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ABSTRACT

Developing a universal pedestrian navigation framework that operates through extreme environmental conditions is essential.
Such a navigation framework can enable Location-Based Services (LBS) in many applications, and one application in high
demand of accurate and reliable positioning solutions is firefighter localization, primarily for navigating in indoor environments
where signals of Global Navigation Satellite Systems (GNSS) might degrade or fail, visibility is poor, and infrastructure
dedicated to navigation is often not accessible. Jao et al. (2022a) reported a Pedestrian Indoor Navigation system integrating
Deterministic, Opportunistic, and Cooperative localization approaches (PINDOC). The deterministic localization is a Zero-
velocity-UPdaTe (ZUPT)-aided Inertial Navigation System (INS) enhanced with self-contained aiding approaches, including
altimeter measurements and foot-to-foot ranging measurements. The opportunistic approach uses pseudorange measurements
extracted from cellular Long-Term Evolution (LTE) towers and implements a Deep Neural Network (DNN)-based Synthetic
Aperture Navigation (SAN) to spatially mitigate multipath. This approach operates in a base/rover framework, where a GNSS
receiver and a "base" LTE receiver, both installed stationary in an outdoor environment, are used to estimate clock bias drifts
of LTE towers, and the estimated clock biases are transmitted to "rover" LTE receivers equipped on agents navigating in indoor
environments. The cooperative localization approach uses UWBs for inter-agent range measurements and differentiates Line-
Of-Sight (LOS) and NLOS components using a power-metric-based detector. In this paper, we experimentally investigate the
navigation performance of the PINDOC system. Two experiments were conducted. The first experiment involved three agents,
with one agent traversing in an indoor environment a trajectory of 600 meters in 14 minutes, during which the other two agents
remained stationary. The traversed trajectory included terrains of flat surfaces, stairs, ramps, and elevators. The PINDOC
system achieved a position Root-Mean-Squared Error (RMSE), maximum error, and loop-closure error of 0.93 m, 2.23 m, and
1.28 m over the 600-meter trajectory, respectively. In the second experiment, all three agents traveled in the indoor environment
for 12.5 minutes, and the navigation solutions estimated by the PINDOC system showed loop-closure errors of 0.35 m, 0.82,
and 1.15 m for the three agents. In all cases, access to signals of opportunity and cooperative exchange of information between
agents were available less than 20% of time for duration of the experiments.

I. INTRODUCTION

Developing an accurate and reliable universal pedestrian navigation framework can enable Location-Based Services (LBS)
in multiple different applications, including contact tracing (Kleinman and Merkel, 2020), warehouse inventory management
(Tejesh and Neeraja, 2018), shopping (Renaudin et al., 2019), gaming (Sevrin et al., 2015), and firefighter tracking (Ferreira
et al., 2017). This universal navigation framework needs to maintain low positioning errors for a long period of time and cover
various challenging scenarios, such as indoor environments, urban canyons, forest canopies, and underground caves. These
scenarios often come with conditions that signals of Global Navigation Satellite Systems (GNSS) are degraded or unavailable,
visibility is poor due to smoke or low light intensity, and infrastructures dedicated to navigation are not accessible. These strict
requirements eliminate the possibility of independently utilizing many existing positioning technologies, including cameras
(Lemaire et al., 2007), Light Detection and Ranging (LiDAR) (Kumar et al., 2017), Radio-Frequency (RF) systems based on
Bluetooth (Zhuang et al., 2016), Wi-Fi (Shu et al., 2015), cellular Long-Term Evolution (LTE) (Shamaei and Kassas, 2018),
or Ultra-WideBand (UWB) (Ruiz and Granja, 2017), and Inertial Navigation Systems (INS) (Titterton and Weston, 2004). In
order to operate through extreme conditions, a potential pedestrian navigation solution is to integrate positioning technologies
that have complementary localization properties. INS is a preferable option to be integrated into such a pedestrian system as it
operates in a self-contained manner, requires no installation time, and provides consistently available measurements. Despite
these attractive features, without an aiding source, the errors in an INS accumulate over time, causing the navigation solution to
eventually drift unboundedly (Jao et al., 2020a).



Zero-velocity UPdaTe (ZUPT) algorithm has been used in a pedestrian INS as an effective aiding approach to significantly
enhance the performance of a strapdown INS (Foxlin, 2005). The ZUPT algorithm uses Inertial Measurement Units (IMUs)
mounted on a person’s foot and makes an assumption that the velocities of a person’s foot during walking are nearly equal to
zero during the stance phase of a gait cycle (Nilsson et al., 2014). With this assumption, the algorithm periodically resets the
residual velocities in every step, effectively reducing localization errors caused by noise and stochastic time-varying biases of
IMUs in an INS (Jao and Shkel, 2021b). The ZUPT-aided INS is conventionally implemented in an Extended Kalman Filter
(EKF) framework, where pseudo measurements of zero-velocity are feedback to the system when stance phases are detected
(Jao and Shkel, 2021a). It has been mathematically shown that this implementation has bounded error growth not only for the
velocity states along the three axes but also for the two orientation states along pitch and roll directions (Nilsson et al., 2013).
The ZUPT-aided INS implemented in the EKF has been theoretically predicted and experimentally demonstrated to achieve an
error of less than 1% of the traveling distance with an industrial-grade IMU (Wang et al., 2018b, 2020, 2021).

