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Abstract—We present, for the first time, an analytical rela-
tion between the navigation errors during Zero-Velocity-Update
(ZUPT) aided pedestrian inertial navigation and Inertial Mea-
surement Unit (IMU) performances. Angle Random Walk of
gyroscopes and Velocity Random Walk of accelerometers in IMU,
velocity measurement uncertainty during the stance phase, and
the sampling frequency of IMU are studied and their effects
on the overall navigation accuracy are analyzed. Numerical
simulation of the ZUPT-aided navigation algorithm is conducted
based on a generated pedestrian trajectory to verify the analytical
results with the discrepancy less than 30%, showing fidelity of
the results. In this study, a foot motion model was developed
according to the ambulatory gait analysis as a basis of the
numerical simulation. This study may serve as a benchmark for
analysis of errors in pedestrian inertial navigation.

Index Terms—Pedestrian navigation, ZUPT, Human gait
model, Kalman filter, navigation error

I. INTRODUCTION

The rapid development of micro-electromechanical system
(MEMS) based Inertial Measurement Units (IMUs) have made
pedestrian navigation possible for positioning in environments
where Global Navigation Satellite System (GNSS) is unavail-
able [1]. This approach is called pedestrian dead-reckoning
since it does not depend on pre-installed infrastructure, such as
GPS, LTE, and WiFi signals [2]. The relation between the IMU
performances and the accumulated navigation errors has also
been widely studied and used as a guideline to improve nav-
igation accuracy by reducing IMU errors [3]. Unfortunately,
low-cost IMUs still suffer from high noise level and short-
term stability, and these errors accumulate during the inertial
navigation process. Without an error-suppressing algorithm,
the position error accumulates approximately proportional to
time cubed and will exceed a meter of error within a few
seconds of navigation for consumer grade IMUs [4].

A widely used technique to suppress these errors in pedes-
trian navigation is the Zero-Velocity-Update (ZUPT) algorithm
[5], [6]. During the stance phase of pedestrian walking cycles,
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the foot periodically returns to a stationary state (zero veloc-
ity) when it touches the ground. The ZUPT algorithm takes
advantage of this fact and uses the zero-velocity information
during the stance phase as a pseudo-measurement fed into
the Kalman Filter (KF) to compensate for IMU biases and
reduce the navigation error growth in the system. It has
been demonstrated that the ZUPT algorithm suppresses the
cubic-in-time navigation error growth into growth of a lower
order, and renders foot-mounted pedestrian navigation a great
potential for practical use [7], [8].

Many numerical and experimental works have been con-
ducted based on ZUPT algorithm to further improve pedestrian
navigation accuracy. Complementary measurements, such as
magnetometers [9], vision sensors [10], pressure sensors [4],
barometers [11], ultrasonic ranging sensors [12], and Radio-
Frequency IDentification (RFID) sensors [13], have been pro-
posed and experimentally demonstrated to achieve the goal.
However, to the best of our knowledge, no analytical work
has been conducted to study the navigation performance in
the ZUPT algorithm and to relate the IMU performances to
navigation accuracy. This paper intends to fill the gap.

A human gait model is necessary in this study to generate
a foot trajectory as a basis for the following numerical simu-
lation study. Although such models have been widely used
for bio-mechanical and pathological studies [14], [15], the
focus of most approaches are on the extraction of spatial and
temporal gait parameters instead of the accumulated motion
of the foot over several steps [16]. In this study, a foot
motion trajectory is generated through the interpolation and
parameterization of previously developed human gait models.

The paper is organized as follows. In Section II, we first
generate a foot trajectory based on the human gait model.
This will be followed by the analytical study of navigation
errors in the ZUPT-aided pedestrian navigation algorithm in
Section III. A brief introduction of the algorithm is presented
in Section III-A. In Section III-B, a detailed error analysis
is discussed and dependence of velocity and angle estimation
errors on parameters of IMU and the algorithm is derived.
The analytical result is verified by numerical simulations, and
major factors affecting the navigation errors are identified in
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Section IV. The paper concludes with a discussion of results
in Section V.

