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Abstract— This paper discusses the selection of parameters
for the geometry of micro glass-blown hemi-toroidal Fused
Quartz (FQ) resonators. Comprehensive Finite Element (FE)
simulations were performed to explore the design space of the
shell resonators, focusing on frequency scaling of the operational
resonance mode and the spurious resonance modes (tilt, rocking,
out-of-plane, and torsional), as a function of shell geometry. It was
demonstrated that a separation between resonance frequencies
and mode-ordering can be achieved through optimization of the
shell geometry at the different range of frequencies.

I. INTRODUCTION

3D Fused Quartz (FQ) shells offer mass, stiffness, and
damping symmetry, as well as structural rigidity, for the
sensing element of Coriolis Vibratory Gyroscopes (CVG).
A precisely machined and polished hemispherical shell is
the core of a Hemispherical Resonator Gyroscope (HRG)
[1], and has motivated pursuing of the batch fabrication and
miniaturization of 3D shell resonators, using Micro Electro-
Mechanical Systems (MEMS) fabrication techniques.

Micro-glassblowing [2] and blow-torch molding [3] pro-
cesses utilize the thermoplastic bulk deformation at temper-
atures above the FQ softening point to fabricate 3D shell
resonators. In the former case, a cavity is etched in an
FQ wafer and encapsulated by FQ-to-FQ plasma-assisted
wafer bonding. At the glassblowing temperature, the pressure
inside an encapsulated cavity builds up, and viscosity of
FQ decreases. The encapsulated cavity expands and forms
a 3D axisymmetric geometry with a self-aligned stem. Fig.1
shows an array of 3D FQ shells, demonstrating scalability of
the fabrication process. Shell resonators with a broad range
of operating frequency can be fabricated using the micro-
glassblowing process [4].

Unlike vibration systems with lumped masses and dis-
crete stiffness elements, shells are continuous systems with
distributed mass and elasticity. Thus, they have an infinite
number of orthogonal modes of vibration. Fig. 2 shows six
vibrational modes of a typical hemi-toroidal shell. The Coriolis
coupling between the degenerate wineglass (WG) modes can
be configured to measure the rotation rate (rate gyro) or the
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Fig. 1. An array of Fused Quartz shells fabricated using the high-temperature
micro glassblowing process.

absolute angle of rotation (whole angle gyro) along the axis of
symmetry of shell resonators. Thus, any wineglass resonance
modes can be considered as the operational mode in 3D micro
wineglass resonator gyroscopes, however the n=2 is considered
to be a preferable structural mode for operation.

In this paper, the scaling of frequency in wineglass, tilt,
torsional, and out-of-plane modes with respect to the shell
radius, thickness, and anchor radius were analyzed using
the Finite Element (FE) modal analysis. The results of the
FE simulations were utilized to define a design space for
hemi-toroidal shell resonators in a broad range of operational
frequencies. The frequency separation between the n=2 WG
mode and the closest parasitic mode was selected as the design
parameter. In some cases, it was observed that the mode-
ordering condition, where all the parasitic modes have higher
resonance frequencies in comparison to the N=2 WG mode,
was achieved through the design of shell geometry.

II. FREQUENCY SCALING OF 3D SHELL VIBRATION MODES

The resonant frequency of n© wineglass modes of a hemi-
toroidal shell was approximated analytically based on the
Rayleigh’s energy method [5]. In a hemi-toroidal shell with
a uniform thickness, the wineglass frequency is linearly pro-
portional to the thickness and inversely proportional to the
square of the diameter. A parametric FE modal analysis was
performed to derive the frequency scaling of spurious modes.
An FQ shell geometry was approximated by a hemi-toroid
shape for simulations. In simulations, it was assumed that the
shell is fully developed and that the thickness is uniform.
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Fig. 2.  The first six resonance modes of a typical hemi-toroidal shell
structure, any degenerate wineglass modes can be used for rotation sensing,
however the n=2 mode is preferable due to a higher gain in the whole angle
mode of operation.

The scaling of resonance frequencies are plotted in Fig.
3. For a constant anchor radius and thickness, Fig. 3a, the
frequency of all resonance modes decreases when the shell
radius is increased. Fig. 3b shows the effect of shell’s thickness
on the resonance frequencies with a constant shell and anchor
radius. The different scaling of resonance frequencies with
shell thickness switched the order of resonance modes at
certain geometries. A similar trend was observed with anchor
radius, Fig. 3c. A larger anchor radius resulted in a higher
torsional resonance frequency, while the wineglass and out-of-
plane modes were nearly insensitive to the size of the anchor.
Similar trends were observed in other combinations of the shell
radius, anchor radius, and thickness. The FE modal simulation
results indicated that:

o The resonance modes scale differently with respect to
geometrical parameters of the hemi-toroidal shell.

o The frequency separation between the n=2 wineglass
mode and spurious mode changed with shell geometry.

o The order of the resonance modes switched at certain
geometries.

