
 
 

 

Introduction: Hearing, vision, and balance are supported by the vestibular system. Dysfunction of the vestibular 

organs results in losing balance, consequently dizziness, gaze, and images instability. While MEMS-based 

vestibular prosthesis (VP) have the potential to restore the balance function of patients with instability problem, 

the analysis of sensor performances and long term drift underlying this rehabilitation is lacking. This paper 

presents the detailed analysis of sensors performance and derive the requirements for development of vestibular 

prosthesis.   

Materials and Methods: The transfer function involved in the vestibular organ of squirrel monkey has been 

modeled by [1] relating head rotation to neural firing rate. In a VP, the rotational movement is captured by a 

gyroscope sensor. This sensor suffers from bias (B) and scale factor (SF) drifts (<10% for the rate grade class). 

Allan variance method is used for noise analysis, and the variation in the delivered pulses are used to demonstrate 

the effect of sensor drift.  

Results and Discussion: Vestibular losses significantly increase the detection threshold from 0.5 °/sec to 5.8 

°/sec [2]. Under no input rotation, the baseline activity of the electrical stimulation deviates from 125 Hz to 275 

Hz under 10% changes in B & SF (Fig.1). As a result of long term drift for the prosthetic device, a normal human 

sensitivity will fall into vestibular dysfunction (Fig.2), therefore continuous sensor calibration is required. 

 
Figure 1. Input-output relationship of vestibular transfer 

function and its simulation result including B & SF drifts 

on biphasic electrical stimulation pulses to vestibular 

nerve. a) response of the system in presence of drift, 

b) biphasic current pulses delayed due to sensor B & SF 

drift, c) variation of firing rate output pulses vs. head 

velocity under different drift conditions. 

 
 

 
Figure 2. Allan variance estimations of sensor output 

drift and its propagation over time due to Mechanical-

Thermal Noise. Simulated noise performance and the 

trade-off of different rotation sensor grades compared to 

minimum detectable motion sensation by human subjects. 

 

Conclusions: We analyzed the challenges involved in the implementation of vestibular prosthesis based on 

MEMS vibratory gyroscope. We considered the drift of MEMS sensors and calibration algorithms to reduce 

sensors drifts under varying dynamic and environmental conditions. We concluded a MEMS gyroscope with a 

minimum bias instability of 100°/hr would satisfy the design requirements for a VP. These analyses are essential 

since they determine the ultimate feasibility of the prosthesis. 
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Objective:
MEMS devices suffer from Bias and Scale 
Factor drift during operation. 

Proposed solutions: 
 For vestibular prosthesis applications long-
term bias and scale factor calibration is needed
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