II. FOOT TRAJECTORY GENERATION

In this section, we develop an approach for generation of
the foot trajectory. Such models are necessary for analytical
prediction of errors in ZUPT-aided pedestrian navigation.

Human ambulatory gait models are multi-dimensional due
to the complex kinematic and dynamic relations between many
parts of human body involved during walking. In this study,
our focus is only on the trajectories of two feet instead of the
whole-body motion. Therefore, a few assumptions are used to
simplify the human gait model:

1) The motion of each leg is two-dimensional and parallel
to each other, indicating no rotation occurs at the pelvis
and no horizontal rotation occurs at the ankles;

2) The dimensions of both legs are identical;
3) The pattern and duration of each step are identical;
4) The floor is flat, resulting in no accumulation of altitude

changes during walking;
5) The trajectory is straight; no turning or stopping happens

during the navigation.
In the following parts of this section, we first extract the

foot motion from the joints rotation in the torso coordinate
frame. Next, based on the human gait analysis, the description
of the foot motion is transferred from the torso frame to
the navigation frame. Finally, a parameterization is applied to
generate a new trajectory with higher order of continuity and
while preserving all the key characteristics of the foot motion.

A. Foot Motion in Torso Frame

The torso frame is a coordinate frame that is fixed to the
body trunk. In the torso frame, only the relative motion with
respect to the trunk is studied.

Joint movement has been widely studied for pathological
purposes and the angle data are typically extracted by a high-
speed camera or wearable sensors [17]. A pattern of joint angle
changes has been reported in [18] and is reproduced in Fig.
1(a). A simplified human leg model is shown in Fig. 1(b).
The leg is modeled as two bars with femur length of 50 cm
and tibia length of 45 cm. The foot is modeled as a triangle
with the side lengths of 4 cm, 13 cm, and 16 cm, respectively.
Position of the forefoot in the torso frame is expressed as:

xforefoot = L1 sinα+L2 sin(α−β)+L3 sin(α−β+γ), (1)

yforefoot = L1 cosα+L2 cos(α−β)+L3 cos(α−β+γ). (2)

The corresponding parameters are shown in Fig 1(b). The
position of another foot can be calculated by shifting the time
by half of a cycle since we assume that every step is identical.

B. Foot Motion in Navigation Frame

The navigation frame is the coordinate frame that is fixed
on the ground with axes pointing to the north, east, and down
directions, respectively. In this frame, the motion of foot with
respect to the ground is studied.

Fig. 1. (a) Interpolation of joint movement data (left) and (b) simplified
human leg model (right).

Fig. 2. Human ambulatory gait analysis. Red dots are the stationary points
in different phases of one gait cycle.

To transfer a foot motion from the torso frame to the
navigation frame, the gait analysis is necessary to establish
stationary points as a reference in different phases of the gait
cycle. Each gait cycle is divided in two phases: stance and
swing. The stance phase is a period during which the foot is
on the ground. The swing phase is a period when the foot is
in the air for the limb advancement [19].

We assume that each gait cycle begins when the left heel
contacts the ground (heel strike). During the first 15% of the
gait cycle, the left heel is assumed to be stationary and the foot
rotates around it (heel rocker) until the whole foot touches the
ground. During 15% to 40% of the gait cycle, the whole left
foot is on the ground and stationary, and the left ankle joint
rotates for limb advancement (ankle rocker). This is also the
time period when zero-velocity update is applied as pseudo-
measurements to KF. For 40% to 60% of the gait cycle, the left
heel begins to rise and this stage ends when the left foot is off
the ground. In this stage, the left foot rotates with respect to the
forefoot, which we assume to be stationary (forefoot rocker)
[20]. The following part of the gait cycle is symmetric to the
previous part since we assume that every step is identical.
Phases of the gait cycle are presented in Fig. 2.

After establishing different stationary points in different
phases of the gait cycle, we can extract position of the body
trunk with respect to the ground. The foot motion can be
superimposed on top of the torso motion to obtain the foot
motion in the navigation frame.
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Fig. 3. Velocity of the parameterized trajectory. A close match is demonstrated
and discontinuities are eliminated.