Based on the observations, the mode separation between the
resonance modes can be designed to avoid the dissipation of
energy through mode mixing [6], and the environmental sen-
sitivity can be improved by avoiding low-frequency spurious
resonance modes.

III. 3D SHELL DESIGN SPACE

The shell radius, thickness, and anchor radius are the design
parameters that define the geometry of a hemi-toroidal shell.
Using a parametric FE modal analysis, the shell thickness,
radius, and anchor diameter were varied from 40 yum to 150
pm, 2.5 mm to 5 mm, and 100 pym to 500 pm, respectively,
generating more than 200 design combinations. The wineglass
resonance frequency and the frequency separation with the
closest parasitic mode at different design points are plotted
in Fig. 4. Each data point refers to a distinct shell geometry,
forming the design space for the geometry of hemi-toroidal
shell resonators. The data points demonstrate that for a wine-
glass frequency of interest, a shell resonator can be designed

with a different combination of parameters. The separation
between spurious and operational modes depends on selection
of the geometric parameters. Also, we concluded it would be
possible to design a shell resonator with spurious modes at
higher resonance frequencies as compared to the n=2 WG
mode, which is an important consideration for avoiding the
environmental excitation of the device. The latter is the design
to achieve ordering of modes. The red data points in Fig. 4
refer to cases where the mode-ordering condition is satisfied,
and n=2 wineglass mode has the lowest resonance frequency.

A lower operational frequency of shell resonators relaxes
the minimum capacitive gap requirement for electrostatic
frequency tuning when the shell resonator is instrumented to
operate as a mode-matched gyroscope [7]. However, the trend
of data points revealed that the modal frequency separation
decreases at lower operational frequencies. Thus, the shell
geometry should be optimized to avoid proximity of spurious
modes to the n=2 WG mode. A set of parameters correspond-
ing to data points between 4 to 5 kHz for n=2 WG resonance
are listed in Table I. The modal frequency separation varies
from 610 Hz to 3.8 kHz for the chosen set of parameters.
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Fig. 3. Scaling of the resonance frequencies with respect to the geometry
of hemi-toroidal shell resonators. Notice, the order of structural modes can
switch at certain geometries. Circles indicate the geometries that the order of
n=2 wineglass mode and its closest spurious modes changes.
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Fig. 4.  The design space of hemi-toroidal shell resonators; frequency
separation between the operational and the closest spurious modes at different
n=2 WG resonance frequencies. Each data point represents a distinct shell
geometry. The red points represent the design points where the n=2 WG is
the lowest resonance mode (we call it mode-ordered).

IV. DETERMINATION OF PARAMETERS

The design space provides a set of parameters for the
final shell geometries at the frequency of interest. However,
the FQ material undergoes a large deformation during the
glassblowing process to form a 3D shell structure from a flat
die. The thickness of shell changes as the shell deforms until
it fully develops during the glass blowing process and forms
the final geometry. Therefore, it is crucial to determine initial
thicknesses of FQ die, before glassblowing, to achieve the
intended final geometry.

A shell deformation in the micro-glassblowing process was
simulated using a time-dependent Newtonian isothermal fluid
flow model with adaptive remeshing, using COMSOL Multi-
physics FE Package [4]. The FE simulations were performed
to predict the final thickness of the shell from their initial ge-
ometric parameters. The thickness was evaluated at the shell’s

TABLE I
A SUBSET OF DESIGN COMBINATIONS FROM FIG. 4, CORRESPONDING TO
N=2 WG FREQUENCY BETWEEN 4 TO 5 KHz.

