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Abstract—In this paper, we present a model for noise
performance estimation of Coriolis Vibratory Gyroscopes (CVG)
in the presence of quadrature coupling. Analytical equations
based on a low-order averaged model of a CVG were derived and
used for numerical simulation of the Zero-Rate Output (ZRO) in
the open-loop angular rate mode of operation. We demonstrated
that as a result of the quadrature coupling and noise in the drive
oscillation frequency, Quadrature Noise (QN) is introduced to the
gyroscope output. For example, in the case of a Dual Foucault
Pendulum (DFP) gyroscope with a frequency split on the order of
0.48 Hz, the QN was shown to have an experimentally measured
Angle Random Walk (ARW) on the order of 0.39 (deg/

√
hr),

which was orders of magnitude higher than a theoretical ARW
of 0.0024 (deg/

√
hr) predicted by the Mechanical-Thermal Noise

(MTN) model. This observed discrepancy was a motivation for
the development of the model. A good agreement between the
noise characteristics of the experimentally measured ZRO and
a numerically simulated ZRO was observed, when accounting
for the quadrature coupling. We concluded that the quadrature-
induced noise is a major factor limiting the performance of high
quality factor gyroscopes in nearly mode-matched conditions.
This paper presents an analytical model for the noise estimation,
which was supported experimentally.

I. INTRODUCTION

Improvement of noise performance in miniaturized Coriolis
Vibratory Gyroscopes (CVG) is an ongoing research topic. The
topic includes identification of the fundamental noise sources
and understanding the effects of fabrication imperfections and
noise on performance limits in gyroscope operation. This
understanding is essential for realization of Micro Electro-
Mechanical (MEM) gyroscopes with navigational-grade and
above navigational-grade performance.

Previously, analytical models have been reported for esti-
mating the noise performance of CVGs operating in open-
loop and closed-loop angular rate modes, [1-3]. In these
models, the Zero-Rate Output (ZRO) noise estimation has
been simplified down to modeling the motion along the sense
axis with the mechanical-thermal noise acting as an input
and the electronics pick-off noise acting on the gyroscope’s
output readout. However, due to fabrication imperfections, the
quadrature coupling and coupling through anisotropic damping
are inevitable, which not only result in a deterministic bias
offset [4], but also contribute significantly to the noise in the
ZRO.

Studies on the main sources of the ZRO in different
gyroscope designs have been reported in [5,6]. While it is
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Fig. 1. A lumped-mass representation of a Coriolis vibratory gyroscope. Due
to the mismatch of the principal axis of elasticity/damping, the noise in the
drive mode is coupled to the sense mode channel and represents a major factor
limiting the performance of nearly mode-matched vibratory gyroscopes.

understood that the quadrature coupling results in loading of
the pick-off electronics, limits the dynamic range, and affects
the Bias Instability (BI) of a gyroscope, the noise introduced
in the gyroscope output due to quadrature coupling has not
been studied. In [6], it has been reported that a reduction in the
gyroscope output voltage noise was observed after electrostatic
tuning of the quadrature. This observation was hypothesized
to be due to the phase uncertainty in the output signal.

In this paper, we demonstrate that due to the quadrature
coupling, a stochastic error is introduced along the sense axis
of a gyroscope. We derive equations based on an averaged
gyroscope model to study the noise in the gyroscope output
as a result of the quadrature coupling. Using the equations,
we show that the output error has noise characteristics that are
correlated to the noise characteristics of the oscillation along
the drive axis. Experimental data of noise characterization
using a Dual Foucault Pendulum (DFP) gyroscope [7] is
presented and compared to predictions based on the quadrature
noise model.

II. CVG ZERO-RATE OUTPUT

A single-axis CVG, in the most general form, consists of
two mechanical vibration modes coupled through the Coriolis
force. A common lumped-mass representation of a CVG is
shown in Fig. 1. The equations of motion in an XY plane
with axes aligned to the direction of electrostatic actuation
and detection are{

mẍ+ cxẋ+ (cxy − 2αmΩ)ẏ + kxx+ kxyy = fx,

mÿ + cy ẏ + (cxy + 2αmΩ)ẋ+ kyy + kxyx = wBN ,
(1)
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where the state variables, x and y, represent the position of the
shuttle along X and Y axes. Coefficients m, cx, kx, cy , and
ky are the gyroscope’s effective mass, damping and elasticity
coefficients along the drive and sense axes, respectively. We
denote the drive force, thermal noise, angular gain of the
resonator and input rate with fx, wBN , α, and Ω, respectively.

