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Abstract—In this paper, we investigate how self-contained
pedestrian navigation can be augmented by the use of foot-to-
foot visual observations. The main contribution is a measurement
model that uses Zero velocity UpdaTe (ZUPT) and relative
position measurements between the two shoes obtained from
shoe-mounted feature patterns and cameras. This measurement
model provides directly the compensation measurements for the
three position states and three velocity states of a pedestrian. The
involved features for detection are independent of surrounding
environments, thus, the proposed system has a constant com-
putational complexity in any context. The performance of the
proposed system was compared to a standalone ZUPT method
and a relative-distance-aided ZUPT method. Simulation results
showed an improvement in accumulated navigation errors by
over 90%. Real-world experiments were conducted, exhibiting a
maximum improvement of 85% in accumulated errors, verifying
validity of the approach.

Index Terms—Sensor Fusion, Inertial Navigation, Pedestrian
Navigation, Vision-aided Inertial Navigation

I. INTRODUCTION

In Global Navigation Satellite System (GNSS) challenging
environments, there is a demand for an accurate pedestrian
navigation system when GNSS is not available to benefit
applications such as localization of first responders, firefight-
ers, and rescuers. In such environments, the positioning often
may be also achieved with radio navigation systems using
signals including Wireless Local Area Networks (WLAN),
Bluetooth, or Long-Term Evolution (LTE) [1]–[3]. However,
these systems require a pre-installed infrastructure or survey-
ing the areas of interest for reference signals in advance. In
some scenarios, however, assumptions about infrastructural
information might not be realistic. Pedestrian Dead Reckoning
(PDR), or pedestrian Inertial Navigation Systems (INS), using
environment-independent self-contained sensors, are needed
for this purpose [4], [5].

The successful development of Micro Electro-Mechanical
System (MEMS) technology has enabled pedestrian INS to use
small-size Inertial Measurement Units (IMUs). Nevertheless,
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navigation systems based solely on dead reckoning mea-
surements obtained from Commercial Off-The-Shelf (COTS)
MEMS-based IMUs have high drift in estimation of positions
because the sensors suffer from a high noise level and un-
compensated in-run drift. Zero velocity UpdaTe (ZUPT) is
a method widely applied to assist pedestrian INS allowing
to effectively constrain error growth in velocity estimations
without increasing the system complexity [6]–[9]. The ZUPT
is designed based on the observation that during a stance phase
of a human gait cycle, the velocity of a foot is very close to
zero, and the information is utilized to correct the velocity
states in an Extended Kalman Filter framework. However, the
ZUPT has systematic errors contributed from two sources: 1)
the ZUPT threshold needs to be pre-determined precisely and
2) the actual velocity of a foot in the stance phase is very small,
but a nonzero number. These systematic errors can accumulate
gradually in long-term navigation [10].

An enhancement mechanism to augment ZUPT for pedes-
trian INS is to employ a dual foot-mounted IMU system,
which has shown to significantly improved navigation results
compared to a single foot-mounted IMU and a standalone
ZUPT algorithm. Dual-IMU INS benefits from additional mea-
surements derived from the relative motions between the two
shoes of a pedestrian, which information will be stacked with
the pseudo-measurements from ZUPT in a Kalman filter-based
algorithm [11]–[17]. Several different measurements derived
from the relative shoe motion were reported. One branch of
measurement methods imposes statistical constraints on max-
imum or minimum distance between the two shoes [11], [15],
[16]. These methods formulate the constraint conditions based
on a single hypothetical foot motion model, which in general
is different for each individual. Another branch uses actual
ranging sensors to acquire real-world foot-to-foot distance
measurements. Brand et al. proposed a personal navigation
system aided by foot-to-foot ranging measurement, which
is the relative distance between the two shoes [13]. Their
system was later tested by Laverne et al. with foot-to-foot
range measurements obtained from two pairs of shoe-mounted
SONARs [14]. Although this system has been demonstrated
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with excellent navigation results, their measurement model had
to be linearized for use of the Extended Kalman Filter (EKF);
their model assumed the mismatch between position estima-
tions from IMUs and distance measurements from SONARs
to be small, which might not always be the case. In addition
to relative distance measurements, the system proposed by
Bancroft et al. also used relative positions between the two
shoe as updates in the EKF [12]. However, their measurements
were obtained based on the assumption that the width between
the two shoes is equal to a nominal shoulder width throughout
their experiments and the relative height measurements were
always zero, which did not sufficiently account for real-world
gaits. Our proposed visual-aided dual-IMU Pedestrian INS
uses foot-to-foot relative positions between the two shoes. The
relative position measurements are obtained by implementing
pose estimation algorithms based on consecutive images of a
feature pattern mounted on one shoe of our system, captured
by a camera mounted on the other shoe. Our system does not
impose artificial constraints on the Kalman Filter states and
the measurement model does not need to be linearized.