The conventional ZUPT-aided INS, however, has unbounded error growth for the position states along the three axes and the yaw
angle state (Nilsson et al., 2012). Moreover, the algorithm has been identified with multiple error sources, including 1) noise
characteristics of deployed IMUs, 2) performance of stance phase detection, 3) insufficient sensor Full-Scale Range (FSR) and
bandwidth, and 4) unmodeled error that results from a violation of the assumption that the foot is completely stationary during
the stance phase of a gait cycle (Wahlstré and Skog, 2020). These errors led the ZUPT-aided INS to have long-term position
drifts. To further improve navigation accuracy of the ZUPT-aided INS, sensor fusion solutions based on different non-inertial
sensing modalities have been popular approaches (Jao et al., 2020c). In this paper, we grouped the sensor fusion enhancement
techniques into deterministic, opportunistic, and cooperative localization approaches.

The deterministic approach is referred to as the ZUPT-aided INS augmented by self-contained aiding approaches, which use
sensors that are collocated with a foot-mounted IMU (Shkel and Wang, 2021). The self-contained approaches include different
implementations, such as barometric altimeters (Jao et al., 2020a) or hybrid ultrasonic/barometric altimeters (Jao et al., 2020b)
for providing vertical displacement compensation; magnetometers (Wang et al., 2018a), foot-to-foot ultrasonic sensors (Laverne
et al., 2011; Wang et al., 2019), and foot-to-foot cameras (Jao et al., 2020c) for increasing observability in the yaw angle
estimation; or downward-facing ultrasonic sensors (Jao et al., 2020d, 2021), Dynamic Vision Sensors (DVS) (Jao et al., 2020e),
pressure sensors (Ma et al., 2018), and permanent magnets (Norrdine et al., 2016) for increasing the stance phase detection
performance. The deterministic localization approach has been demonstrated to improve navigation accuracy, as compared to a
standalone ZUPT-aided INS (Wang et al., 2021). Nevertheless, absolute horizontal position uncertainties of the former systems
propagate unboundedly and can eventually exceed desired localization accuracy in long-term pedestrian navigation. To improve
localization accuracy of the deterministic localization, infrastructure-free solutions using opportunistic exteroceptive external
aiding signals have been explored. These aiding signals can be implemented as Cooperative Localization (CL) (Zhu and Kia,
2019b; Minetto and Dovis, 2019; Zhu and Kia, 2021) or opportunistic localization (Ikhtiari, 2019; Abdallah et al., 2022; Souli
et al., 2021b; Whiton et al., 2022) or a combination thereof (Souli et al., 2021a).

In the cooperative approach, a group of communicating agents uses inter-agent relative measurements as feedback to improve
the localization accuracy of their local filter, e.g., Pedestrian INS (Zhu and Kia, 2018). CL in pedestrian navigation can be
implemented based on inter-agent range measurements obtained using different mechanisms, including computer vision or
wireless radio signals (de Ponte Miiller, 2017). Among these implementations, range measurements collected from UWB
modules have attracted significant attention in indoor navigation for the sensor’s high time resolution, wide bandwidth, and
capability to work under Non-Line-Of-Sight (NLOS) conditions (Zhu and Kia, 2021). On the other hand, in an opportunistic
localization framework, cellular towers are treated as beacons, and positioning can be achieved by trilaterating pseudorange
measurements based on cellular signals (Kassas, 2021). Cellular signals possess several desirable characteristics for indoor
localization (Kassas et al., 2017a; Strandjord et al., 2021; Yang et al., 2022; Pan et al., 2022): abundance, geometric diversity,
high bandwidth, high carrier-to-noise ratio (C/Ny) indoors, and the fact that some of their downlink signals are free to use
(Abdallah et al., 2021). Cooperative and signal-based localization approaches have been demonstrated to provide relative and
absolute position compensations to deterministic approaches (Kassas et al., 2017b; Maaref and Kassas, 2022; Morales et al.,
2022). However, to the authors’ knowledge, not much effort has been put into developing a navigation solution integrating the
three localization approaches (deterministic, cooperative, and opportunistic) for indoor navigation.

‘We have previously developed a Pedestrian Indoor Navigation system integrating Deterministic, Opportunistic, and Cooperative
functionalities (PINDOC) for navigation of multiple agents and reported the algorithmic and the hardware framework as well
as experimental results of the PINDOC system in Jao et al. (2022a). In this paper, we further investigated the navigation
performance of the PINDOC by experimentally evaluating the navigation performance and repeatability of the system with
multiple multi-agent indoor navigation experiments.

The rest of the paper is organized as follows: Section II presents the algorithm framework that combines the deterministic,
opportunistic, and cooperative localization approaches. Section III discusses a pedestrian navigation testbed capable of collecting
sensor measurements used in the three localization approaches. Section IV presents the experimental results. Section V
concludes the paper with a highlight of experimental performance of the PINDOC system.
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Figure 1: A block diagram illustrating the PINDOC system. The system integrates deterministic, opportunistic, and cooperative localization
approaches. The deterministic approach uses a ZUPT-aided INS augmented with altimeter measurements and foot-to-foot ranging
measurements. The opportunistic approach provides global position compensation based on machine-learning-aided LTE psuedoranges. The
cooperative localization approach is achieved based on inter-agent range measurements.

