revealed in-run bias of 0.013 dps and ARW of 0.048 dps/√Hz; noise analysis of the roll and pitch channels revealed in-run bias of <0.033 dps and ARW of <0.06 dps/√Hz.

CONCLUSION

Consumer electronics market has an increasing demand for the multi-axis ultra-compact angular-rate sensors. Motivated by this demand, in this paper we presented a design of an ultra-miniature roll-pitch-yaw gyroscope. Thanks to the mechanical design with a decoupled sense modes and a small capacitive gap enabled by the Epi-Seal process, our three-axes solution allows for satisfactory performance in terms of a cross-axis error, scale factor, and noise level. The focus of our future work is on characterization of the environmental performance of a compact three-axis gyroscope.

REFERENCES