C. Parameterization of Trajectory

Abrupt changes of the reference point from the heel to
the ankle and to the forefoot will create discontinuity in the
trajectory, especially in terms of velocity and acceleration, as
depicted in Fig. 3. The discontinuities of acceleration result
in discontinuous accelerometer readouts, which will cause nu-
merical problems in the algorithm. Therefore, parameterization
is needed to generate a new trajectory with a higher order of
continuity.

The new trajectory to be generated does not have to strictly
follow the angle data for each joint and the linkage relations,
but ambulatory characteristics should be preserved, especially
zero velocity and angular rate during time period of the ankle
rocker.

The velocity along the trajectory is parameterized to guaran-
tee the continuity of both displacement and acceleration. Key
points are first selected to characterize the IMU velocity along
the horizontal and vertical directions. For parameterization
along the vertical direction, the integral of velocity for a gait
cycle should be zero to make sure the altitude doesn’t change
over one gait cycle. This is achieved by adjusting velocity
values at some of the key points.

The parameterization results are shown in Fig. 3. The
generated velocities (dashed lines) closely follow the original
values without losing any characteristics and also eliminate
the discontinuity that happens in the middle (50%) of the gait
cycle, corresponding to a shift of the reference point from
the left forefoot to the right heel. The trajectory in terms
of position is obtained by integrating the velocity and the
results are shown in Fig. 4. A close match is demonstrated for
displacement along the horizontal direction. For displacement
along the vertical direction, the difference is purposefully
introduced to guarantee that the altitude of foot does not
change after one gait cycle.

III. ANALYSIS OF ZUPT ALGORITHM

The ZUPT algorithm in inertial pedestrian navigation takes
advantage of the stance phase in human gait cycle to compen-
sate for the IMU drifts. The effects of the ZUPT algorithm
on the navigation are demonstrated in Fig. 5. Due to biases of

Fig. 4. Displacement of the parameterized trajectory. A close match is
demonstrated for displacement along the x direction (horizontal). Difference
between the displacements along y direction (vertical) is to guarantee the
displacement continuity in between gait cycles.

Fig. 5. The comparison between the velocity estimations with and without
ZUPT algorithm. The changes in sign correspond to the changes of the
direction.

the IMU, velocity of the foot drifts without use of the ZUPT
algorithm, as presented by the blue line. However, the ZUPT
algorithm helps to set the velocity of the foot close to zero
during the stance phase and greatly reduces the effects of the
IMU biases.

In this section, we will first briefly present how the ZUPT
algorithm is achieved by implementing Kalman Filter (KF)
on a standard strapdown navigation algorithm. Next, an error
analysis will be presented to estimate errors in the ZUPT
algorithm and their relation to IMU errors and parameters of
the algorithm.

A. Strapdown Navigation with Kalman Filter

We implement a standard strapdown inertial navigation
system mechanization in the navigation frame. Drift correction
is performed by implementing KF operating on the error states
δx = [δθT , δvTn , δs

T
n ]T , where δθ is the attitude error, δvn

and δsn are the velocity and position errors along the north,
east, and down directions of the navigation coordinate frame
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[3]. After each estimation cycle, KF would transfer the error
estimation to the INS for the system state compensation. The
dynamic error model of KF in this work is approximated by
(3):

˙δx =

 0 0 0

[~fn×] 0 0
0 I 0

 δx+

Cnb ·ARWCnb · V RW
0

 =∆ Aδx+B, (3)

where [~fn×] is the skew-symmetric cross-product-operator of
the accelerometer output in the navigation frame, ARW is
Angle Random Walk of the gyroscopes, VRW is the Velocity
Random Walk of the accelerometers, and Cnb is the Directional
Cosine Matrix (DCM) from the navigation frame to the body
frame. IMU biases are neglected in the model since they
are deterministic and can be compensated during the sensor
calibration procedure. Scale factor and alignment errors of the
IMU are also neglected since they can be eliminated during
calibration.

