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Abstract—Zero-velocity-UPdaTe (ZUPT)-aided Inertial Navi-
gation Systems (INS) is a promising self-contained positioning
solution for localizing firefighters and first responders while
navigating in extreme environments. This paper reports on a
Support Vector Machine (SVM) algorithm for classifying 19
different pedestrian activities based on a foot-mounted Inertial
Measurement Unit (IMU). Such classifications are necessary to
define correctly the velocity threshold in the ZUPT algorithm.
The trained SVM had a classification accuracy of 75.23%. The
SVM was demonstrated to enhance the ZUPT-aided INS by
adjusting the threshold used in the Stance Hypothesis Optimal
dEtection (SHOE) detector and variances of zero-velocity mea-
surements for each classified locomotion. In a pedestrian indoor
navigation experiment of traveling 87.8m with a combination
of walking, fast walking, jogging, running, sprinting, walking
backward, jogging backward, and sidestepping, the ZUPT-aided
INS using the SVM-enhanced SHOE detector had a displacement
error of 2.4m, outperforming navigation accuracy of a standalone
INS by 134.71 %, and a fixed threshold ZUPT-aided INS by 1.43 x.

Index Terms—Foot-mounted IMU, ZUPT, SVM, EKF.

I. INTRODUCTION

The development of an accurate and reliable positioning
system for firefighters and first responders is critical in en-
vironments where the Global Navigation Satellite Systems
(GNSS) have degraded performance or fail [1]. In such situa-
tions, Pedestrian Dead-Reckoning (PDR) systems implement-
ing an Inertial Navigation Systems (INS) aided by a Zero-
velocity UPdaTe (ZUPT) algorithm based on foot-mounted
Inertial Measurement Units (IMUs) have been considered as
a preferable option [2]-[5]. A traditional ZUPT-aided INS
algorithm detects when the human foot is stationary and
updates the velocity estimates with pseudo measurements
of zero-velocity during this period in an Extended Kalman
Filter (EKF) framework. This approach has been demonstrated
to significantly improve navigation accuracy when compared
with a standalone INS [6].

The performance of ZUPT-aided INS is sensitive to the ac-
curacy of the zero-velocity detector [7]. A traditional approach
for detecting ZUPT intervals is based on the Generalized
Likelihood Ratio Test (GLRT), which compares a test statistics
computed from IMU readouts with a pre-defined threshold [8].
However, it has been reported that the optimal value of the pre-
defined threshold is different when a pedestrian performs dif-
ferent types of activities, including walking, jogging, running,
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Fig. 1. (a) Traditional ZUPT-aided INS. (b) ZUPT-aided INS with SVM
detector. (c) ZUPT-aided INS with SVM-enhanced SHOE detector. y stands
for the threshold used in the SHOE detector and o is the variance of zero-
velocity measurements.

and sprinting [9]. Moreover, optimal noise parameter settings
in the EKF can be distinct in each case [10]. Therefore, it is
crucial to differentiate between different pedestrian activities
and optimize the navigation accuracy, accordingly. Although
previous studies have demonstrated that enhancing the ZUPT-
aided INS with an activity classifier could greatly improve
navigation accuracy [11]-[13], these works considered limited
types of motions and did not utilize adaptive EKF parameter
settings.

In this paper, a Support Vector Machine (SVM) classifier
is reported. The classifier aims to predict 19 different classes
of motion, including both swing and stance phases, while per-
forming standing still, walking, fast walking, jogging, running,
sprinting, walking backward, jogging backward, sidestepping
leftward, and sidestepping rightward. This paper evaluates the
navigation performance of ZUPT-based INS when using three
different stance phase-detection mechanisms shown in Fig. 1:
the Stance Hypothesis Optimal dEtection (SHOE) detector
with a fixed threshold, SVM detector, and SVM-enhanced
SHOE detector, referred to as ZUPT-SHOE, ZUPT-SVM, and
ZUPT-SVM-SHOE, respectively, in the rest of this paper.
In ZUPT-SVM and ZUPT-SVM-SHOE, SVM predictions are
used to 1) vary the variance of the zero-velocity measurements
used in the EKF and 2) directly and indirectly detect the zero-
velocity event. In ZUPT-SVM, the ZUPT event is determined
by the SVM stance phase predictions while in ZUPT-SVM-
SHOE, the swinging and stance phases are combined as one
motion. Thus, when the SVM predicts a motion, it was used
to tune the optimal threshold in the SHOE detector.