In an ideal gyroscope, the motion along X and Y are
coupled only through the Coriolis force. However, as shown
in Fig. 1, due to fabrication imperfections a mismatch exists
between the principal axes of elasticity, damping, and the
actuation/detection axes. The mismatch angles in the principal
axis of elasticity (θω) and principal axis of damping (θτ )
result in the elasticity and damping coupling terms represented
using kxy and cxy coefficients, respectively. The elasticity
and damping parameters in the equation of motion (1) are
estimated using k′x, c′x, k′y and c′y coefficients through a
coordinate transform as discussed in [4]. To simplify our
analysis, we assume that the frequency mismatch is higher than
damping mismatch, by several orders of magnitude. Therefore,
we neglect the mismatch in the principal axis of damping
(θτ = 0), i.e. the damping coupling cxy is ignored.

In the zero-rate condition, the vibration amplitude along the
sense axis, due to quadrature, is a function of the frequency
split. In a case of operating a gyroscope with a frequency split
higher than the bandwidth of the sense axis (on the order of
10 mHz), the vibration amplitude along the sense axis due to
the quadrature coupling is orders of magnitude smaller that
the vibration amplitude along the drive axis. Therefore, the
quadrature force along the drive axis can be neglected (i.e.
kxy.y ≈ 0).

Due to the assumption of a decoupled drive mode, the
motion along the drive axis is studied using a one degree
of freedom resonator model. In the drive mode, a Phase
Locked Loop (PLL) controller is used to maintain the phase of
vibration and tracks the corresponding changes in the resonant
frequency. Additionally, a feedback force is implemented to
control the amplitude of vibration along the drive axis. The
vibration along the drive axis is represented as

x(t) = xa(t)cos(φ(t)) (2)

In our analysis, the phase of vibration along the drive
axis is used as a reference phase for signal modulation and
demodulation.

As a result of the input and output noise in the oscillation
circuit along the drive axis, the reference signal has additive
noise both in the amplitude and frequency/phase of vibration.
The noise in the reference signal is important since the
quadrature force and the demodulation signal have the same
noise characteristics. The drive amplitude of vibration and
reference frequency are represented as{

xa(t) = x̄a + xN (t),

φ̇(t) = ω̄ + ωN (t),
(3)

where x̄a and ω̄ are the expected values of the drive amplitude
and resonant frequency, which are equal to the set value of the

PI controller and the resonant frequency along the drive axis
(ω̄ = ωx =

√
kx/m), respectively. The ratio of the noise in

the drive amplitude (xN ) to the expected value (x̄a) is on the
order of 1ppm, [3]. Therefore, we conclude that the noise in
the drive amplitude does not contribute to the noise along the
sense axis at a frequency split higher than the bandwidth of
the sense mode. However, the noise in the reference frequency
(ωN ) results in phase errors in the gyroscope output affecting
the gyroscope output noise. A model for frequency noise in
oscillatory systems is discussed in [8].

In the case of vibration along the sense axis, the thermal
noise, Coriolis coupling, and quadrature coupling act as input
forces. The motion along the sense axis, demodulated using
the reference signal, is in the form of

y(t) = yc(t)cos(φ(t)) + ys(t)sin(φ(t)) (4)

where yc and ys are the in-phase and quadrature components
of vibration along the sense axis, with reference to the vibra-
tion along the drive axis.

To estimate the ZRO, the first and second order time-
derivatives of position (ẏ, ÿ) were substituted in the equation
of motion described in Eqn. (1). Due to orders of magnitude
higher energy decay time in MEM gyroscopes, as compared
to the time constant of vibration, the amplitude and frequency
of vibration are considered to be slow-varying parameters.
Therefore, the method of averaging can be applied [9] and the
system is studied through the slow-varying parameters written
in two equations as

(ω2
y − φ̇x

2
(t))ys(t)− 2ẏc(t)φ̇(t)− ycφ̈(t)− 2µyφ̇yc(t)

−2x̄aαΩφ̇x = WBN1(t)/
√

2,

(ω2
y − φ̇x

2
(t))yc(t) + 2ẏs(t)φ̇(t) + ysφ̈(t) + 2µyφ̇ys(t)

+ω2
xyx̄a = WBN2(t)/

√
2,

(5)
where µy = cy/(2m), ωy =

√
ky/m, and ω2

xy = kxy/m. In
Eqn. (5), the terms WBN1 and WBN2 represent the thermal
noise, in units of force per system-mass (N/kg).