Incorporating motion measurements extracted from a se-
quence of images with INS has been shown to mitigate
errors in the INS due to drawbacks of accelerometers and
gyroscopes [18]. Such INS, often known as Visual-aided
Inertial Navigation Systems (V-INS), couples the displacement
and the orientation measurements of an object of interest
obtained from camera frames with measurements of an IMU
in a Kalman Filter-based framework [19]–[24]. Efforts have
been made to apply V-INS to the field of pedestrian navi-
gation [18], [25]–[31]. Nevertheless, most of these methods
performed localization based on feature points extracted from
feature patterns found in the surrounding environments and
did not fully utilize the knowledge of shoe motion. Feature
detection could become challenging for these algorithms in
less favorable circumstances. The system proposed by Placer
et al. [27] adopted a shoe-mounted marker. They used the
marker as a landmark and updated the position of the system
based on the landmark when the corresponding images showed
that the marker was stationary. However, in practice, the foot
velocity is rarely zero during a gait cycle. The usage of a
shoe-mounted marker as a fixed landmark might introduce
systematic errors to navigation solution. They also determined
the stationary status of the shoe-mounted marker by manually
observing each collected image, which was not favorable for
real-time implementation.

In this paper, we propose a vision-aided pedestrian inertial
navigation system that includes two sets of shoe-mounted
IMUs, cameras, and feature patterns. The system uses shoe-
mounted feature points to estimate the relative positions be-
tween the shoes and compensates the position drifts caused
by estimations based on IMU measurements. The number of
feature points to be used in the system is a fixed quantity.
As a result, the computational complexity is constant in any
context. Our proposed system uses foot-mounted IMUs and
implements the ZUPT to limit the error growth in velocity es-
timation from IMU measurements between each camera frame.

Additionally, the system does not use historical measurements
for compensation. Thus, it is possible to achieve a real-time
implementation. This paper makes the following contributions:

1) presents a measurement model that uses self-contained
vision measurements and ZUPT,

2) provides a mechanism to simulate the foot-to-foot rel-
ative position measurements obtained by shoe-mounted
cameras,

3) verifies the proposed system with real-world experi-
ments by comparing the results with a standalone ZUPT
method and the ZUPT aided by foot-to-foot relative
distance measurements.

The rest of the paper is organized as follows. Section
II presents the proposed visual-aided pedestrian navigation
system. The section also includes the mechanisms for the
ZUPT detector and measurements of the relative position.
Simulation and experimental results are provided in Section
III. Finally, Section IV concludes the paper and suggests future
research directions.

II. PROPOSED VISION-AIDED PEDESTRIAN INERTIAL
NAVIGATION SYSTEM

The proposed system aims to simultaneously track positions
and orientations of the two shoe-mounted IMUs {bL} and
{bR} in the navigation frame {n} in an EKF. Two cameras
{CR} and {CL} and two feature patterns {fL} are used
to extract measurements for the update step of the EKF.
The relationships between all the coordinate frame used in
this paper are shown in Fig. 1. Earth rotation effect on the
navigation frame is also included in our model. The system
has two steps. The first step estimates the position and the
orientation of the two IMUs based on the strap-down inertial
navigation algorithm [32]. In the second step, the system
estimates the pose of the IMUs based on images captured
by the cameras and determines the status of each foot with a
ZUPT detector. Then, these two measurements are fed to the
EKF update step.

A. System configuration
The setup of the system includes two IMUs, two feature

patterns, and two cameras. All these components are mounted
on the heel side of both shoes, shown in Fig. 2. Returning to
Fig. 1, the positions and orientations of the two cameras in
the two IMU frames are expressed by two vectors (qCL

bL
, pCL

bL
)

and (qCR

bR
, pCR

bR
). The positions and orientations of the feature

patterns in the two IMU frames are expressed by (qfLbL , p
fL
bL

)

and (qfRbR , p
fR
bR

). (qfLCR
, pfLCR

) is the position of the feature
pattern from the left shoe in the right camera frame and
(qfRCL

, pfRCL
) is the position of the feature pattern from the right

shoe in the left camera frame.

