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Abstract—We present an analytical relation between the position estimation uncertainty and inertial measurement unit
(IMU) characteristics during zero-velocity-update (ZUPT) augmented pedestrian inertial navigation. The effect of angle
random walk of gyroscopes and velocity random walk of accelerometers in IMU on circular error probable is studied.
Numerical simulation of the ZUPT-augmented navigation algorithm is conducted based on a generated pedestrian tra-
jectory to verify the analytical results, showing the discrepancy less than 15%, which supports the fidelity of the results.
Experiments are also conducted, and the results match our analytical prediction, with the error less than 20%. This study
offers a closed-form analytical expression to predict the performance of ZUPT-augmented pedestrian inertial navigation.

Index Terms—Circular error probable, Kalman filter (KF), navigation error, pedestrian inertial navigation, zero-velocity update (ZUPT).

I. INTRODUCTION

The rapid development of microelectromechanical systems based
inertial measurement units (IMUs) has made pedestrian inertial nav-
igation possible, where the navigation is independent of preinstalled
infrastructure, such as GPS, Wi-Fi, and LTE networks [1], [2]. It fa-
cilitates the pedestrian navigation in the environments where these
signals are degraded or unavailable, such as indoor or underground.
However, low-cost IMUs still suffer from high noise level and low
stability; these effects accumulate during the navigation and result in
significant navigation errors. For consumer-grade IMUs, for example,
the position uncertainty will exceed a meter of error within just a few
seconds of navigation [3].

A widely used compensation method for pedestrian inertial naviga-
tion is zero-velocity update (ZUPT) algorithm [4]. During the normal
gait of human walk, the feet alternate between the stance and swing
phases. Whenever the stance phase is detected, a ZUPT is applied in
the ZUPT algorithm as pseudomeasurements in the Kalman filter (KF)
to compensate for IMU biases, thus reducing the overall navigation
errors. It has been demonstrated that velocity estimation errors can be
bounded [5] and position estimation errors can be also greatly reduced,
when ZUPT algorithm is implemented [6].

Although many studies have been conducted to demonstrate the ef-
fect of ZUPT algorithm on navigation errors, little work has been done
to analyze the relation between the IMU performances and navigation
accuracy in ZUPT-augmented inertial navigation. Angle and velocity
estimation errors in ZUPT algorithm were analytically derived in [5],
but the effect on the position estimation error was not reported. This
article intends to fill the gap.
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In this article, we first present a brief introduction of strapdown
navigation with KF. Then, we analytically derive the position estima-
tion error in ZUPT-augmented inertial navigation. Finally, the analyt-
ically derived closed-form estimation of position error is verified by
both numerical and experimental results, showing the fidelity of the
estimation.

II. STRAPDOWN NAVIGATION WITH KF

Standard strapdown inertial navigation system (INS) mechanization
is implemented in the navigation frame, where the reference frame is
fixed to the ground and its axes point toward north, east, and down
directions. The attitude is defined by roll, pitch, and azimuth angles.
The system states in the KF are the estimation errors, including the
attitude, velocity, and position errors along the three directions [7].
After each estimation cycle, the KF would transfer the error estimation
to the INS for navigation error compensation.

In this study, only angle random walk (ARW) of the gyroscopes
and velocity random walk (VRW) of the accelerometers are consid-
ered. Other errors, such as long-term drifts, misalignments, and scale
factor errors are neglected, as we assume they can be effectively esti-
mated and compensated within KF using calibration algorithms. The
transport rate is also neglected in our derivations.

For each time step, we propagate not only the estimation errors but
their covariance matrix Pk for the following KF implementation as
well. This is called the prediction step. In this study, Pk is expressed
by 3 × 3 subblocks, representing angle, velocity, and position errors,
respectively. When the stance phase is detected, ZUPT is applied, and
velocity in the system state is considered as the measurement residual
and transferred to the KF to update the state estimation. Velocity
uncertainty is set in the range from 0.001 to 0.1 m/s [5]. As a part of
the update step, the KF gain and covariance matrix are updated. Details
of the KF implementation for ZUPT algorithm are reported in [4].
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Fig. 1. Typical propagation of system state and its covariance in the
KF.