Shell Shell Anchor N=2 WG Freq. Mode-
radius  thickness radius Freq. separation ordering
(mm) (um) (mm) (kHz) (Hz)
5 60 0.3 4590 610 Yes
5 60 0.2 4511 756 No
5 60 0.4 4672 1338 Yes
4 40 0.3 4955 1996 Yes
4.5 40 0.4 4007 2244 Yes
4.5 40 0.6 4263 2869 Yes
4.5 40 1 4952 3800 Yes
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Fig. 5. 25% to 35% reduction in thickness occurs during the shell

development in the glassblowing simulation. The thickness was evaluated at
the highest point of the shell and normalized to the initial thickness. The shell
radius was 4.5 mm, and the cavity volume was identical in all cases.

highest point in simulations for different initial thickness
values. The normalized thickness demonstrated 25% to 35%
reduction after glassblowing, Fig. 5. The thickness reduction
was considered in the final design of the FQ die before
glassblowing to achieve the designed operational frequency
and frequency separation.

Although the shell thickness was assumed to be uniform in
the parametric FE modal analysis, the thickness variation is
inevitable in the glassblowing process since the deformation
of the material is greater at the top of the shell than around the
rim [8]. However, the design space provides an insight into
the shell geometry design. For a more accurate estimation of
the n=2 wineglass frequency and modal frequency separation,
the glassblowing was simulated to predict the final geometry.
Then, the final mesh was trimmed to remove the substrate
region and transferred to the modal analysis to calculate the
frequency of vibration modes of the shell. The comparison
of the two methods revealed that the uniform thickness as-
sumption resulted in lower N=2 and N=3 wineglass resonance
frequencies.

V. EFFECT OF SHELL GEOMETRY ON THERMOELASTIC
DAMPING (TED)

The geometry of shell impacts the Thermoelastic Damping
(TED) of the resonator. Among the geometric parameters,
thickness has the most significant effect on TED limit of
the Q-factor in shell resonators [9]. The Qrrp of FQ shell
resonators were derived from FE simulations for different
thicknesses at three different diameters, Fig. 6. In all three
cases, a minimum Q-factor occurred when the thickness was
between 20pum and 30 pum, corresponding to the condition
when the mechanical resonant frequency is close to the thermal
eigenfrequency [10]. The quasi-isothermal condition in thinner
shells and the quasi-adiabatic condition in thicker shells cause
a weaker coupling between the strain field and the thermal
field, reducing the energy dissipation through TED.
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Fig. 6. Effect of shell thickness and diameter on the simulated Q7 gp of
hemi-toroidal shell resonators. The maximum TED was observed for the shell
thickness in the range of 20um to 30um.
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Fig. 7. An experimental frequency response of a shell resonator with n=2

WG resonance at 6.4 kHz, showing the proximity of spurious resonance mode
to the operational mode in a non-optimized design (thickness = 80 um, shell
radius = 5 mm, and anchor radius = 400 ).

VI. IDENTIFICATION OF RESONANCE MODES

The shell resonators were assembled on a piezo stack
and mounted on a servo-motor controlled rotary stage. The
amplitude of vibration was measured using a Laser Doppler
Vibrometer (LDV) at incrementally spaced azimuth angles
at every peak frequency, to identify the corresponding mode
shapes [8]. Fig. 7 shows the experimental frequency sweep
response of a shell resonator, demonstrating a proximity of
the resonance modes, less than 200 Hz between N=2 WG and
the tilt mode in a non-optimized design.

The frequency response of a shell with thickness = 45 um,
shell radius = 4.25 mm, and anchor radius = 500 pm is
shown in Fig. 8. The N=2 WG mode was identified at 5.7
kHz as the first vibration mode with a minimum frequency
separation of 2 kHz to the nearest spurious mode (tilt). The
experimental results demonstrated that frequency separation
and mode-ordering could be achieved through the parameters
of the shell geometry, at the operational frequency of interest.

VII. CONCLUSION

The design space exploration of hemi-toroidal shell res-
onators, considering the frequency scaling of the operational
and spurious resonance modes, was performed. A parametric
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Fig. 8. A minimum frequency separation of 2 kHz was achieved between
the N=2 WG and the closest resonance mode (tilt) in one of the design points,
with thickness = 45 pm, shell radius = 4.25 mm, and anchor radius = 500
pm. The N=2 WG is the lowest resonance mode.

FE analysis of an approximated shell geometry provides
the design space for a large number of data points. The
data analysis demonstrated the feasibility of the design for
a large frequency separation between the operational and
spurious modes, allowing the ordering of resonance modes
in low-frequency shell resonators. Two different geometries
from the data points were fabricated and the separation of
modal frequencies were demonstrated. The larger separation
is anticipated to mitigate the energy dissipation through the
mode coupling losses, and the mode-ordering would improve
the environmental sensitivity characteristics of low-frequency
shell resonator gyroscopes.
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