B. Structure of the EKF States
The system keeps track of the states of the two shoe-

mounted IMUs with an EKF. The EKF state is a 30×1 vector,
described as follows:

x̄ = [qbLn , vbLn , pbLn , bbLa , bbLg , qbRn , vbRn , pbRn , bbRa , bbRg ],
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Fig. 1. Relationship between the coordinate frames of different objects in the
proposed system.

Fig. 2. Lab-on-Shoe system for investigation of self-contained navigation.

where qbLn , vbLn , pbLn are the attitudes, velocities, and positions
of the IMU mounted on the left shoe expressed in navigation
frame, respectively. bbLa and bbLg are the bias of the accelerom-
eters and gyroscopes of the left IMU. qbRn , vbRn , pbRn , bbRa , and
bbRg indicate the attitudes, velocities, positions, and the bias of
the IMU mounted on the right shoe. The error state that are
used in the EKF update step is expressed as

δx̄ = [δθbLn , δvbLn ,δpbLn , δbbLa , δbbLg ,

δθbRn , δvbRn , δpbRn , δbbRa , δbbRg ],

Note that the attitude states are expressed in terms of the Euler
angle (roll, pitch, yaw) in the error state because we assume
that the true attitudes and the estimated attitudes only differ
by a small amount. Therefore, according to [20], the error
quaternions δq can be approximated by

δq = [
1

2
δθT , 1]T ,

C. Strapdown Inertial Navigation using Dual IMUs

In the prediction step of the EKF, the states of each IMU
are propagated according to the standard Strapdown Inertial
Navigation [32] and the motions of the two feet are considered
to be independent of each other. The linearized continuous-
time model of the system state is expressed as follows:

˙̄x , A(t)x̄+B(t),

where

A(t) =

[
AL(t) O15×15

O15×15 AR(t)

]
, B(t) =

[
BL

BR

]
,

with

AL(t) =


03×3 03×3 03×3 −C(qbLn ) 03×3

[
−→
fL

n×] 03×3 03×3 03×3 C(qbLn )
03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 ,

AR(t) =


03×3 03×3 03×3 −C(qbRn ) 03×3

[
−→
fR

n×] 03×3 03×3 03×3 C(qbRn )
03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 ,

BL(t) =


C(qbLn )ARW
C(qbLn )V RW

0
RRW
AcRW

 , BR(t) =


C(qbRn )ARW
C(qbRn )V RW

0
RRW
AcRW

 ,
where [

−→
fL

n×] and [
−→
fR

n×] are the skew-symmetric cross-
product-operator of the accelerometer outputs of the left
IMU and the right IMU, expressed in the navigation frame,
respectively, ARW is Angle Random Walk of the gyroscopes,
VRW is the Velocity Random Walk of the accelerometers,
RRW is Rate Angle Walk of the gyroscope, and AcRW is
the Acceleration Random Walk of the accelerometers. C(q)
is the Directional Cosine Matrix (DCM) corresponding to the
quaternion q.

D. Measurement Model

We now present the measurement model for the EKF. The
model consists of measurements from the ZUPT and the
relative position between the two shoes obtained by the camera
capturing the feature pattern mounted on the other shoe.

The measurement extraction methods are described as fol-
lows.

Zero velocity UPdaTe (ZUPT):

A stance phase detector is used to determine if a zero veloc-
ity measurement should be fed to the system. Different mech-
anisms to build a stance phase detector have been explored,
including using IMU with a pre-determined threshold, IMU
and additional sensors, or IMU with adaptive threshold [10].
In this paper, we use the mechanism such that a stance phase
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is detected when the summation of variances of gyroscope
readout σg and that of accelerometer readout σa are lower
than a specified threshold γ. It can be described as

ZUPT status = H(
σa
σ̄a

+
σg
σ̄g
− γ),

where H() is a Heaviside function, σ̄g and σ̄a are normalized
amplitudes of VRW and ARW.

Foot-to-Foot relative position measurement:

We use images that contain the feature pattern to estimate
the pose of the camera mounted on the opposite shoe. This
method considers a valid measurement when the feature
pattern is fully present inside the field of view (FOV)
of the camera. For each frame taken by the camera, the
position of the feature pattern relative to the camera can
be estimated based on the features detected by computer
vision-based methods and deduce the relative position between
the camera and the feature pattern (qfLCR

, pfLCR
) and (qfRCL

, pfRCL
).