For each time step, besides calculating the system states
(position, velocity, and attitude) in the standard strapdown
navigation algorithm, we also propagate the priori covariance
using

Pk+1|k = FkPk|kF
T
k +Qk, (4)

where Pk+1|k is defined as the estimation error covariance
matrix at (k+ 1)th time step based on measurements through
the kth time step, and F and Q are defined as:

F = exp{A ·∆t} ≈ I +A ·∆t,
Q = diag(B) ·∆t,

where ∆t is the time duration of each step. In the discrete
form, the system state update can be expressed as

δxk+1|k = Fk · δxk|k +Bk ·∆t, (5)

where δxk|k is the estimation of system state from the previous
time step (kth step), and δxk+1|k is the estimation of system
state at the current step without the current measurement
inputs.

To activate KF and turn on the ZUPT algorithm, a zero-
velocity detector is needed to detect the stance phase in each
gait cycle. Generalized Likelihood Rate Test (GLRT) is ap-
plied for the zero-velocity detection [16]. In this method, both
the variances of acceleration and angular rate are taken into
consideration and compared with the threshold set according
to the IMU performances. Stance phase is detected and the
ZUPT algorithm is turned on if the variance is lower than the
threshold value:

ZUPT = H{V ARa
σa

+
V ARg
σg

− T}

where H{·} is the Heaviside step function, V ARa and V ARg
are the variances of accelerometer and gyroscope readouts,
respectively, σa and σg are the parameters related to VRW
and ARW, respectively, and T is the threshold used in the
detector. A demonstration of the detector is shown in Fig. 6.

Fig. 6. Demonstration of the implemented zero-velocity detector. The value
of ZUPT state (purple line) is either 1 or 0. ZUPT state of value 1 (higher
level) indicates the stance phase.

When the stance phase is detected and the ZUPT algo-
rithm is turned on, zero-velocity update is applied as pseudo-
measurements and the velocity in the system state is con-
sidered as the measurement residual vk to update the state
estimation:

vk =
[
0 I3×3 0

]
· dxk +wk =∆ H · dxk +wk,

where H is called the observation matrix, and wk is the
measurement uncertainty, which is the result of two factors: (1)
velocity estimation error accumulated during the stance phase,
(2) non-zero velocity of the IMU during the stance phase. It
has been pointed out that the second factor is a dominant one
[21], and the velocity uncertainty value is generally set in the
range from 0.001 m/s to 0.1 m/s [5], [21], [22]. The covariance
of wk is denoted by Rk = E[wkw

T
k ].

After KF receives the measurement information, it updates
the system state with

δxk+1|k+1 = δxk+1|k +Kk+1 · vk+1, (6)

where δxk+1|k is an estimation of the system state at the
current step with the current measurement inputs vk+1, Kk

is called the KF gain and it is calculated as

Kk+1 = Pk+1|kH
T
k+1(Hk+1Pk+1|kH

T
k+1 +Rk+1)−1, (7)

and the updated posteriori covariance matrix is

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k. (8)

This completes the iteration of the current time step.

B. Navigation Errors Analysis

The ZUPT algorithm is able to reduce the navigation error
by restricting the errors in the angle and velocity estimations.
Therefore, the quantitative error analysis of the angle and
velocity estimations is sufficient in order to analyze the
navigation errors in terms of position.

A typical propagation of the error in velocity estimation
and its covariance is presented in Fig. 7. The red lines are
the actual errors along the north, east, and down directions,
respectively. The blue lines are the 3σ limit of the errors.
A similar phenomenon can be observed for the angle error

4



2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Fig. 7. A typical propagation of errors in velocity estimations in the ZUPT
algorithm. (1), (2), and (3) are the velocity along the north, east, and down
directions, respectively.

propagations as well. A few conclusions can be drawn from
the propagation of errors in velocity estimation:

1) Although the propagation of the errors is random, the
covariance propagation follows a pattern;

2) Covariance of the error in velocity estimation reaches
a constant level with some fluctuations for all three
directions: north, east, and down;

3) The covariances along horizontal directions (north and
east) are on the same level, but the covariance along the
vertical direction is different;

4) The covariances are reduced when ZUPT is turned on
during the stance phase, and they are increased when
ZUPT is turned off during the swing phase.