II. PROPOSED APPROACH

The reported SVM was trained and evaluated with foot-
mounted IMU measurements collected while performing dif-
ferent pedestrian activities listed in TABLE 1. In this section,



the data collection process, dataset labeling, and structure of
the SVM are discussed.

A. Data Collection

A VectorNav VN-200 IMU with frequency of 800Hz was
used in this study. Fig. 4 (c) shows an experimental setup,
where the IMU was mounted on a boot. This paper considers
nine different types of motion: walk (~60 Step Per Minute
(SPM)) and fast walk (~90 SPM), jog (~120 SPM), run
(~150 SPM), sprint (~180 SPM), walk backward (~60 SPM),
jog backward (~90 SPM), and walk sideways to the right
and to the left (~90 SPM). The pace of each activity was
approximately controlled for uniformity of events with respect
to a metronome. One subject performed two identical trials
for each type of locomotion. IMU measurements collected in
the first trial were used as a training dataset and those in the
second trial were used in the testing procedure. Thus, the test
datasets were different from the dataset used to train. In all
the experiments, the subject started by standing still for 10
seconds and then traveled a straight line on a flat surface for
a nominal distance of 42.6m.

B. Dataset Labeling

This paper considers the swing phase and the stance phase
of a pedestrian motion as two different activities. Ground truth
labels of the two phases for each pedestrian motion were based
on foot-mounted IMU measurements collected in the training
dataset. Fig. 2(a) and (b) show an example of five steps of
the recorded accelerometers’ and gyroscopes’ readings. The
measurements were processed as follows.

The first step is to compute the linear acceleration and
angular velocity magnitudes based on readings from three
accelerometers and three gyroscopes as can be seen in Fig. 2(c)
and (d). The resulting two magnitude signals of the vector of
acceleration and angular velocity still present high noise, thus,
a Simple Moving Average (SMA) window filter was applied
to lessen the noise.
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where S;fM 4 is the mean over the last window of k entries
set to 50 for all the activities to smooth the signal. Let
the considered magnitude data-points be s;. The results of
the signal processing algorithm can be seen in Fig. 2(c)(d).
Analyzing both synthetic signals, we observe two clear zones:

« Flat zone (stance phase): when the foot is assumed to be
on the ground. For example, in Fig. 2 (c) and (d), an area
between the interval 31.4-32 seconds.

o Nonuniform (swing phase): when the foot is assumed to
be in the air. For example, in Fig. 2 (c¢) and (d), an area
between the interval 32-32.8 seconds.

To automatically determine the flat and nonuniform zones,
this paper computes the local minimums of the collected IMU
signals. Based on Fig. 2(c)(d), we observed that the values
of local minimums of the flat and nonuniform zones have a

larger difference in the case of the gyroscope than in the case
of the accelerometer magnitude. This property is beneficial for
detection of the two phases, and therefore, only the angular
velocity magnitude was used in the following procedure.

The second step in the procedure is to find all local maxima
and minima. To filter the maximums, a threshold had to be
set and we only considered the first and the last maximum
of the nonuniform region. For instance, the green vertical
lines between the interval of 31.8-33 seconds from Fig. 2(e).
Once the nonuniform is well defined, the minimum of the area
compressed by two nonuniform zones is selected.

Analyzing the intervals containing a minimum (red vertical
line) between two marked maximums (green vertical lines), a
threshold can be defined for each minimum by multiplying it
by a constant ratio. However, this ratio will change depending
on the type of locomotion. As an example, in Fig. 2(f), it can
be seen that the detected area varies when the foot is on the
ground with each step.

Finally, in Fig. 2(f), the data points colored in red were
labeled as the ground truth for the stance phase and the blue
points, as the swing phase per each activity.

C. Motion classification

Support Vector Machines (SVMs) are supervised machine
learning algorithms that are used both for classification and
regression [14]. The SVM model represents different classes in
a multidimensional space and finds hyperplanes that distinctly
classify the data points. In this case, the datasets used to
train and test the SVM model had six input features (three
accelerometers and three gyroscopes readings), and the labels
were obtained using the signal processing techniques discussed
in Section II-B. The six-dimensional data was divided by a Ra-
dial Basis Function (RBF) kernel [15] with hyperparameters C'
=100 and v = 0.058. The SVM variables were chosen because
they resulted in the highest classification accuracy during the
hyperparameter tuning process. A ConFusion Matrix (CFM)
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Fig. 2. Labeling detection algorithm for five steps when a pedestrian is
walking at 60 SPM.
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Fig. 3. (a) Confusion matrix of the SVM model which predicts the swing
and stance phase for each type of motion. (b) Example of the SVM model
prediction. (c) Confusion matrix of the SVM model predicting 9 types of
motion. (d) Example of SVM aided stance hypothesis optimal detection
(SHOE).

for the ZUPT-SVM algorithm of the testing results is shown

in Fig. 3(a) and for the ZUPT-SVM-SHOE in (c), yielding an
overall accuracy of 75.23% and 77.86% respectively.