The components of the vibration amplitude along the sense
axis, as described in Eqn. (4), are expressed as{

ys(t) = ȳs + εys(t),

yc(t) = ȳc + εyc(t),
(6)

where ȳs and ȳc are the expected values of ys and yc. The
terms εys(t) and εyc(t) represent the noise in the demodulated
output. The expected values of ys(t) and yc(t) are calculated
by solving Eqn. (5), in absence of noise and in the steady-state
condition. The expected values or deterministic bias offsets
due to quadrature coupling areȳs =

−ω2
xyx̄a(2µyωx)

(2µyωx)2+(ω2
y−ω2

x)2

ȳc =
−ω2

xyx̄a(ω2
y−ω

2
x)

(2µyωx)2+(ω2
y−ω2

x)2

(7)

In order to estimate the contribution of the quadrature
coupling to the noise performance of the gyroscope, we use
the averaged equation (5) to calculate the demodulated output



noise of the gyroscope (i.e., εys and εyc). By substitution of
Eqn. (3), (6) and (7) in Eqn. (5) and considering the noise
terms up to the first order, an equation in the Laplace domain
is derived and shown in Eqn. (8).
εys(s)(ω

2
y − ω2

x) + εyc(s)(−2ωxs− 2µyωx) = WBN1(s)√
2

+ωN (s)(ȳcs+ 2ȳsωx + 2µy ȳc)

εys(s)(2ωxs+ 2µyωx) + εyc(s)(ω
2
y − ω2

x) = WBN2(s)√
2

+ωN (s)(−ȳss+ 2ȳcωx − 2µy ȳs)
(8)

The motion along the sense axis of the gyroscope is
represented using two linear equations shown in Eqn. (8),
with the mechanical-thermal noise and quadrature noise as
input disturbances. In the presented model, we focus on
understanding the noise output as a result of the quadrature
coupling.

Using Eqn. (8), we derive a transfer function which corre-
lates the gyroscope output noise (εys and εyc) to the noise in
the reference frequency (ωN ). The derived transfer function,
shown in Eqn. (9), is used to numerically simulate the gyro-
scope output noise as a result of the quadrature coupling. Now,
we can estimate the state variables (ys) and (yc) by combining
the noise terms with the expected values, as described in Eqn.
(6).

In practice, a phase delay in the demodulation process is
used to decouple the rate and quadrature signal. This phase
delay can be modeled using a rotation matrix acting on the
demodulated output (with respect to the reference signal) as[

yQuad
yRate

]
= R(φ′)

[
yc
ys

]
(10)

One can show that the rotation matrix will have the form

R(φ′) =
1√

(2µyωx)2 + (ω2
y − ω2

x)2

[
ω2
y − ω2

x 2µyωx
−2µyωx ω2

y − ω2
x

]
(11)

By dividing the rate output by the scale factor, the ZRO
output of the gyroscope, including the quadrature noise, can
be modeled. The scale factor is estimated as

SFM =
1√

(ω2
y − ω2

x)2 + (2µyωx)2
.(2x̄aαωx) (12)

Additionally, a white noise can be added to the rate and
quadrature signal to model the noise due to pick-off elec-
tronics. In order to include the electronics noise, the state
variables must be set in voltages, accounting for the pick-off
gains. As discussed in the next section, the Power Spectrum
Density (PSD) of the white noise in detection electronics is
experimentally measured in (dB/Hz).

III. EXPERIMENTAL RESULTS

A Dual Foucault Pendulum (DFP) gyroscope was used as
the Device Under Test (DUT), [7]. The DFP has an operational
frequency on the order of 15.03 kHz and a quality factor on
the order of 1.1 M along both axes. The drive amplitude of
the DFP (x̄a) was set to 268.9 mV, which is equivalent to a
drive amplitude of 0.8 µm.