II. ALGORITHM DESIGN

The PINDOC system used in this paper integrates deterministic, opportunistic, and cooperative localization components. The
deterministic component implements a ZUPT-aided INS augmented with a barometric altimeter and foot-to-foot range enhance-
ment. The opportunistic approach uses Deep Neural Network (DNN)-aided Synthetic Aperture Navigation (SAN) enhanced
Long-Term Evolution (LTE) pseudoranges. The cooperative localization is based on inter-agent UWB range measurements.
Figure 1 presents a block diagram illustrating the PINDOC system. The system is realized in an EKF framework, where the
prediction step propagates navigation states with a strapdown INS and an LTE clock drift model, and the update step compensates
the states with measurements of vertical positions, foot-to-foot distances, inter-agent distances, and absolute positions. In this
section, we describe the EKF states, the EKF prediction step, and the EKF update step.

1. EKF States

The EKF estimates the state vector x(k) for a group of N agents, expressed as:
X(k) = [X;\rl (k)’ X/Ig (k)’ te 7X/IN (k)’ XITTEl (k)7 XI:EFEQ (k)v e ’Xl—l_:FEN (k)]—r’
where A; denotes agent 4 in the group, and x,, (k) and x g, (k) are the states associated with agent 4, described as

xa, (k) = [au (k), v (k), B (K), by a1 (k). by ot (k), 4l (k), vA; (k) DAy (K), by ar (), b ar ()] € RPOXE,
xere, (k) = [0ty (), coty, (k)] T € RZXL,

where qu: (k), Vo (k), pat (k), b, ot (K), and by 4: (k) represent states of the left foot of agent 7, including orientations, velocities,
positions in the navigation frame, and accelerometer and gyroscope biases in the sensor body frame. g, (k), var (k), par (), ba,ar (K),
and by ar (k) are the corresponded states of the right foot agent i. cdt.x, (k) and Oty (k) indicate the speed of light, ¢, multiplied

by estimated clock bias and drift of an LTE receiver mounted on agent . This expression of X;1g, (k) has a unit of meter, which
is beneficial for numerical calculations, as compared to directly using clock bias and drift.



2. EKEF Prediction Step
a) Strapdown Inertial Navigation Systems

In the prediction step of the EKF, propagation of the states x,, (k) is implemented by inputting the IMU measurements on
each foot to the strapdown inertial navigation systems (Titterton and Weston, 2004). The linearized state transition matrix
corresponding to strapdown INS, denoted as Fixs(k), is expressed as follows:

Fins (k) = etns(i)dl,

where dt is the sampling rate of the system and

Aa, (1) 030x30 . 03030
0 An, (1 :
Ans(t) = 30_X30 ra(t) _ )
: 03030
03030 oo 030x30 AaL (D)

with
0353 0353 033 —C(qu(k)) 033

%
Ax(t) O15x15 [fi"%] 03x3 033 033 Clqar (k)

A (t) = [015X15 AAr(t)} »and Api (1) =1 05,5 Tgus O3y 0553 05,3
’ 0353 03x3 0343 0343 0343
0353 0353 0343 0353 0353

Here, [ﬁ”x] is the skew-symmetric cross-product-operator of the accelerometer outputs of the left IMU, expressed in the
navigation frame. C(q) is the Directional Cosine Matrix (DCM) corresponding to the quaternion vector . 0, indicates a
zero matrix having n number of rows and m number of columns. Axr (t) is constructed in the same manner as A, (¢) except
that the states corresponding to the right foot are used.

The process noise matrix corresponding to strapdown INS, denoted as Qg (%), is expressed as

Qa, (B)  030x30 e 03030
030x30 Qa, (k) : Qut (k) 01515
k) = : () — |
Qs (k) : ' 0 ; Qq, (k) O15x15 Qar(k)]”
. . X
03030 o 030530 Qa, (K)
with
o3rwlsxs 0353 0353 0353 0353
033 odrwlsxs 033 033 033
Qui (k) = 033 I3x3 0343 0353 0353
0353 0353 0525 origwlsxs 0353
033 0343 0343 0353 ORrwl3x3

Here, 1., is the identity matrix having n number of rows and columns. oipw. . Ovgw,» Oagw,» a0d Oacgy, are the Angle
Random Walk of the gyroscopes, the Velocity Random Walk of the accelerometers, the Rate Angle Walk of the gyroscopes,
and the Acceleration Random Walk of the accelerometers of the IMU mounted on the left shoe of agent ¢. In this paper, we set
Qar (k) =Q N (k) based on an assumption that two IMUs, each mounted on the same agent’s left and right feet, have similar
noise characteristics.

b) LTE Clock Drift Propagation

The EKF prediction step propagates the state xirg, (k) with following state transition matrix Fyrg, (k) and process noise
covariance Q g, (k)

Lot 2 05t7'ﬁdt+05‘tm»%3 Ot dzﬁ
Fue, (k) = |, |+ Qum, (k) =c e y

Otre, 2 Ot s, dt,



where o5, and o,  are parameters associated with clock quality. Details regarding modeling of the clock bias and drift are
documented in Abdallah and Kassas (2021).