A starting point of the analysis is an observation that the
covariances of velocity and angle reach a stable level in the
long run of the ZUPT algorithm. This observation indicates
that the amount of the covariance increase when the ZUPT is
turned off is equal to the amount of the covariance decrease
when the ZUPT is turned on. In this way, we combine the
ZUPT algorithm parameters that determine ZUPT perfor-
mances when the ZUPT is turned on and the IMU parameters
that dominate in the free navigation when the ZUPT is turned
off. The combination enables us to fully analyze the system
behavior and extract the covariance of the error in the system
state estimation.

1) Covariance increases during walking: Covariance ma-
trix always propagates according to (4), no matter ZUPT is
turned on or off, which describes a standard strapdown inertial
navigation algorithm. Re-writing (4) into 3×3 sub-blocks and
expanding the expression for the sub-block corresponding to
the attitude yields:

P priori11 = P11 +Q11 (9)

In (9), we suppress subscripts indicating the time steps
for simplicity, and the new subscripts indicate the index of
sub-blocks. The total covariance propagation for the entire
swing phase can be estimated by iterating (9). To summarize,

the total covariance increase in a complete gait cycle can be
approximated as

P priori11 ≈ P11 +Q11 ·Nstride,

where Nstride is the number of time steps in one gait cycle.
Since the covariance propagations of the two horizontal direc-
tions are identical, we only have to focus on one of them. In
this study, we only focus on P11(1, 1), which corresponds to
rotation along the north direction:

P priori11 (1, 1) ≈ P11(1, 1) +ARW 2 · tstride, (10)

where tstride is the time duration of a gait cycle.
Covariance propagation of the velocity estimation error can

be analyzed in a similar way based on (4):

P priori22 ≈ P22 +Q22 + {[~fn×]P12 + P21[~fn×]T }∆t. (11)

[~fn×] is composed of two parts: the acceleration caused by
motion and the acceleration caused by gravity. To approximate
the term [~fn×], we can separate the two parts and neglect the
first part, since the velocity returns to the original value in a
complete gait cycle, indicating that integral of the acceleration
equals zero. Therefore, the total covariance increase of the
velocity error along the north can be expressed as

P priori22 (1, 1) ≈ P22(1, 1) + (V RW 2 + 2g ·P12(1, 2)) · tstride,
(12)

where P12(1, 2) is the covariance between the rotation along
the north and the velocity along the east, and g is the grav-
itational acceleration. The reason why P12(1, 2) is important
is that it corresponds to the coupling between the angular rate
error and the velocity error. To complete the analysis, we also
need to calculate the covariance increase of P12(1, 2):

P priori12 (1, 2) ≈ P12(1, 2) + g · P11(1, 1) · tstride. (13)

2) Covariance decrease during the stance phase: ZUPT
algorithm is turned on to compensate for the IMU errors during
the stance phase and the covariances of the angle and velocity
estimations are also reduced. The amount of the total reduction
can be calculated based on (7) and (8).

We first analyze the covariance of the angle estimation. For
each time step during the stance phase, the covariance change
can be expressed as:

P posteriori11 (1, 1) = P11(1, 1)− P12(1, 1)P21(1, 1)

P22(1, 1) +R(1, 1)

=− P12(1, 2)P21(2, 1)

P22(2, 2) +R(2, 2)
− P12(1, 3)P21(3, 1)

P22(3, 3) +R(3, 3)

≈ P11(1, 1)− P12(1, 2)2

R(2, 2)
.

(14)
In the strapdown inertial navigation mechanization, the

rotation along the north is strongly coupled with the accel-
eration along the east due to the gravity. Therefore, P12(1, 1)
and P12(1, 3) are much smaller than P12(1, 2) and can be
neglected. The velocity measurement uncertainty is generally
much greater than velocity error induced by IMU errors in
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the ZUPT algorithms. As a result, P22(2, 2) is smaller than
R(2, 2) and can be neglected.

Similarly, changes in covariance of the coupling term
P12(1, 2) and the velocity term P22(2, 2) in one time step can
be also calculated:

P posteriori12 (1, 2) ≈ P12(1, 2)− P12(1, 2)P22(2, 2)

R(2, 2)
, (15)

P posteriori22 (2, 2) ≈ P22(2, 2)− P22(2, 2)2

R(2, 2)
. (16)

3) Covariance level estimation: It has been observed that
the covariances remain on a constant level. Therefore, the
covariance increase due to the IMU noises should be equal
to the covariance drop during the stance phase.

