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Abstract—We developed a learning-based calibration algo-
rithm for a vestibular prosthesis with the long-term goal of
reproducing error-free vestibular system dynamic responses. Our
approach uses an additional IMU to detect the head acceleration
of a patient and to correct the corresponding drift in the
vestibular prosthesis. The algorithm includes four major parts.
First, we extract features from the shoe-mounted IMU to classify
human activities through convolutional neural networks. Second,
we fuse data from the head-mounted IMU (vestibular prosthesis).
Third, we artificially create additional data samples from a
small pool of training data for each classification class. Fourth,
we use the classified activities to calibrate the reading from
the head-mounted IMU. The results indicate that during daily
routine activities the firing rate baseline of a vestibular prosthesis
system without calibration fluctuates between 100 pulses/s to
150 pulses/s; in contrast, an appropriate calibration to human
activity results in correction of 4 pulses/s in extreme cases,
providing a stable baseline firing rate while the head is not
moving. In this work, we specifically study the contribution of
gyroscope scale factor on the drift of the vestibular prosthesis
system and propose a corresponding calibration method.

Index Terms—Vestibular prosthesis, multi-sensor fusion, learn-
ing algorithm.

I. INTRODUCTION

Proprioception of the body and control of eye movement
are supported by the vestibular system of both inner ears.
Impairment of one or both sides of vestibular systems, were
reported to be caused by, for example, aging, toxic reaction
to medications, tumors, or brain injury, resulting in loss of
balance, vertigo, abnormal gait, and visual instability [1, 2].
Rotational movements are captured by three semicircular
canals and the vector of acceleration (or gravity) is sensed by
the otolith organs. Together, the semicircular canals and otolith
organs, provide the three-dimensional rotation and translation
information of human body to the brain. This information is
integrated by the brain with other sensory information and is
used for a number of functions, including the posture control
and balance, stabilization of images on the retina, and more.
For people who have lost vestibular functions, with the help
of MEMS inertial sensing technology, position and orientation
can be substituted by gyroscopes and accelerometers, which
are low in price and small in size, making them suitable for
biomedical applications [3]. Vestibular prosthesis uses MEMS
Inertial Measurement Unit (IMU) and the corresponding signal
processing, which transmits human head rotation to neuronal
firing pulses. While MEMS-based Vestibular Prosthesis (VP)
has theoretically a potential to restore the balance function, the
effect of drift in the sensor on the performance of the vestibular
prosthesis may present a major roadblock for acceptance of the
technology.
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Fig. 1. Acceleration magnitude sensed on head-mounted IMU due to different
human activities. Horizontal bar line represents the firing rate drift due to the
effect of acceleration, as predicted by the vestibular dynamic model.

We have demonstrated a VP prototype using a single axis
commercial grade gyroscope to mimic the dynamics of a
vestibular system, [4]. Johns Hopkins University developed
a semi-implantable unit with 3 MEMS gyroscopes to restore
the vestibular function, [5], and its clinical study is under-
way to evaluate the unit [6]. Generally, an IMU consists
of three orthogonal pairs of gyroscopes and accelerometers
to capture the orientation of the sensor with respect to an
inertial coordinate frame. For a gyroscope, the scale factor
corresponds to sensor’s sensitivity, the ratio from a readable
output to the input physical rate of rotation, measured in
(Volt or LeastSignificantBit)/(°/s). The scale factor of a
MEMS gyroscope itself is also sensitive to many factors,
such as temperature [7], repeatability (turn-on to turn-on) [8],
linearity [9], and acceleration force [10]. For a long duration of
operation, inertial sensors require an in-situ multi-dimensional
calibration functionality to avoid erroneous signals to be sent
to the brain.