3. EKF Update Step
a) Zero-Velocity Update Algorithm

When a stance phase is detected, the ZUPT algorithm is activated to compensate for the velocity state in the update step of the
EKF. The compensation is done by feeding in pseudo-measurements of zero velocity along the three axes, which is denoted as
vzupr(k) = 03x1. In this paper, the stance phase detection is achieved with the Stance Hypothesis Optimal dEtection (SHOE)
detector (Skog et al., 2010), which determines a stance phase if

1 1 ¥ 1
Tu) = v 3 (5 198 — o 2 45 3% IP) <,
7 2 Gz 1~ Pz v

where u,, = {Yk}lzzj:/ ~1 with Y. = [¥e, y‘,j]T, y§ is 3-axis accelerometer measurements at time k, y¢ is 3-axis gyroscope

measurements at time k, ¢ is the gravitational constant, Q,, = {l € N,n <1 < N — 1} is a collection of the sensor measurement
indexes at time n with a window of length NV, and ~y are user-defined thresholds.

For the states associated with the left and the right feet of agent 4, the ZUPT measurement models, z,ypy: (k) and zzypr: (K),
measurement matrices, Hyypr: (k) and Hzuprr (k), and measurement covariance matrices, Rzypr: (k) and Rzuprr (k), are

expressed as follows:
zzuprt (k) = zz0pT; (K) = vZupr (k)

T T
0((i—1)x30+3)x3 0((i—1)x30+18)x3
Hyypri (k) = I3x3 s Hzuprr (k) = Isxs
0244+ (N—i)x30+2N)x3 09 (N—i)x304+2N)x3

— _ 2
RZUPTg (k) = RZUPT; (k) = OZupT; Isxs,
where 07 pp. is the noise variance of the zero-velocity measurement vzupr for agent .

b) Height Compensation

In a pedestrian navigation system based on foot-mounted IMUs, altitude measurements can be obtained from a barometer (Jao
et al., 2020a) or, in a hybrid approach, using both barometer and ultrasonic sensors (Jao et al., 2020b). At time k, altimeters
mounted on the left and the right shoes of agent 7 provide measurements of vertical displacements in the navigation frame, which
are denoted as d 1 (k) and d - (k), respectively. The altimeter measurements are used in the update step of the EKF to bound

error growth of estimated position along the vertical direction (Jao et al., 2020a). The measurement models corresponding to
the altimeter on the left and right feet of agent 4, 2,11 (k) and zarrr (k), are described as follows:

zaurt (k) = d 1 (k), zacry (k) = dor (k).

The associated measurement matrices are described as

T T
015 ((i—1)x30+8) 01 ((i—1)x30+23)
HALTé(k) = 1 ,HALT:(]C) = 1
015 (214 (N—i)x30+2N) 01 % (6+(N—i)x30+2N)

The measurement noise covariance matrices are described as

Ryr (k) = Rawry (k) = 03pr,,

where o3, 1, is the noise variance of the altimeter measurements for agent .

¢) Inter-foot Ranging Enhancement

Distance measurements between the two feet of agent ¢, denoted as 7, (k), can be obtained from various different sensing
modalities, including ultrasonic sensors (Wang et al., 2019), foot-to-foot cameras (Jao et al., 2020c), electromagnetic systems
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Figure 2: A block diagram depicting the LTE-DNN-SAN block diagram used in the proposed PINDOC framework shown in Figure 1

(Wang et al., 2020), and UWB (Zhu and Kia, 2020; Chen et al., 2022). In this paper, foot-to-foot ranging measurements
are collected with a pair of UWB modules that are mounted on two different shoes. The UWB-based foot-to-foot range
measurements are classified into LOS and NLOS by a power metric-based approach (Zhu and Kia, 2021). In this paper, only
LOS UWB measurements are used. The range measurements are processed with bias correction. The processed foot-to-foot
measurements are fused in the update step of the EKF to compensate for relative distances between the two feet (Laverne et al.,
2011). The corresponding measurement model, zpar, (k), measurement matrix, Hgr, (k), and measurement noise covariance
matrices, Rgp, (k), are described as follows:
zpar, (k) = Tror, (),
0(i—1)x304+6)x1 | i
6‘Hp,\g(k)—pAlr(k)llT
—
HFQFi(k) = 015><1 )
8||PA2<,€)*PA;(;€>HT
3PA1T(1¢)

1064 (N—i)x304+2N) x 1]

2
Reor, (K) = 0ok,

h B, 1 i i f the fa fi fi ‘

where og,, is the noise variance of the foot-to-foot range measurements for agent .

d) LTE Machine Learning-Aided SAN

In the opportunistic framework, cellular LTE signals are utilized to provide absolute positioning measurements. This is
achieved by exploiting LTE downlink signals opportunistically in a base/rover LTE-DNN-SAN framework. In the opportunistic
framework, a “base” LTE receiver is located outside the building and has access to GNSS signals. The base collects signals
from multiple LTE towers (also known as eNodeBs) in the environment. The positions of the eNodeBs are pre-surveyed and
assumed to be known (e.g., according to Morales and Kassas (2018)). The base receiver estimates the eNodeBs’ clock biases
and shares this information with the indoor receivers denoted by “rovers.” Such setup ensures state observability (Kassas and
Humphreys, 2014; Morales and Kassas, 2019). Each rover has a copy of the same LTE receiver used in the base unit. To
compensate for multipath-induced biases that are known to significantly degrade the positioning accuracy (Wang and Morton,
2020; Dun et al., 2020; Xu and Rife, 2020; Wang et al., 2022), a DNN-based SAN correction block is applied, in which the
pedestrian’s motion is utilized to synthesize a geometrically-separated antenna array from time-separated snapshots. This allows
for beamforming towards the LOS from the rover to the LTE eNodeB, while suppressing multipath components. This process
requires obtaining the LOS steering vector, which is obtained by taking the nearest direction-of-arrival (DOA) estimate from
the proposed DNN-DOA estimator to the LOS DOA estimated using the current estimate of the rover’s position and the known
LTE eNodeB positions. Figure 2 depicts the block diagram of the LTE-DNN-SAN framework. Further details can be found in
Abdallah and Kassas (2020).