A combination of (10) and (14) gives

ARW 2 · tstride =
P12(1, 2)2

R(2, 2)
·Nstance, (17)

Since Nstance = fs · tstance, P12 can be expressed as

P12(1, 2) = ARW [
R(2, 2) · tstride
fs · tstance

]1/2, (18)

where fs is the sampling frequency of the IMU. Similarly, the
combination of (12) and (16) gives us

P22(2, 2)2

R(2, 2)
Nstance = (V RW 2 +2g ·P12(1, 2)) · tstride, (19)

or re-arranging the terms:

P22(2, 2) = [2g ·ARW (
R(2, 2)tstride
fs · tstance

)3/2

==+V RW 2R(2, 2)tstride
fs · tstance

]1/2.

(20)

P22(2, 2) is the term in the covariance matrix that corre-
sponds to uncertainty of the velocity estimation along the east.
The velocity uncertainty is simply σv =

√
P22(2, 2).

The combination of (13) and (15) gives us
P12(1, 2)P22(2, 2)

R(2, 2)
Nstance = g · P11(1, 1) · tstride, (21)

and P11 can be expressed as

P11(1, 1) = [
2

g
·ARW 3(

R(2, 2)tstride
fs · tstance

)1/2

==+(
ARW · V RW

g
)2]1/2.

(22)

The uncertainty of the angle estimation along the north is
σθ =

√
P11(1, 1).

To summarize, the relations between the IMU errors and the
navigation errors in terms of velocity and angle uncertainties
are derived and explicitly represented as follows:

σv = [2gARW (
R(2, 2)tstride
fs · tstance

)3/2+V RW 2R(2, 2)tstride
fs · tstance

]1/4,

(23)

σθ = [
2

g
ARW 3(

R(2, 2)tstride
fs · tstance

)1/2 + (
ARW · V RW

g
)2]1/4.

(24)

4) Observations:
1) ARW and VRW are coupled and they both have influ-

ence on the final angle and velocity uncertainties; higher
ARW and VRW result in larger navigation errors;

2) The velocity measurement uncertainty R(2, 2) plays
an important role in the final results; lower R(2, 2)
indicates a higher reliability and weight of the zero-
update information in KF, resulting in a better navigation
accuracy;

3) The ratio between duration of the stance phase and
the whole gait cycle also affects the navigation errors.
Higher percentage of the stance phase during the gait
cycle gives KF more data to compensate for the IMU
errors and reduce the overall navigation errors;

4) Higher sampling frequency fs enables the system to
provide more measurements to KF during the stance
phase and thus helps to reduce the navigation errors in
the ZUPT algorithm;

5) Equation (23) and (24) are only the approximations of
the navigation errors due to assumptions and approx-
imations made during the derivation; validity of the
approximations will be demonstrated in the following
section.

IV. NUMERICAL ANALYSIS

In this section, we apply the ZUPT algorithm on the
trajectory generated based on results discussed in Section II.
Then, the numerical results are compared to the analytical
expressions in (23) and (24). The generated trajectory is a
straight line toward north containing 100 steps. The total time
duration of the trajectory is 53.6 s and the total length of the
trajectory is 77 m.

A. Effects of ARW

We first study the influence of the ARW of IMU gyroscopes
on the navigation errors. We sweep the ARW value from 0.01
deg/
√
hr to 10 deg/

√
hr (from near navigation grade to con-

sumer grade), while keeping other parameters constant: VRW
of accelerometers is set to be 0.14 mg/

√
Hz (tactical grade),

the velocity measurement uncertainty is set to be 0.01 m/s,
and the sampling frequency is 200 Hz. The simulation results
are presented in Fig. 8. The upper plot shows the relation
between the ARW and the velocity estimation uncertainty and
the lower plot shows the relation between the ARW and the
angle estimation uncertainty. In both plots, the blue lines are
the results derived from (23) and (24), and the red error bars
are from the simulation results. The reason why simulation
results are a range instead of a value is that the covariances
of the estimation errors fluctuate during the navigation (see
Fig. 7). The upper and lower bounds of the error bars show
the amplitude of fluctuation and the square shows an average
value of the fluctuation.

