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Abstract—In this paper, we studied the mechanisms which
contribute to Scale Factor (SF) nonlinearity in Coriolis Vibratory
Gyroscopes (CVG) operating in the open-loop angular rate mode.
Analytical equations were derived to quantify the effects of
electro-mechanical nonlinearities, modal coupling, and nonlinear
capacitive sensing on SF. Experimental results with a Dual
Foucault Pendulum (DFP) gyroscope are presented and compared
to simulated data of the predictive model. In our experiments,
we demonstrated that by minimizing the electro-mechanical
nonlinearities, the SF error is reduced by 27.7% at the angular
rate of 1 Hz. We concluded that modal coupling is the major
source of SF nonlinearity. We also concluded that nonlinearity
in the capacitive sensing has the lowest contribution to SF
nonlinearity, at angular rates up to 1 Hz. Finally, we discussed
conditions under which a linear SF can be achieved.

I. INTRODUCTION

Open-loop angular rate measurement is a frequently used
mode of operation in Coriolis Vibratory Gyroscopes (CVG).
A superior noise performance and a lower complexity in
implementation, as compared to the closed-loop rate mode
of operation, are among the major advantages of the open-
loop operation, [1]. However, a low Band Width (BW) and
the Scale Factor (SF) nonlinearity are among limitations of the
open-loop operation. In this paper, we investigated the mech-
anisms which influence the linearity of SF and discussed the
conditions under which the linearity of SF can be improved.

In the open-loop rate mode of operation, the amplitude
and phase of vibration along the drive axis is contained at
a specified value and the vibration amplitude along the sense
axis is used to measure the angular rate input. The amplitude
of the Coriolis signal along the sense axis is dependent on
the frequency split between the operational modes and the
quality factor in the sense mode. In a relatively low Q-factor
CVG (around a few tens of thousands), with a high frequency
split relative to the bandwidth of the sense mode, the vibration
amplitude along the sense axis is orders of magnitude smaller
than the drive axis. Under such conditions, nonlinearities due
CVGs’ dynamics, parallel plate capacitive sensing, and cou-
pling forces along the drive axis can be neglected. However, to
achieve a higher sensitivity and realize the navigational grade
Micro-Electro Mechanical (MEM) CVGs, a high Q-factor
(hundreds of thousands) and nearly mode-matched conditions
are necessary, [2, 3]. Under such conditions, the SF linearity
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Fig. 1. Schematics of the DFP with parallel plate electrodes for actuation,
tuning, and detection. Qx = 1.12M , Qy = 1.15M , ωx = 15.03 kHz, and
ωy = 15.14 kHz are characteristics of the DFP at room temperature, [3, 4].

is adversely affected by a large vibration amplitude along the
sense axis and the SF errors are introduced. In this paper,
we studied mechanisms such as electro-mechanical nonlin-
earities, modal coupling, and nonlinear capacitive sensing as
possible sources of SF nonlinearity in a nearly isotropic high-
Q gyroscope. Modeling results are presented to understand
the contribution of each of these mechanisms to the SF
nonlinearity. A Dual Foucault Pendulum (DFP) is an example
of a high-Q gyroscope with a symmetric design, Fig. 1. For
this device, the SF characterization was performed and the
behavior was explained by predictive models.

II. NONLINEAR DYNAMICS OF CVGS

Nonlinear dynamics is often a neglected characteristic of
MEMS gyroscopes. In presence of electro-mechanical non-
linearities, variation in the amplitude of vibration along each
principal axis of elasticity affects the resonant frequency of
that axis. The effect of nonlinear dynamics on SF is modeled
by considering a nonlinear equation of motion along the sense
axis

ÿ + 2µ0y ẏ + ω2
nyy + βyy

3 = 2ẋΩ + fe, (1)

where µ0y , ω2
ny and βy are the linear damping coefficient,

linear stiffness, and the geometric Duffing nonlinearity along
the sense axis, respectively. It should be noted that for simplic-
ity, the quadrature coupling and the coupling forces along the
drive axis are neglected in this analysis and will be discussed
in the next section.
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The velocity along the drive axis is defined as