We can relate the positions of the two IMUs with the
cameras and the feature patterns, shown in Fig. 1. The
foot-to-foot relative position measurements, which is the
difference in positions of the left IMU and the right IMU
expressed in the navigation frame pbLn − pbRn , are derived as
follows.

When the left feature pattern is presented in the FOV of the
right camera, the position of the left IMU in the navigation
frame can be rewritten as

pbLn = C(qbRn )pbLbR + pbRn

= C(qbRn ){pCR

bR
+ C(qCR

bR
)[pfLCR

− C(qfLCR
)CT (qfLbL )pfLbL ]}+ pbRn

Similarly, when the right feature pattern is presented in the
FOV of the left camera, the position of the right IMU in the
navigation frame can be expressed as

pbRn = C(qbLn )pbRbL + pbLn

= C(qbLn ){pCL

bL
+ C(qCL

bL
)[pfRCL

− C(qfRCL
)CT (qfRbR )pfRbR ]}+ pbLn

Thus, the foot-to-foot relative position in the navigation frame
is described as

pbLn − pbRn
= C(qbRn ){pCR

bR
+ C(qCR

bR
)[pfLCR

− C(qfLCR
)CT (qfLbL )pfLbL ]}

= −C(qbLn ){pCL

bL
+ C(qCL

bL
)[pfRCL

− C(qfRCL
)CT (qfRbR )pfRbR ]}

Note that the above relation includes two equations. The first
equation is used when the left feature pattern is present in
the FOV of the right camera, and the second equation is used

when the right feature pattern is present in the FOV of the left
camera.

The measurement model for the relative position measure-
ments and the ZUPT detector for both IMUs are described as
follows:

zfeet =
[
pbLn − pbRn

]
, zZUPTL

=
[
vbLn
]
, zZUPTR

=
[
vbRn
]
,

and the corresponding measurement matrices are

Hfeet =
[
O3×6 I3×3 O3×6 O3×6 −I3×3 O3×6

]
,

HZUPTL
=
[
O3×3 I3×3 O3×9 O3×15

]
,

HZUPTR
=
[
O3×15 O3×3 I3×3 O3×9

]
The form of the EKF measurement model employed de-

pends on what measurements are available. When the measure-
ments are available, we stack them in one measurement vector
z to form a single batch-form update equation. Similarly, the
batch measurement matrix is formed by stacking the measure-
ment matrices corresponding to the available measurements.
For example, in the case where relative position and ZUPT of
both feet have measurements, the measurement model is

z =

pbLn − pbLnvbLn
vbRn

 , H =

 Hfeet

HZUPTL

HZUPTR


III. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

To validate the proposed visual-aided pedestrian INS, we
have performed a series of numerical simulations and com-
pared the results with those using standalone ZUPT and using
ZUPT aided by foot-to-foot relative distance. The foot-to-foot
relative distance measurements were assumed to be obtained
from shoe-mounted SOund Navigation Ranging (SONAR)
sensors. In the simulation setup, two hypothetical foot tra-
jectories were generated based on a foot motion model of a
pedestrian walking at regular speed straight toward the North
for 100 steps, resulting in a total length of 154m in 107s. We
made four assumptions for the foot motion: 1) each of the steps
for the two feet was utterly identical, 2) the left foot started
first, 3) the initial separation distance between the two shoes
were 20cm, and 4) the foot velocities were zero during the
entire stance phase. In the simulation model, we also included
mismatches of g-sensitivity in the IMUs, which leads to the
effect that the trajectory of left shoe drifted towards the west,
and the trajectory of the right shoe drifted towards the east.
This phenomenon was observed in the experiments reported
in [33].

The nominal final locations of the two shoes in the nav-
igation frame were [154.3, 0, 0]T m for the left shoe and
[153.5, 0.2, 30]T m for the right shoe. We then produced
simulated IMU readouts for both shoes based on the generated
paths. The IMU noise characteristics were the same as those
of Analog Device ADIS-16485 IMUs used in the experiments
(see Section III-B). The relative position measurements were
derived by converting the difference in positions of the two
shoes in the navigation frame to the body frame of each IMU.
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The generated relative position measurements were considered
valid only if the position was within the FOV region. In this
simulation, we assumed that the cameras have a FOV of 75o

and a frame rate of 60Hz. These two parameters directly
affect the amount of valid relative position measurements. The
adopted standard deviation of the measurements was 1mm.
For relative distance measurements, we assumed that the
SONARs have the same characteristics as those of Devantech
SRF08 Ultrasonic Sensors.