A close match between the two results verifies validity
of the analysis. Fig. 8 shows that the velocity estimation
uncertainty is not affected by ARW when it is smaller than
0.1 deg/

√
hr and the lower bound of the fluctuation is not
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Fig. 8. Effects of ARW of the IMU gyroscopes on the navigation errors in
ZUPT algorithm.

Fig. 9. Effects of VRW of the IMU on the navigation errors in ZUPT
algorithm.

affected by it either. This is because the lower bound of the
velocity uncertainty is limited by the velocity measurement
uncertainty set in KF, which is fixed in this model. As for
the independence of the average value when ARW is small,
one possible reason is that the performance of accelerometers
is worse than that of the gyroscopes in this case, and the
velocity uncertainty is dominated by the accelerometer errors,
therefore is independent of gyroscope errors. However, the
angle estimation uncertainty is still affected by ARW even
when it is small, indicating that the gyroscope error is a
dominant source for the angle estimation errors even when
gyroscopes are much better than accelerometers in IMUs. It is

Fig. 10. Effects of velocity measurement uncertainty during the stance phase
on navigation errors in the ZUPT algorithm.

Fig. 11. Effects of the sampling rate of IMU on navigation errors in the
ZUPT algorithm.

also noticed that fluctuation of the angle uncertainty is much
smaller than the velocity uncertainty. The reason is that the
velocity is directly observable in the ZUPT algorithm, and
therefore, KF can directly estimate the optimal velocity value
and reduce the velocity uncertainty. The angle estimation,
however, is achieved through coupling the velocity and angle,
and subsequently the observability is reduced.

B. Effects of VRW

Similarly, we sweep the VRW value of accelerometers from
0.01 mg/

√
Hz to 10 mg/

√
Hz while keeping ARW of the

gyroscope to be 0.21 deg/
√
hr (tactical grade). The results
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are shown in Fig. 9. As expected, the curves become flat
when VRW is small, since the navigation error is dominated
by gyroscope errors in this range.

C. Effects of Velocity Measurement Uncertainty

To understand the effect, we sweep the velocity measure-
ment uncertainty during the stance phase from 0.001 m/s to
0.1 m/s and keep the ARW of gyroscopes to be 0.21 deg/

√
hr

and VRW of accelerometers to be 0.14 mg/
√
Hz. The results

are shown in Fig. 10. The results show that the navigation error
is different even with the same IMU performance and trajec-
tory. As a result, a lower velocity measurement uncertainty
is desirable for a better navigation accuracy. The following
considerations can help to reduce the velocity measurement
uncertainty and improve the overall navigation accuracy: (1) a
stiffer shoe with less deformation during walking, (2) a better
position to attach the IMU so that IMU can be truly stationary
during the stance phase, and (3) shock absorber on the shoes
to prevent strong shocks between the shoe and the ground.

D. Effects of Sampling Frequency of IMU

A higher sampling frequency of the IMU gives KF more
measurements for the system state corrections, since higher
sampling frequency indicates more time steps during the
stance phase, and it therefore helps to reduce the navigation
errors. A 2.5× drop of velocity uncertainty has been demon-
strated by increasing the sampling rate from 100 Hz to 1000
Hz in Fig. 11.

V. CONCLUSIONS

In this paper, for the first time, we presented an analytical
relation between the navigation errors during ZUPT-aided
pedestrian inertial navigation and IMU performances. The
effects of ARW of the gyroscopes and VRW of the accelerom-
eters in IMU, velocity measurement uncertainty during the
stance phase, and sampling frequency on the navigation error
are analytically derived and numerically confirmed.

Foot motion trajectory was generated through the interpo-
lation and parameterization of human ambulatory gait model.
It serves as a basis for the presented numerical simulation of
the ZUPT-aided pedestrian inertial navigation.

This study is envisioned to aid in analysis of the effect
of errors in sensors, which might lead to a well informed
selection of sensors for the task of ZUPT-aided pedestrian
inertial navigation.
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