III. EXPERIMENTAL VALIDATION

This paper uses the trained SVM to enhance ZUPT-aided
INS when performing different pedestrian activities. An inde-
pendent experiment was conducted to validate the navigation
performance. In this experiment, the same subject used the
experimental setup, shown in Fig. 4, and traveled along a
straight line of a nominal distance of 87.8m with different
types of motions, during which periods were marked by
different colors.

This dataset was evaluated using three different implemen-
tations of the ZUPT-aided INS: 1) ZUPT-SHOE with a fixed
threshold of e°; 2) ZUPT-SVM where the stance phase was
determined when the trained SVM predicts a stance phase in
any activities as Fig. 3(a) shows; and 3) ZUPT-SVM-SHOE
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Fig. 4. (Green) Navigation solution with standalone INS. (Blue) Navigation
solution with an optimized fixed threshold. (Black) Navigation solution using
the just the SVM predictions. (Red) Navigation solution combining the SVM
prediction with the SHOE detector.

TABLE I
EKF PARAMETERS AND THRESHOLD OF STANCE PHASE DETECTION

Activities Metronome Threshold Uncertainty Error
(step per min)  (log) (m/s) (m)
Walk 60 3 0.02 0.69
Fast-Walk 90 4.2 0.02 0.79
Jog 120 6.89 0.1 1.31
Run 150 7.8 0.1 1.31
Sprint 180 8.7 0.1 7.01
Walk backward 60 3 0.02 0.33
Jog backward 90 54 0.02 0.41
Side-step right 90 54 0.05 0.41
Side-step left 90 5.4 0.05 0.29

where stance phase and swing phase for the same activity
predicted by the SVM were combined as a single motion as
is shown in Fig. 3(c), and the result of the motion prediction
of the SVM model was used to tune the threshold used in the
SHOE detector and variance of the Extended Kalman Filter
according to the values listed in TABLE 1. The values of the
threshold and the variances listed in TABLE I were selected
to minimize position errors of the ZUPT-aided INS in the
experiments. Fig. 1(a), (b), and (c) present a block diagram
of each implementation. Details of the ZUPT-aided INS were
documented in [16].

Fig. 4 illustrates horizontal (a) and vertical (b) trajectories
estimated by the three implementations of ZUPT-aided INS.
This paper evaluates the numerical errors in position at the
destination. The errors of the standalone INS, ZUPT-SHOE,
ZUPT-SVM, and ZUPT-SVM-SHOE were 733.47m, 7.77m,
27.53m, and 5.44m, respectively. Three remarks can be made
about the experimental results. First, it could be observed in
Fig. 4 that the ZUPT-SHOE had a maximum displacement
error of 17.64m. The maximum error occurred during jogging,
running, and sprinting because the fixed threshold used in the
SHOE detector in this experiment could not detect the stance
phases in these activities. As a result, velocity estimates were
not corrected, leading to large position errors. Second, the
ZUPT-SVM solution underestimated trajectory length. This
phenomenon could be explained by the fact that the trained
SVM detector had a few false alarm instances. The false
alarms led the ZUPT algorithm to incorrectly reset the velocity
to zero when the foot was moving, resulting in position errors.
Third, the ZUPT-SVM-SHOE had the minimum navigation
error, as compared to the other two approaches.

IV. CONCLUSIONS

In this paper, an SVM classifier is reported which was
trained and used to classify 19 classes, including both
stance and swing phases while walking, fast walking, jog-
ging, running, sprinting, walking backward, jogging backward,
sidestepping, and standing still. The trained SVM achieved
a classification accuracy of 75.23%. Navigation errors of
standalone INS, ZUPT-SHOE, ZUPT-SVM, and ZUPT-SVM-
SHOE were 733.47m, 7.77m, 27.53m, and 5.44m, respectively,
in an 87.8m straight-line pedestrian navigation experiment
involving different activities. The experimental results showed
that it is advantageous to enhance ZUPT-aided INS with the
reported SVM.
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