In the update step of the EKF, LTE psuedorange measurements are fused in a tightly-coupled manner with the deterministic
and the cooperative approaches. For LTE signals that are transmitted from eNodeB j and received by LTE receiver on agent
i, the associated pseudorange measurement is denoted as 7 i (k). The location of eNodeB j is represented by Peoqes, - The
corresponding measurement model, 2, ;s (k), measurement matrix, H; ; (k), and measurement covariance matrix, Ry i (k),
are described as follows:

ALTE! (k) = Trred (k),
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&« where (C'/Ny)? is the signal-to-noise ratios of the pseudorange measurement

(C/No)!”
7o (k) and « is a tuning parameter that was chosen to be 2.22 x 10! (Abdallah and Kassas, 2021). To detect and remove
outliers from LTE observables, a rudimentary innovation-based detector is implemented to filter out inconsistent LTE observables
Gokalp et al. (2008).

Here, 02 _, is an adaptive value based on c?

e) Inter-Agent UWB Ranging

The CL approach is realized through inter-agent ranging measurements obtained from UWB sensors attached to the right shoe
of each agent. This paper uses 7y5n (k) to denote the measurements between agent ¢ and agent h. These measurements are
classified into LOS and NLOS cases, and only LOS cases are used in the update step of the EKF. The LOS measurements
are further processed with bias correction. Assuming that ¢ < h, the corresponding inter-agent range measurement model,
Zazan (k), measurement matrix, Hpgr (k), and measurement noise covariance matrices, Ryyan (k). are described as follows:

ZAzAg(k) = TAzAg(k)a
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where o2

“,an 18 the noise variance of the inter-agent range measurements between agent ¢ and agent /.
i

In the EKF update step, when each of the sensing modalities mentioned previously becomes available, the EKF stacks all
available measurements and performs the update step. For example, in a case involving two agents, if measurements of zero-
velocity, altimeter, foot-to-foot ranging, inter-agent ranging, and LTE psuedoranges from a nearby LTE tower are all available,
the EKF measurement model, z(k), measurement matrix, H(k), and measurement noise covariance matrix, R(k), are expressed
as follows:

zzuprs (K)] [Hzupr! (k)] [Rzupr: (k)] '
zzupry (K) Hzuprr (k) Rzupr; (K)
zzupry, (k) Hyuprt (k) Rzupr (K)
zzupr; (k) Hzupr; (k) Rzupr; (k)
ZALT: (k) HALTl1 (k) RALTl1 (k)
ZALTY (k) HALT;‘ (k) RALT;' (k)
z(k) = ZALTg(k) JH(k) = HALTg(k) ;R(k) = blkdiag( Rarry k)| )
zavry (k) Harrg (k) Rarry (k)
2p2F, (k) Hgor, (k) Reor, (k)
2r2F, (k) Her, () Reor, (k)
ZLTE} (k) HLTE} (k) RLTE} (k)
ZLTE} (k) HLTEé (k) RLTE; (k)
Zazaz (K) | HAZA% (k) RAzAf (k)

Settings of the noise parameters are determined based on noise characteristics of sensors involved in the implementation.
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Figure 3: A pedestrian navigation testbed developed to investigate the navigation performance of the PINDOC. The deterministic and
cooperative localization approaches were implemented with the Lab-On-Shoe platform, which integrated sensing modalities including
IMUs, altimeters, ultrasonic sensors, and UWBs. In this paper, ultrasonic sensors were not used. The opportunistic LTE-based pseudoranges
were collected by the Laird cellular Antennas and their corresponding signal processing units. The laptop was used in the experiment for
data logging.

III. HARDWARE DESIGN

This section presents a pedestrian navigation testbed designed to evaluate the navigation performance of the PINDOC system.
The testbed includes a Lab-On-Shoe platform for the deterministic approach, an LTE receiver for the opportunistic approach,
and UWB modules for cooperative localization. Figure 3 and Figure 4 describe the hardware and the firmware of the system,
respectively.

1. Lab-On-Shoe Platform: A Flexible Multi-Sensor Navigation Testbed

The Lab-On-Shoe, shown in Figure 3, was developed in Microsystems Lab at the University of California, Irvine, as a
reconfigurable multi-sensor pedestrian navigation testbed (S. Askari and C.-S. Jao and Y. Wang and A. M. Shkel, 2019). In
this paper, the platform is used to collect all sensor measurements, except for foot-to-foot ranges, that are associated with
the deterministic localization. The agent wears the Lab-On-Shoe platform on both left and right feet. Each shoe of the
platform includes an Analog Device ADIS16497-3 tactical-grade IMU, an MS5803-01BA barometric altimeter, an SRF08
ultrasonic sensor, and two SRF02 ultrasonic sensors. The barometer has a nominal resolution of 10 cm in vertical displacement
measurement, and the ultrasonic sensor has a range resolution of 1 cm. In this paper, the ultrasonic sensors were not used in
the experiment discussed in Section IV. A microcontroller Teensy 4.0 is used to implement digital communication protocols,
including the Inter-Integrated Circuit (I*C) and Serial Peripheral Interface (SPI), to collect sensor measurements on the Lab-On-
Shoe platform. The sampling rate of IMUs and altimeters are 1000 Hz and 20 Hz, respectively. The collected measurements are
transmitted to a laptop with the Universal Asynchronous Receiver-Transmitter (UART) through a USB cable for data logging.