ẋ = Xaω0xcos(ω0xt) (2)

By assuming a non-rotating device (Ω = 0), the ring down
response can be used to estimate the linear and nonlinear
parameters in Eqn. (1). The electrostatic force in the parallel
plate drive architecture is calculated as

fe =
1

2m

C0g

(g − y)2
V 2, (3)

where m, C0, g and V are the mass, nominal capac-
itance, gap size in the capacitive actuator, and the ac-
tuation voltage, respectively. The nonlinear force can be
expanded by writing the Taylor series of the forcing
function about system’s zero deflection point (y = 0).
In the case of a push-pull drive architecture, the Taylor
expansion can be written as

fe =
2n+1∑
j=1

kjy
jV 2 (4)

In Eqn. (4), the even order terms are canceled out due
to symmetry of the exerted forces. The coefficient (kj) is
calculated as

kj =
0.5C0

(j + 1)mgj+1
, (5)

The equation of motion describing the sense mode with
only the biasing voltages applied (V = Vdc) is shown below,
considering nonlinearities up to the 3rd order,

ÿ + 2µ0y ẏ + ω2
0yy + β′yy

3 = 0 (6)

The modified coefficients, relative to Eqn. (1), capture the
frequency shift and induced 3rd order nonlinearity due to
electrostatic forces and are defined as

ω2
0y = ω2

ny − k1V 2
dc, β′y = βy − k3V 2

dc (7)

In [5], it is demonstrated that assuming a slow-varying
amplitude and phase during the ring down, a pure harmonic
oscillation form can be used to describe the response with
time-varying amplitude and phase,

y(t) = a(t)sin(ω0yt+ φ(t)) (8)

The amplitude of vibration and resonant frequency in the ring
down response is calculated as

a(t) = a0e
−µ0yt, ωy(t) = ω0y + (

3β′y
8ω0y

)a(t)2, (9)

where a0 is the initial vibration amplitude, [6]. Using Eqn.
(9) and applying the nonlinear least square method, the ring
down response was used to estimate the linear and nonlinear
system parameters of the sense mode described by Eqn. (6),
Fig. 2. The experiment was repeated for four different tuning
voltages to decouple the contribution of electrostatic forces to
the 3rd order nonlinearity, using Eqn. (7).

As shown in Eqn. (10), the SF is estimated through solving
the equation for the amplitude of the steady-state response
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Fig. 2. The ring down response along the sense axis with an initial amplitude
of 150mV is shown, illustrating the variations of the resonant frequency during
the ring down. The experimental data and equations in (9) were used to extract
parameters of the equation of motion for a tuning voltage of (10V).

TABLE I
EXTRACTED PARAMETERS USING MULTIPLE RING DOWNS

a0
(mV)

µ0y
(1/s)

ω0y

(rad/s) βy k3

150 0.048 9.39e4 2e7 2.3e7
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Fig. 3. Shown is the simulated SF, assuming a nonlinear equation of motion
along the sense axis. The parameters used for modeling are: Xa = 0.1,
ωx = 15 kHz, ∆f = 0.5 Hz, quality factor of 1M, and tuning voltages
varying from 1V to 10V.

in a nonlinear mass-spring-damper with parameters shown in
Table I. The modeling was repeated for different DC tuning
voltages applied along the sense axis, Fig. 3.

Yc =
2Xaω0xΩ√

((ω0y + (
3β′

y

8ω0y
)Y 2
c )2 − ω2

0x)2 + (2ω0xµ0y)2
(10)
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III. MODAL COUPLING IN CVG

In a CVG, the rotation induced Coriolis forces and stiffness
imbalances due to the fabrication imperfections couple the
drive and sense modes, [7]. The equation of motion in the
matrix form is represented as

q̈ + Zq̇ +Kq = F (t), (11)

where the column vector q is the position of the proof mass
along the x and y axes. In Eqn. (11), Z and K matrices are:

Z =

[
Cx −2αΩ

2αΩ Cy

]
,K =

[
ω2
x ω2

xy

ω2
xy ω2

y

]
(12)

where Cx, ωx, Cy , and ωy are the damping and stiffness
coefficients of the drive and sense modes, respectively. The
coupling due to the Coriolis force and stiffness imbalances
is represented through off-diagonal elements of the Z and K
matrices. In Eqn. (12), α, Ω and ωxy are the angular gain,
angular rate, and stiffness coupling. The K matrix can be
calculated using the resonant frequencies ω0x, ω0y and the
offset angle of the principal axes of elasticity (θ) as

K = R(θ)

[
ω2
0x 0
0 ω2

0y

]
R′(θ), (13)

where R is a rotation matrix. In the open-loop rate mode,
Automatic Gain Controller (AGC) and Phase Lock Loop
(PLL) controllers are used to prevent variations in the vibration
amplitude and the phase along the drive axis. Nevertheless,
the coupling forces exerted along the drive axis can affect the
resonant frequency of the drive axis. The method of sinusoidal
phasor analysis was used to model the frequency changes in
the drive axis. In our analysis, the phase of the vibration along
the drive axis was used as the reference phase and, similar to
the configuration of an open-loop CVG, a feedback force is
used to control the amplitude of vibration along the drive axis
in-phase with the velocity,

q(t) =

[
xa(t)ejφx(t)

(yc(t) + jys(t))e
jφx(t)

]
, F (t) =

[
Fxa(t)jejφx(t)

0

]
(14)

The first and second order time derivatives of position vector
(q̇, q̈) were calculated and substituted in Eqn. (11). The real
and imaginary parts were separated and written in four equa-
tions. The steady-state equations (where xa(t) = Xa, φ̈x = 0,
Ẏs = 0, and Ẏc = 0 ) are:

−Xaφ̇x
2

+ 2αΩφ̇xYs + ω2
xXa + ω2

xyYc = 0

cxXaφ̇x − 2αΩφ̇xYc + ω2
xyYs = Fxa/m

−φ̇x
2
Yc − cyφ̇xYs + ω2

xyXa + ω2
yYc = 0

−φ̇x
2
Ys + cyφ̇xYc + 2αΩXaφ̇x + ω2

yYs = 0

(15)

These equations are a generic representation of the steady-
state response of a CVG operating in the open-loop rate mode.
The second equation can be used to estimate the magnitude
of the AGC feedback force, but it is not needed for the SF
analysis purposes. The remaining 3 nonlinear equations with
3 unknowns (φ̇x, Yc and Ys) were numerically solved using

MATLAB, estimating the vibration amplitude along the sense
axis for different inputs of rotation (Ω). The phase of response
along the sense axis in zero-rate input condition was used
as a reference phase for decoupling the rate signal from the
quadrature. The simulated SF and variations in the resonant
frequency are shown in Fig. 4.
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Fig. 4. Simulated data demonstrating the effect of modal coupling on the
SF and the resonant frequency. The CVG parameters used for modeling are:
Xa = 0.1, ω0x = 15 kHz, ∆f = 0.5 Hz, θ = 10 deg and Q = 1M .

From Eqn. (15), it is noted that variations in the reso-
nant frequency of the drive axis, and consequently the SF,
are dependent on the initial frequency split, quadrature, and
quality factor. The modeling was repeated for different initial
frequency splits and the results are shown in Fig. 5.
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Fig. 5. Shown is the simulated SF of a CVG with fixed parameters of Xa =
0.1, ω0x = 15 kHz, θ = 10 deg, α = 0.8, quality factor of 1M, and
frequency splits varying from 0.5 Hz to 5 Hz.