III. NAVIGATION ERROR ANALYSIS

A typical propagation of the angle estimation error and its covari-
ance are presented in Fig. 1. The red solid lines are the actual estimation
errors, and the blue dashed lines are the 3σ uncertainty of estimation.
Azimuth angle (heading) is the only important KF states that is not
observable from zero-velocity measurements [8], and therefore, its un-
certainty is proportional to the square root of the total navigation time
as in the pure inertial navigation algorithms. Except for the azimuth
angle, the system state uncertainty increases during the swing phase
(ZUPT OFF) and decreases during the stance phase (ZUPT ON). The
uncertainty reaches a constant level with some fluctuation after the
initial transient stage, indicating that the uncertainty increase during
the swing phase is equal to the uncertainty decrease during the stance
phase. The former one is related to the IMU errors, and the latter one
is related to the KF parameters, such as velocity uncertainty wk . In
this approach, we combine the factors from both sides to estimate the
overall performance of ZUPT-augmented inertial navigation.

Without loss of generality and for simplicity of analysis, in this
study, we focus on a straight line trajectory toward north, neglecting
any foot motion perpendicular to the trajectory.

A. Covariance Increase During Prediction Step

The subblock in the covariance matrix that corresponds to the posi-
tion estimation error is P33, and its propagation in the prediction step
can be expressed as follows:

Ppriori
33 = P33 + (P23 + P32) · "t + P22 · "t2. (1)

P23 and P32 are symmetric with respect to each other and share the
same on-diagonal terms, and "t is the time step. The last term on the
right-hand side of (1) can be neglected since the sampling rate is high
(typically around 100 Hz). The position estimation uncertainties along
north and east are represented by P33(1, 1) and P33(2, 2), respectively,
and they only depend on the propagation of P23(1, 1) and P23(2, 2),
which correspond to coupling between the velocity errors and posi-
tion errors. The propagations of the coupling terms are expressed as
follows:

Ppriori
23 (1, 1) = P23(1, 1) + [P22(1, 1) −(g + aD)P13(2, 1)] · "t (2)

Ppriori
23 (2, 2) = P23(2, 2) + [P22(2, 2) −(g + aD)P13(2, 1)

+ aN P13(3, 2)] · "t (3)

where g is the gravity, aN is the acceleration along north, and aD is
the acceleration toward down. The only difference between the two
directions is the last term in (3).

Similarly, the propagations of other terms that will be used later are
listed as follows:

Ppriori
12 (3, 2) = P12(3, 2) + P11(3, 3) · aN · "t (4)

Ppriori
13 (3, 2) = P13(3, 2) + P12(3, 2) · "t. (5)

B. Covariance Decrease During Update Step

Standard KF update is applied during this step. KF gain is first
calculated, the estimation is compensated based on the measurement
information, and then, the covariance matrix is also updated. The
detailed derivation process is skipped due to the lack of space and
only final results are presented as follows:

Pposteriori
13 (3, 2) = P13(3, 2) −P23(2, 2) · P12(3, 2)

w2
(6)

Pposteriori
33 (1, 1) = P33(1, 1) − P23(1, 1)2

w2
(7)

Pposteriori
33 (2, 2) = P33(2, 2) − P23(2, 2)2

w2
(8)

where w is the velocity measurement uncertainty. The main assump-
tion in this step is that the propagated velocity covariance during the
stance phase is much smaller than w. This assumption holds true
because of a short time span of the stance phase.

C. Covariance Level Estimation

The detailed derivation is skipped due to the lack of space. Only a
few important approximations are discussed here.

The propagation of P12(3, 2) is related to acceleration along north
aN and the azimuth angle uncertainty P11(3, 3), according to (4). In a
single gait cycle, P11(3, 3) varies much slower than aN . Thus, P11(3, 3)
can be considered as constant, and P12(3, 2) is an integral of aN , i.e.,
the velocity of IMU along north. Therefore, P12(3, 2) returns to near
zero when the update step begins, and therefore, the update step has
little effect on P12(3, 2) since its value is already close to zero. P12(3, 2)
can be expressed as follows:

P12(3, 2) ≈ P11(3, 3) · vN (t) = ARW2 · t · vN (t). (9)

According to (6), the update step has also a little effect on P13(3, 2)
since P12(3, 2) is close to zero during the update step. As a result,
P13(3, 2) is an integral of P12(3, 2) according to (5), as follows:

P13(3, 2)=
∫

ARW2 · t · vN (t) · dt =
∑

i

∫

cycle i
ARW2 · t · vN (t) · dt

≈ARW2ti

∫

cycle i
vN (t) · dt =

∑

i

ti ARW2sN = 1
2

ARW2sN t2

(10)

where sN is the stride length of the human gait. In the approximation, t
is considered as a constant during each gait cycle because vN changes
much faster than t in a single gait cycle.
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The final expressions and central result of this article are as follows:

σ∥ =
√

P33(1, 1) =

√(
2 − tstride

4

)
tstridew2

tstance f
· t (11)

σ⊥ =
√

P33(2, 2) =

√(
2 − tstride

4

)
tstridew2

tstance f
· t + 1

3
ARW2s2

N · t3

(12)

where σ∥ and σ⊥ are the position estimation errors parallel and per-
pendicular to the trajectory, and they correspond to 1.2 times of the
semimajor and semiminor axes of circular error probable, respectively.
A few observations based on the above equations are as follows.

1) The position uncertainty along the trajectory is dominated by the
velocity measurement uncertainty w in KF and is proportional
to square root of the navigation time. It is independent of IMU
performance.

2) The position uncertainty perpendicular to the trajectory includes
two terms. It is dominated by ARW and is proportional to the
navigation time of the power of 1.5 in the case of long-term
navigation.

3) VRW is not included in the equation. This is due to our as-
sumption that the propagated velocity covariance during the
swing phase is much smaller than the velocity measurement
uncertainty w.

4) Higher sampling frequency helps reduce the position estimation
uncertainty.

IV. VERIFICATION OF ANALYSIS

A. Numerical Verification

Simulations were conducted to verify the derived analytical expres-
sions. First, a trajectory of foot toward north, and the corresponding
IMU readouts were generated based on a human gait analysis [5].
Then, different levels of IMU noises were added to the readouts. Next,
ZUPT-augmented inertial navigation algorithm was applied to the
IMU readouts. The total navigation time of this numerical simulation
was 107 s. VRW of accelerometers was set to be 0.14 mg/

√
Hz (near

tactical grade), velocity measurement uncertainty was 0.01 m/s, and
ARW was swept from 0.01 to 10◦/

√
h (from near navigation grade to

consumer grade).
Fig. 2 shows the relationship between the position uncertainty and

ARW. A difference within 15% was demonstrated between the analyt-
ical results and the numerical results for relatively low ARW values.
For higher ARW values, the assumption that the propagated velocity
covariance during the stance phase is much smaller than the velocity
measurement uncertainty does not hold good, and therefore, larger
errors are expected.

B. Experimental Verification

A VectorNav VN-200 INS was mounted on the left shoe by a
three-dimensional printed fixture (see Fig. 4), and IMU readouts were
collected during walking. ARW and VRW of the IMU were 0.21◦/

√
h

and 0.14 mg/
√

Hz, respectively [9]. Sampling frequency was set to be
800 Hz. The length of the straight trajectory was 200 m, and the total
navigation time was 160 s.

Fig. 2. Relation between ARW of gyroscopes and the position estima-
tion uncertainties.

Fig. 3. Comparison between the analytical and experimental results
for position estimation uncertainty.

Fig. 4. Relation between the sampling frequency and the position es-
timation uncertainty.

The recorded IMU data were first processed to extract the position
estimation uncertainty during navigation, and results were compared
with analytical results from (11) and (12), as shown in Fig. 3. The
red dashed lines are analytical results and the blue solid lines are
experimental results. A difference within 20% was demonstrated. The
position uncertainty along east is proportional to t1/2 in the short term
and is proportional to t3/2 in the long term, well matching the analytical
prediction in (12).
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The same set of IMU data was postprocessed so that IMU readouts
with different sampling frequencies were obtained on the same trajec-
tory to study the relation between the uncertainty and the sampling
frequency. The results are presented in Fig. 4. A close match has been
demonstrated between the experimental results and analytical results
with errors less than 10%. A relatively greater error at 25 Hz was
possibly due to the effects of higher order terms with respect to "t
that were neglected in the derivation.

V. CONCLUSION

An analytical model predicting the position estimation uncertainty
during the ZUPT-augmented inertial pedestrian navigation was derived
for the first time. The analytically predicted position uncertainty was
within 15% of both numerical simulation and experimental results.
This article offers a closed-form analytical expression to predict the
accuracy of ZUPT-augmented pedestrian inertial navigation.
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