2. LTE Receivers and Processing Modules

In the PINDOC, the opportunistic approach is realized with LTE signals. Each agent in the PINDOC carries a backpack where
an LTE receiver is mounted and contains an LTE receiver, a laptop, a battery, and a storage hard drive. The LTE receiver,
developed at the Autonomous Systems Perception, Intelligence, & Navigation (ASPIN) Laboratory (Abdallah and Kassas,
2021), is equipped with four consumer-grade cellular omni-directional Laird antennas, and a quad-channel National Instruments
(NI) Universal Software Radio Peripheral (USRP)-2955 is used to simultaneously down-mix and synchronously sample LTE
signals at 10 Megasamples per second (Msps). The sampled LTE signals are transferred from the USRP-2955 via a PCI Express
cable and stored on a laptop for post-processing. The LTE measurements have a sampling rate of 100 Hz.

3. Cooperative UWB modules

One cooperative module, shown in Figure 3, is mounted on each shoe of the Lab-On-Shoe platform. Each of the modules
includes a UWB DWM1000, a microcontroller Teensy 3.2, a Bluetooth device HC-05, and a lithium battery (Zhu and Kia,
2019a). The cooperative module was developed in the UC Irvine Kia Cooperative Lab (KCS). The microcontroller operating
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Figure 4: A block diagram illustrating firmware implementation of the pedestrian navigation testbed presented in Figure 3.

at a clock rate of 120 MHz communicates with the UWB via an SPI protocol, and the battery provides a power source for the
entire module. The module on the left shoe of an agent is paired up with the modules located on the right foot of all other
agents and three pieces of information are obtained: range, power metric (PM), and agent identification (ID). PM is defined as
the difference between the total received signal power and the direct-path signal power and is used for LOS/NLOS detection.
The range measurements are used for foot-to-foot ranging when obtained from two UWBs mounted on the same agent and for
inter-agent ranging when collected from the sensors mounted on two different agents. The collected measurements, including
range, PM, and agent ID, are transmitted to nearby Teensy 4.0 on the Lab-On-Shoe platform in UART communication protocol
via the Bluetooth transmitter. The sampling rate of the UWB range measurements is 10 Hz.

IV. EXPERIMENTAL VALIDATION

To evaluate the navigation performance of the PINDOC, we conducted two series of multi-agent pedestrian navigation experi-
ments in an indoor environment at the Engineering Gateway Building at the University of California, Irvine. In this section, we
describe the experiments, present our experimental results, and discuss the localization performance of the PINDOC.

1. Experiment #1: One Moving Agent, Two Stationary Agents
a) Experiment Description

Three agents were involved in this experiment. Agent No.1, shown in Figure 3, was equipped with the deterministic, opportunistic,
and cooperative hardware. Agent No.2 and agent No.3 were both equipped with a set of the cooperative module. Figure 5

Staircase

Elevator

Hallways

3F ¢
) Agent 1
om 2F ‘ " Start & End Location
(> 4 Lat: 33.64324643
- J Lon: 117.84011346

Alt: 23 m

Figure 5: Experimental scenario represented by a point cloud map generated with LiDAR and camera modules installed on iPhone 12 Max
Pro. The scenarios included different terrains of flat planes, stairs, ramps, and elevators.
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presents a point cloud dataset representing the experimental scenario. The point cloud data was collected with a LIDAR module
and cameras installed in an iPhone 12 Max. At the beginning of the experiment, agent No.1 stood outside of the first floor of the
building for one minute to initialize the system. The GNSS and the altimeter mounted on agent No.1 obtained the initial global
position in latitude, longitude, and altitude during this period. The LTE receiver was initialized and started to track signals
transmitted from four eNodeBs. The eNodeBs’ characteristics are summarized in Table 1. In the initialization process, we
calibrated accelerometer and gyroscope turn-on biases of the IMUs with the approaches described in (Jao et al., 2022b). Noise
parameters used in the EKF for PINDOC are listed in Table 2.

After initialization, agent No.1 walked inside the building with a trajectory represented by the blue and red curves in Figure 6.
The navigation scenarios included flat planes, stairs, ramps, and elevators. The length of the path was around 600 meters, and
the duration was approximately 14 minutes. During the experiment, agent No.1 passed by the checkpoints marked with the green
triangles in Figure 6. The locations of the checkpoints were pre-survey with an industrial ruler. The experiment was recorded
using a smartphone camera, and the timestamps at which the agent passed through each checkpoint were visually determined
from the video. During the entire experiment, agent No.2 and agent No.3 remained stationary at the locations marked by the
red and blue star markers in Figure 6. The UWB sensors mounted on the right shoe of agent No.1 had an LOS connection with
agent No.2 from 250 s to 310 s and with agent No.3 from 430 s to 485 s. Communication was lost in other periods of time
because the UWB modules were too far apart and due to obstacles between the UWB modules. The measurements collected in
this experiment indicate that the maximum communication range for the UWBs was around 30 m when there was a clear path
for signals to be transmitted.