We collected 30 sets of simulations and compared the
estimated results from our proposed visual-aided INS with
those estimated by standalone ZUPT algorithm and by ZUPT
aided by foot-to-foot relative distance. Fig. 3 shows the
results. The average accumulated errors ēL and ēR and the
covariances along the east direction σx,L and σx,R and the
north direction σy,L and σy,R resulting from different methods
are summarized in TABLE I. The proposed system showed an
average improvement in accumulated errors of more than 90%
for both feet compared to the relative distance aided ZUPT
method and standalone ZUPT method.

Fig. 3. Simulated results correspond to standalone ZUPT (ZUPT), ZUPT
aided by relative distance (range), and ZUPT aided by relative position (pos).
Data in red were the estimated final positions of the left shoe, and those in
blue were the estimated final position of the right shoe. Zoomed-in views of
the data set corresponding to each of the methods are shown next to the data
set. The dashed circle around each data set indicates the 3σ limit.

TABLE I
ACCUMULATED ERRORS AND COVARIANCES OF THE SIMULATION

DATASET.

Unit ZUPT aided Measurement models
[m] Standalone ZUPT Relative distance Relative position
ēL 2.9687 0.8687 0.0653
ēR 1.2354 0.8598 0.0646
σx,L 0.0962 0.0654 0.0817
σy,L 0.0027 0.0012 0.0014
σx,R 0.0841 0.0647 0.0809
σy,R 0.0016 0.0012 0.0014

B. Experimental Results

To demonstrate the validity of our system in realistic sit-
uations, experiments were conducted with a flexible system
integrated with cameras and feature patterns [34]. The per-
formance of our system was evaluated against the standalone
ZUPT method and the INS using both ZUPT and foot-to-foot
relative distance measurements. The flexible system adopted
Analog Device ADIS16485 IMUs and Devantech SRF08
SONARs. The cameras employed in this paper were Giga-
bit Ethernet (GigE) camera acA800-200gc from the Basler
Camera, and the lens of choice had a 4mm focal length and
a FOV of 73o. The cameras were calibrated by the standard
camera calibration method provided by the MATLAB Toolbox
[35]–[37]. The resolution of the images was 800×600 pixels.
Images were recorded at a frame rate of 60 Hz while the
IMU provided measurements at 120 Hz. The relative positions
between cameras and IMUs, and between feature patterns and
IMUs, were determined by computer-aided design (CAD). The
SONARs had a sampling rate of 25 Hz and a line-of-sight of
60o.

The feature pattern employed in the experiments was a
6× 9 scaled-version checkerboard, which is often used in the
standard camera calibration process. We should point out that
other reference geometries or features could also be used for
detection. The physical size of each grid on the checkerboard
was 5 × 5 mm. The features used for detection were the 40
intersection points on the checkerboard. The feature detection
method that we adopted was described in [38]. For the 40
points detected on each frame, we estimated the camera
extrinsic matrix by the method presented in [35], and from the
extrinsic matrix, we deduced the relative positions between the
two shoes. A slice of the sequence of images recorded during
one of our indoor walking experiments is shown in Fig. 4.

Fig. 4. An example of consecutive images captured by the camera during a
walking experiment.

Two sets of experiments with different nominal trajecto-
ries were conducted on the second floor of the Engineering
Gateway Building at the University of California, Irvine. In
the first set of experiments, we conducted 5 runs of indoor
experiments of walking straight toward the north for 53 meters.
At the end of the experiment, the nominal distance between
the two shoes was 30 cm and the nominal final locations
were [53,−0.15, 0]T m for the left shoe and [53, 0.15, 0]T m
for the right shoe. We compared this result to the case of
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Fig. 5. Estimated results of the first set of experiments from the standalone
ZUPT method (ZUPT), ZUPT aided by relative distance measurements (ZUPT
+ Relative distance), and our proposed system (ZUPT + Relative position).
The lower plots show the estimated trajectories, and the upper plots present
the corresponding final positions. The triangles in the upper plots indicate the
statistical means of each data set.

using relative-distance-aided ZUPT algorithms and that of
using standalone ZUPT, shown in Fig. 5. The accumulated
navigation errors ēL and ēR for each case are shown in
TABLE II. The proposed system showed improvements in the
accumulated navigation error of 55% and 22% for left and
right foot when compared with standalone ZUPT; 30% and
31%, when compared with ZUPT aided by relative distance.