The noise performance of the DFP gyroscope was estimated
by recording the gyroscope output for 8 hours and the re-
sults are shown in Allan Deviation (ADEV) and root-Power
Spectrum Density (PSD) plots in Fig. 2. The experimental
result illustrates an ARW of 0.39 deg/

√
hr at a frequency

split on the order of 0.48 Hz. While the ARW corresponding
to electronics noise (estimated from PSD at frequencies well
above the bandwidth of the gyroscope) was measured to be
0.17 deg/

√
hr.
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Fig. 2. A comparison of an experimentally measured and numerically
simulated DFP’s ZRO using ADEV and root-PSD plots. In (a), the Allan
variance of the ZRO at different cluster times is shown. In (b), the Root-PSD
plot of the ZRO is shown demonstrating an experimentally measured ARW
and a predicted ARW of 0.39 and 0.31 deg/

√
hr, respectively.

The experimentally measured variations in the resonant
frequency (ωN ), as an input disturbance, along with Eqn.
(9) were used to estimate the state variables (ys and yc).
Gyroscope parameters of the DFP are summarized in Table
I and a PSD of -107.1 dB/Hz is estimated as the pick-off
noise.


εyc(s)
ωN (s) =

−(2sωx+2ωxµy)(ȳcs+2ȳsωx+2µy ȳc)+(ω2
y−ω

2
x)(−sȳs+2ȳcωx−2µy ȳs)

(2sωx+2ωxµy)2+(ω2
y−ω2

x)2

εys(s)
ωN (s) =

(ω2
y−ω

2
x)(ȳcs+2ȳsωx+2µy ȳc)+(2sωx+2ωxµy)(−sȳs+2ȳcωx−2µy ȳs)

(2sωx+2ωxµy)2+(ω2
y−ω2

x)2

(9)



MATLAB’s linear solver was used to numerically simulate
the rate and quadrature output of the gyroscope. The noise
characteristics were compared to the experimental data, shown
in Fig. 2. A good agreement between the predicted output
noise and measurements was observed. Since in our model,
we did not consider the coupling due to anisotropic damping
or the noise in the resonant frequency of the sense axis, the
predicted ARW is 20% lower than the measured ARW, Fig. 2
(b).

TABLE I
EXPERIMENTALLY EXTRACTED GYROSCOPE PARAMETERS.

Parameters x y
Resonant Frequency (Hz) 15032 15031.52
Quality factor 1.15M 1.07M
Mass (kg) 5.96e-8
Simulated Angular Gain 0.73
Coupling Stiffness (rad/s)2 4801.77

The frequency split of the DFP can be reduced further
down to below 20 mHz, which would improve the electronics
noise ARW to a level of 0.004 deg/

√
hr. However, since the

quadrature noise dominates at a low frequency split, the noise
performance degrades as the frequency split is further reduced.
The root-PSD of the characterized rate-output is shown in Fig.
3 for different frequency splits.
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Fig. 3. Shown is the root-PSD plot of the DFP’s rate output, for operation
conditions with different frequency splits. An increase in the noise at frequen-
cies below the bandwidth of the gyroscope is observed as the frequency split
is reduced.

Estimation of the ARW limit due different noise sources,
such as the electrical noise, the mechanical-thermal noise,
and the quadrature noise was performed as a function of the
frequency split, shown in Fig. 4. The results demonstrate that
at frequency splits above 0.5 Hz the noise performance is
limited by the electronics noise. However, at lower frequency
splits, the noise performance is limited by the quadrature-
induced noise. The prediction results show a good agreement
with the experimentally measured ARWs.

IV. CONCLUSION

In this paper, we demonstrated that the quadrature coupling
contributes to the noise output of a CVG. Analytical equations
based on an averaged gyroscope model were derived for
simulation of the zero-rate output of a gyroscope, including
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Fig. 4. Shown is the estimated ARW limit of the DFP gyroscope due to
different noise sources including the mechanical-thermal noise, electrical noise
and quadrature noise as a function of the frequency split. The circular points
are experimental results showing a good agreement with the predicted trend
in the total ARW as a function of the frequency split. This trade-off study
is done for the DFP gyroscope under test with the characteristics reported in
this paper.

the quadrature-induced noise. A good agreement between the
experimental data and simulation result was observed. We
concluded that at low frequency splits, due to the quadrature
coupling and frequency noise in the drive mode oscillation, a
noise is introduced to the gyroscope output. We demonstrated
that while the pick-off noise is improved by electrostatic tuning
of the frequency split, the quadrature noise is increased at
low frequency splits, limiting the overall noise performance
of the gyroscope. We concluded that to reach the fundamental
mechanical-thermal noise limit of the DFP, which is on the
order of 0.0024 deg/

√
hr, implementation of a quadrature-

nulling control architecture along with mode-matching is es-
sential.
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