Trajectories of the moving agent estimated by the PINDOC system in Experiment #1

Path (L)
Start (L)
End (L)

Path (R)
Start (R)
End (R)

Staircase

Down, m
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>**x.|><l
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Figure 6: The blue and red curves represent the navigation trajectories of the two feet of agent No.1 estimated by the PINDOC implementing
the ZUPT-aided INS augmented by altimeters, foot-to-foot ranging, and inter-agent ranging measurements in the experiment discussed in
Section I'V.1. The blue star and the red star marked the locations of stationary agent No.2 and agent No.3 in the navigation frame. The green
triangles mark checkpoints that were used to evaluate the in-trajectory localization accuracy of the navigation solutions.



Table 3: Navigation error of the PINDOC implemented in different configurations in an experiment discussed in Section I'V.1.

Config. INS Aiding Method Pr(.)cessing RMSE [m] 2D € SD [m] Max Final
ZUPT ALT F2F A2 A3 LTE Time(s) RMSE [m] RMSE [m] Error [m] Error [m]

G v v v v v v 231.7 0.93 0.69 0.62 0.44 2.23 1.28
F v v v v v 211.6 0.93 0.69 0.62 0.44 2.23 1.32
D v v v v 211.0 0.94 0.71 0.62 0.43 2.23 1.32
E v v v v 210.9 0.95 0.72 0.62 0.46 2.23 1.68
I v v v v 227.0 0.96 0.74 0.62 0.45 2.23 1.64
C v v v 210.3 0.97 0.75 0.62 0.46 2.23 1.76
J v v v 234.0 1.07 0.87 0.62 0.48 2.44 1.51
B v v 207.4 1.64 1.52 0.59 0.75 2.9 2.55
K v v 227.9 1.97 1.65 0.67 0.88 7.74 32
H v v 222.0 2.48 0.90 2.32 1.87 10.02 10.02
A v 191.5 2.53 0.49 2.48 1.9 10.3 10.3

b) Performance Metrics

We considered seven performance metrics in this experiment, including one computational complexity metric and six different
accuracy metrics, to evaluate the navigation performance of the PINDOC. Table 3 lists these metrics, which are processing
time, position Root-Mean-Square Error (RMSE), two-dimensional (2D) RMSE, vertical (L) RMSE, position error Standard
Deviation (SD), maximum displacement error, and final position error. In this paper, the processing time is used to evaluate the
computational complexity of a localization solution. The processing time was calculated based on the amount of time for the
2021a MATLAB program, operating on a laptop with an AMD Ryzen 9 5900HS Central Processing Unit (CPU) running at a
clock rate of around 4 GHz, to compute a navigation solution based on collected sensor measurements.

The six accuracy metrics were chosen so that the navigation performance of the PINDOC can be conveniently compared with
the localization accuracy of other indoor navigation systems discussed in the literature. Among these six metrics, RMSE is often
used to evaluate an estimated localization solution when reference trajectories along the three dimensions are available. 2D
RMSE and L RMSE are used as benchmarks when estimated positioning solutions emphasize accuracy in the horizontal and
vertical directions, respectively. Position error SD is used to quantify variations of displacement error. Maximum displacement
error is used to investigate the worst-case scenarios of an estimated position. Finally, final position error is often used to
evaluate dead-reckoning systems, which have localization errors accumulating with time, in navigation experiments where
obtaining reference trajectories is challenging. For example, when evaluating pedestrian navigation systems using foot-mounted
IMUs, navigation experiments could involve trajectories that cover large indoor areas, on the order of 50-100 m, and include
a combination of complex terrains, such as flat planes, stairs, ramps, ladders, and elevators (Abdallah et al., 2022). In such
environments, it can be very expensive to deploy a high-precision position reference system like the Opti-Track (Yuan et al.,
2013) or the Vicon (Angermann et al., 2010), and therefore, final position errors are used in these scenarios.

c) Experimental Results

We compared the navigation performance for agent No.1 using the PINDOC implemented in different configurations. Different
configurations of the PINDOC use the ZUPT-aided INS, augmented by different combinations of various sensing modalities,
namely altimeter (ALT), foot-to-foot ranging (F2F), inter-agent ranging with agent No.2 (A2) and agent No.3 (A3), and cellular
LTE pseudorange measurements.

We used the seven performance metrics discussed in Section IV.1b) to quantify the localization error at each checkpoint for
each navigation solution. Table 3 summarizes the performance of the navigation solutions using the PINDOC implemented in
different configurations. The accuracy values presented in Table 3 were calculated based on the 38 checkpoints marked by the
green triangles in Figure 6. For the configurations where foot-to-foot ranging measurements were not involved, the accuracy
metrics were calculated based on solutions of agent No.1’s right foot as inter-agent range measurements were collected with the
UWB module mounted on the right foot. The top item Table 3, which is PINDOC with configuration G that uses ZUPT-aided
INS augmented by ALT, F2F, A2, A3, and LTE had the smallest RMSE of 0.93 m. The bottom item in Table 3, which is
PINDOC with configuration A, had the largest RMSE of 2.53 m.

We concluded six remarks from Table 3.

¢ It could be observed that enhancing the ZUPT-aided INS with more aiding methods led to better navigation accuracy,
however, with a trade-off of increasing computational complexity. Configuration G that uses the INS aided by the ZUPT
algorithm, altimeter, foot-to-foot ranging measurements, the inter-agent range measurements from the other two agents,
and LTE pseudorange measurements had the smallest displacement error.
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Figure 7: Experimental setup of the experiment discussed in Section IV.2.