IV. NONLINEAR CAPACITIVE SENSING

The third mechanism investigated in this paper is nonlin-
earity in parallel plate capacitive sensing. The output signal
demodulated at the carrier frequency (ωcar) in the parallel
plate sensing architecture with Electromechanical Amplitude
Modulation (EAM) is approximated as,

Vs ≈
1

2
VcRG

C0

g(1− rsin(ωnt))2
ẏ, (16)

where Vc, RG, C0, g, ωn, and r are the carrier voltage,
transimpedance gain, sense capacitance, capacitive gap size,
sense mode resonant frequency, and the normalized amplitude
of vibration. Assuming a small enough normalized amplitude
of vibration (r = Y/g ≈ 0), the demodulated signal would
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Fig. 6. Shown is the calculated normalized amplitude of vibration as a
function of the demodulated amplitude of the first harmonic. Based on the
design parameters, the capacitive gap size (g) is estimated to be 1.59 um.

give an accurate estimation of the velocity along the sense
axis. However, the relation of the demodulated signal and
the velocity is not linear for a large normalized amplitude of
vibration and the signal would consist of an infinite number
of harmonics with frequencies of nωn (n = 1, 2, ...).

The linearity of the parallel plate capacitive sensing, using
the first harmonic demodulation, can be characterized using
the Side Band Ratio (SBR) method. In this method, the
amplitude ratio of two consecutive order, or non-consecutive
order, harmonics (i.e., the sidebands which are centered around
the carrier frequency) can be used to estimate the normalized
amplitude of vibration, [8]. Due to the differential detection
scheme, a ratio of the first harmonic to the third harmonic was
used to calculate the normalized amplitude of vibration,

R =
√
Vωcar+3ωn

/Vωcar+ωn
, r = 2R/(R2 + 1) (17)

For the DFP, the relation between the normalized amplitude
of vibration and the amplitude of the first order harmonic is
shown in Fig. 6. The results indicated that the accuracy of
vibration amplitude estimation using the first order harmonics
demodulation had an error less than 1% for output voltages
below 100mV.

V. EXPERIMENTAL RESULTS

In our experiment, a DFP with parameters shown in Fig. 1,
was electrostatically tuned to a frequency split of 500mHz. The
CVG was operated in the open-loop rate mode. The quadrature
and the Coriolis signals were decoupled using I/Q synchronous
demodulation. The SF was measured by rotating the sensor at
constant angular rates up to 360 dps, Fig. 7. The experiment
was repeated for different tuning voltages applied along the
sense axis from 10V to 1V. The tuning voltage along the
drive axis was regulated for each case to preserve the 0.5
Hz frequency split. By reducing the tuning voltage along the
sense axis, a 27.7% reduction in the SF error was observed.
The improvement in the linearity of the SF was explained by
a reduced 3rd order nonlinearity in the CVG. The observed SF
error at a low tuning voltage was determined to be converging
to the SF error predicted by the modal coupling model.
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Fig. 7. Experimentally characterized SF for different tuning voltages acting
along the sense axis. Simulated SF for a CVG with parameters of ωx =
14.95 kHz, ∆f = 0.5 Hz, θ = 3.1 deg, α = 0.82, Xa = 0.140 and
quality factor of 1M using the mode coupled model explained in section 3.

In the experimental results, it was observed that the vibra-
tion amplitude along the sense axis did not exceed 100 mV
for angular rotations up to 1 Hz. Therefore, it was concluded
that nonlinearity in capacitive sensing was not contributing to
the SF error in the 1 Hz dynamic range.

VI. CONCLUSION
In this paper, we identified the mechanisms which contribute

to nonlinearity of SF in the open-loop angular rate mode of
operation. The contribution of electro-mechanical nonlinear-
ities, modal coupling, and nonlinear capacitive sensing was
modeled and experimentally verified. Three conditions were
determined to improve the linearity of SF in the angular rate
mode of operation:
• Operation in a mode-mismatched condition improves the

linearity of SF, though, degrades the sensitivity of the
CVG.

• Mode-matching of CVG by removing the quadrature and
frequency split and minimizing the electro-mechanical
nonlinearities along the sense axis.

• Operation in the Force-to-Rebalanced (FRB) mode,
which assures that no force will be exerted along the
drive axis (Ys = 0, Yc = 0 in Eqn. (15)), results in a
linear SF.
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