The study in [5] proposed a nonlinear dynamic model
defining the relationship between head’s angular velocity Ω
in [°/s], and the neuron’s firing rate in [pulses/s or Hz] as
follows:

f =
1

2
×fmax×(1+tanh(tanh−1(2× f0

fmax
−1)+C(

Ω

450
))),

where f0 is a baseline firing rate at 100 Hz, fmax at 450 Hz,
C is compression factor of 10 and Ω is input head velocity
in [°/s] with a range between −450 to 450 °/s. According
to the model, a typical scale factor sensitivity of 0.1 °/s/g,
significantly alters the intensity of the firing rate and could
cause an additional vestibular damage or ill-signaling of the
vestibular activities. Over daily routine activities, the human
body undergoes different accelerations [11], this also applies
to the head-mounted IMU, or VP sensor. Fig. 1 demonstrates
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Fig. 2. Demonstration of human daily routine activities recorded by two
IMUs, located on foot and head. Each IMU provides 6 parameters.

the corresponding accelerations through the daily routine
activities. For the IMU, the sum of magnitudes squared of
the acceleration along three axes (x,y,z) in the sensor’s body
coordinate B can be represented as:

aB =
√

(aBx )2 + (aBy )2 + (aBz )2,

where aB refers to the magnitude of acceleration experienced
by the IMU during each activity. The gyroscope’s g-sensitivity
is about 0.3 °/s/g [12], which for VP translates in a drift of
4 Hz as a result of applied 6.1 g acceleration, e.g., in the event
of jumping, shown also on the plot.

II. METHOD

A. Data collection

MEMS IMU sensors are categorized into different grades
depending on their sensitivity, representing consumer, indus-
trial, tactical, navigation, and space-grades. The consumer
grade is easily accessible, smaller in size, low in cost, and
often used for biomedical motion applications. The inherent
bias and scale factor drifts of such sensors result in a faulty
output and corrections become necessary. A major contributing
factor to these drifts is environmental changes, such as shock,
vibration, and temperature.

In our experiments, data was recorded using three different
hardware platforms: a custom foot-mounted inertial navigation
system (INS) [13], a miniature GPS-Aided INS, VN-200 [14],
and a flexible laboratory INS testbed [15]. The IMUs for each
platform were selected to represent different sensor grades,
based on their sensitivity and noise characteristics reported
by the corresponding manufacturer, including consumer, in-
dustrial, and tactical grades, respectively. The head-mounted
IMU was mounted behind the ear using straps. Depending on
the platform, we attached the foot-mounted IMU either to a
custom shoe or strapped on the shoe. Human daily activities
were recorded from three different subjects on different days
and occasions. An example of motion captured by two IMUs
with their location is shown in Fig. 2. Motion signals captured
from the two IMUs were different from each other, e.g., more
fluctuation in the gyroscope readout was sensed by the foot
due to dynamics of the gait and the acceleration pattern across
classes (events) was easily distinguishable.
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Fig. 3. Data augmentation by 3D rotation of the raw data. Original data (left)
compared to rotation angles of φ, θ and ψ (right). Only (x,y,z) accelerometers
from the shoe-mounted IMU are shown for one gait cycle.

B. Data augmentation

The mounting position and the sensor grade of IMU resulted
in different accuracy, [16, 17], and the dataset collected for this
study was a combination of both approaches. Therefore, the
training dataset was rich enough in features. Consequently,
to artificially increase the number of training datasets we
proposed a data augmentation process inspired by a study in
[18]. For every gyroscope and accelerometer recording data
in the sensor body-frame coordinates (x,y,z), we applied the
Euler rotation, with the corresponding angles φ, θ and ψ about
the sensor axes using the following sequence of rotations:

Rx(φ, θ, ψ) = (Rx(φ) ·Ry(θ) ·Rz(ψ)) =1 0 0
0 c(φ) s(φ)
0 −s(φ) c(φ)

·
c(θ) 0 −s(θ)

0 1 0
s(θ) 0 c(θ)

·
 c(ψ) s(ψ) 0
−s(ψ) c(ψ) 0

0 0 1

 ,

where c and s represent cos and sin functions, respectively.
For each dataset, the angles were randomly selected and
repeated three times. Fig. 3 illustrates this process visually
of the data for one gait cycle.

C. Convolutional Neural Network

Deep learning or multiple-layer neural networks has been
successfully applied for image, video, speech, and audio
processing [19, 20]. Convolutional Neural Network (CNN)
is the first layer in an artificial neural network. CNNs for
human event classification using accelerometer alone was
demonstrated by [21], and using smartphone IMU by [22].
This study, focuses particularly on shoe-mounted IMU for
classification, with expanding the model by fusing the data
from a head-mounted IMU. The architecture used for our
algorithms is a standard 2D CNNs layer with Rectified linear
Unit (RelU) activation followed by a max-pooling layer to
train the model [23]. Compared to an image classification,
where R, G, B layers are stacked to form a 3D volume with
3 layers depth. In this architecture, the x, y, z of gyroscope
and accelerometer parameters of both IMUs form a 2D matrix
with 1 layer depth, 12 rows and N samples are presented as
a column. The width of the matrix represents a sequence in
time series extracted from a moving window size of 1.5 s with
an overlap of 0.1 s, which is corresponded to 300 samples at
any step. The convolutional layer convolves a matrix weights



window (w) of unit size of (i × j) on the input temporal
sequence (vi) of IMU data to its neighborhood time window
with 64 filters and finally added a bias (b). The RelU layer
maps the features from the previous neuron with the following
activation function:

RelU(v[i] ∗ w[i, j] + b) , RelU(x) =

{
0 if x < 0
x if x >= 0

Followed by the activation function, a 2D global average
maximum pooling with stride 2x2 and dropout probability of
20 % were employed to perceive features from the signal [24].
A reshaping layer followed by a dense layer was implemented
to fully connect all the previous nodes with 6 output classes
for the activity recognition. The datasets were divided into
training and testing ratio of 70 % to 30 %.

III. RESULTS

In order to have a sense of features extracted by classifica-
tion, some basic statistics was computed and correlated with
the result from CNNs. Two parameters were extracted from
gyroscope and accelerometer datasets: the standard deviation
and maximum range (instantaneous difference values across
3-axes during the full gait cycle). These parameters were
reported for different activities, as summarized in Table I. The
results show that as the speed of the gait cycle increases, e.g.,
jumping activity, the sensed acceleration and angular motion
during the gait cycle increased, which was associated with the
signal edges identified by the CNNs.

TABLE I
FEATURES EXTRACTED FROM FOOT-MOUNTED IMU FOR CLASSIFICATION

gyroscope (deg/sec) accelerometer-g (m/s2)
Activity/Parameters max range std max range std

Walking 329.64 185.3 5.48 10.44
Running 567.7 293.89 7.5 14.67
Jumping 938.96 527.02 11.16 22.32

Sit to stand 10.3 3.5 0.5 0.2
Stairs(up & down) 841.3 437.7 6.9 12.90

Four different configurations were considered for classi-
fication using the described CNNs: 1) only head-mounted
IMU, 2) only foot-mounted IMU, 3) both head- and foot-
mounted IMUs, and 4) the same as 3, but with added
data augmentation. The visualization of performance of the
classification (confusion matrix) is shown in Fig. 4. The
head-mounted IMU alone revealed difficulty of distinguishing
between walking and running activities, as well as sitting
and running activities. The shoe-mounted IMU alone revealed
difficulty of distinguishing between standing still from sitting
activities, and vice versa. The usage of both IMUs together
showed an improvement with the help of data augmentation.
The learning rate also increased when utilizing two IMUs, as
compared to an individual IMU. The implemented architecture
was trained and tested on Google TensorFlow platform. The
developed model was applied to the dataset shown earlier in
Fig. 1 and the correction was made on the z-axis gyroscope
of the head-mounted IMU. The firing rate proportional to the
angular velocity before and after correction is shown in Fig.
5. The major benefit of the calibration is to correctly generate
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Fig. 4. Confusion matrix on the data set considering four different configu-
rations. Classes are 1)standing still, 2)walking, 3)walking up and down stairs,
4)standing up and sitting down, 5)jumping, and 6)running. Due to rounding
of percentages, the summation of each row might not add up to 100.

firing rate for such activities, e.g., in the running activity the
largest acceleration force occurs and the necessary corrections
are introduced.
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Fig. 5. An example showing a correction of sensitivity of head-mounted
IMU using activities, labeled 1 through 6 classifications, to calibrate the z-
axis (perpendicular to the transverse plane of the body) proportional to the
firing rate.

IV. CONCLUSION

In this paper we discuss the need for calibration of IMU sen-
sors for accurate reading of motion in the vestibular prosthesis.
We proposed a calibration algorithm for the sensor under
varying dynamics and environmental conditions. We used
convolutional neural networks to classify human activity based
on inertial sensor data captured from foot- and head-mounted
IMUs. The classification based on a single sensor is shown
to be effective, however, fusing multiple sensors resulted in
an improved classification. We proposed a data augmentation
algorithm for inertial sensors to extend the small dataset and
to consider different scenarios of an IMU placement.
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