TABLE II
ACCUMULATED ERRORS AND COVARIANCES OF THE FIRST SET OF THE

EXPERIMENTS

Unit ZUPT aided Measurement models
[m] Standalone ZUPT Relative distance Relative position
ēL 5.2113 3.3565 2.3589
ēR 3.2046 3.6173 2.4852

Three things can be noted from the experiments. First, in
the plot corresponding to the standalone ZUPT algorithm,
we observed that the estimated trajectories of the left shoe
drifted toward the west and those of the right shoe to the
east. The main factor for this phenomenon was considered to
be the mismatch of the g-sensitivity of the IMUs [33]. We
did not calibrate the g-sensitivity of the IMUs in this study.
Nevertheless, we observed that the trajectories estimated by
our proposed system had been shown to mitigate the errors

caused by this phenomenon, while the method using foot-
to-foot relative distance measurements did not show much
improvement. The observation can be explained by the fact
that the measurement model of the relative distance in the EKF
only optimizes the relative distance between the two shoes.
Thus, the effect of such a method is to bring close together
the trajectories resulted from the left and the right IMUs. This
effect was also observed in Fig. 3. Second, we perceived that
all estimated trajectories by the three methods had lengths
shorter than 53 m. This perception was mainly due to the
systematic error in ZUPT, where the velocity of the foot was
assumed zero during the stance phase in the gait cycle. While
in reality, the foot velocity was not absolutely zero during the
stance phase. The false assumption that it is zero led to shorter
estimated trajectories. Third, in the experiments, the amount of
foot-to-foot relative position measurements obtained in each
gait cycle was not consistent. The inconsistency was also
another contribution to the difference between experiments and
simulations.

In the second set of experiments, we conducted a close
loop trajectory, which included more complicated walking
motions of four right turns, a ramp, and a short stair. In
this experiments, whenever we made a turn, we walked in
an arched shape, instead of a direct 90o turn, so that the
checkerboard could still be inside the FOV of the camera.
The starting point of the left shoe overlapped with the ending
point of the right shoe, and vice versa. The nominal total
length of the trajectory was 126m, and the navigation time was
140s. We compared the estimated results obtained by the three
methods. The results are shown in Fig. 6 and the accumulated
navigation errors eL and eR for each case are summarized in
TABLE III. The proposed system showed improvements in the
accumulated navigation error of 83% and 85% for each foot
when compared to standalone ZUPT and 23% and 54%, when
compared with ZUPT aided by relative distance.

TABLE III
ACCUMULATED ERRORS AND COVARIANCES OF THE SECOND SET OF THE

EXPERIMENTS.

Unit ZUPT aided Measurement models
[m] Standalone ZUPT Relative distance Relative position
eL 9.0606 1.9836 1.5337
eR 5.8524 1.9156 0.8743

We want to point out that the lighting condition in the
environment and the exposure time of the camera were key
factors in implementation of the proposed system. The lighting
condition directly affected the performance of the feature
detector. As a result, it is important to have sufficient light
sources when the camera is used as a part of the navigator. The
exposure time of the camera should also be set appropriately.
If the exposure time set too short, the resulting images would
not have enough brightness for the feature detection to work
well. It cannot be set too long either; since the foot velocity
can go up to as fast as 3m/s, a long exposure time would lead
to a quite blurry image. In our experiments, the value was set

905

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 12,2020 at 04:00:11 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Estimated results of the second set of experiments from the standalone ZUPT method (ZUPT), ZUPT aided by relative distance measurements (ZUPT
+ Relative distance), and our proposed system (ZUPT + Relative position).

to 2000 us.

IV. CONCLUSION

In this paper, we presented a visual-aided Pedestrian INS
using foot-to-foot relative position measurements. The main
contribution was the measurement model that blends ZUPT
and foot-to-foot relative position measurements. The relative
position measurements between the two shoes were obtained
from shoe-mounted feature patterns and cameras. This mea-
surement model directly outputs compensation measurements
for the three position states and three velocity states, and
does not need linearization. The proposed system has constant
computational complexity in any environment. The simulation
results showed an improvement in accumulated navigation er-
rors of over 90%. Experiments were also conducted, where we
rendered the shoe-mounted feature pattern to a scaled version
of a checkerboard. Experimental results showed a maximum
improvement of 85% in accumulated errors, verifying the
validity of the proposed system in real-world environments.
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