We could observe that the maximum position errors did not always occur at the end of the experiment. This could
be because, for dead reckoning systems, estimation errors on trajectory length get canceled out at return-to-home or
loop-closure positions.

In the configurations involving the LTE module, an innovation-based outlier detection module, as discussed in Section
I1.3 d), was used to produce the opportunistic navigation solutions. The outlier detection module detected if the LTE signal
had large biases caused by the multi-path effect. In the case of a positive detection, the LTE psuedorange measurement
was not used to augment the navigation solutions. It is worth mentioning that, in the experiment, we observed that the
outlier detection module indicated several positive detections, and therefore, not all the LTE signals collected during the
experiment were used in configuration G, H, I, and J. Nevertheless, when the outlier detection module showed negative
detections, the opportunistic solution provided compensation for absolute position errors, increasing navigation accuracy.

Configuration D and configuration E used deterministic solutions enhanced by inter-agent measurements from only one
agent, but the former configuration had a smaller final displacement error. We considered the difference as a result of
the experimental setup that agent No.1 first passed by agent No.3 and then agent No.2. This setup led to an advantage of
configuration D in that the position estimates were corrected by the stationary agent at a later time, and therefore, the final
position estimated by configuration D had a smaller error than configuration E.

In the cases where altimeter measurements were not used, which are configurations A and H, the final position errors
are much larger than in the other configurations. For configuration A, the final error is larger because when operating
in the moving elevator, the stance phase detector used in the ZUPT algorithm would indicate that it is the stance phase
and correct the velocity to zero, while in reality, the altitude of the agent was changing. In configuration H, we could
see that augmenting the ZUPT-aided INS with LTE measurements could reduce the error. However, the horizontal
distance between the receiver is significantly larger than the altitude of the LTE towers. As such, the agent’s cellular-based
navigation solution Vertical Dilution Of Precision (VDOP) will be large. Yet, LTE reduced the vertical errors slightly
compared to standalone ZUPT.

In the PINDOC, aiding from LTE pseudorange measurements aims to bound absolute position error propagation. In the
presented experiment with a duration of 14 min and a trajectory length of 600 m, the position errors in systems using only
the deterministic and cooperative approaches have not grown to large values. Therefore, the correction of errors provided
by LTE signals was not significant. However, it is expected that in navigation experiments with a longer duration, the LTE
module will play a significant role in bounding the position error growth of PINDOC and improving navigation accuracy.



Trajectories of three agents estimated by the PINDOC system in Experiment #2
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Figure 8: The top plot shows the navigation solutions of the three agents produced by the PINDOC system in the experiment discussed in
Section IV.2. The bottom three plots separately present the same navigation solution of each agent. Agent No.1’s trajectories were generated
with the ZUPT-aided INS augmented with altimeter measurements, foot-to-foot ranging, and inter-agent ranging measurements. Agent No.2

and agent No.3’s trajectories were generated with the ZUPT-aided INS augmented with altimeter measurements, and inter-agent ranging
measurements.

2. Experiment #2: Three Moving Agents
a) Experiment Description

The second series of experiments involved three agents, all moving in the indoor environment shown in Figure 5. The
experimental setup is shown in Figure 7. Agent No.l was equipped with the Lab-On-Shoe platform integrated with the
cooperative UWB modules discussed in Section III. Agent No.2 in Figure 7 mounted a VectorNav VN-200 IMU on the left
foot and attached a cooperative UWB module at the right shoulder. The position of the UWB module was assumed to be 1.4 m
above the foot-mounted IMU. Agent No.3 in Figure 7 mounted another VectorNav VN-200 IMU on the right foot and attached
another cooperative UWB module at the right shoulder. The position of the UWB module on agent No.3 was assumed to be 1.3
m above the foot-mounted IMU. Both VN-200 IMUs were configured to collect IMU measurements at a sampling rate of 800
Hz and altimeter measurements at a sampling rate of 10 Hz. The UWB modules attached to agent No.2 and agent No.3 were not
connected with each other and were both programmed to be paired with the cooperative UWB module integrated on the right
shoe of the Lab-On-Shoe platform used by agent No.1. In Figure 7, the location of agent No.1’s right foot was considered as
the origin of the local coordinate frame, which had the same global coordinates as the starting position shown in Figure 5. The
starting positions of the other two agents were 1.38 m apart from the origin, as shown in Figure 7.

At the beginning of the experiment, the three agents stood stationary at their starting positions for 15 seconds. During this
period, all IMUs were calibrated. Then, agent No.3 first walked inside the building, followed by agent No.2 and then agent
No.3. Figure 8 presents the trajectories of the three agents. The duration of the experiment was around 12.5 minutes and the
lengths of the trajectories corresponding to agent No.1, agent No.2, and agent No.3 were around 600 m, 540 m, and 550 m,
respectively. The three agents traveled on different terrains, including flat planes, stairs, slopes, and elevators. From timestamps
of 420 s to 443 s and from 568 s to 596 s, agent No. 2 entered office spaces and did not have LOS UWB range measurements
with agent No.1. From timestamps of 346 s to 422 s, agent No.3 entered a laboratory space and did not have LOS UWB range
measurements with agent No.1. At the end of the experiment, the three agents returned to their starting positions.



Table 4: Navigation errors of the PINDOC implemented in different configurations in an experiment discussed Section IV.2

INS Aiding Method Final

Agent
ZUPT ALT F2F CL Error[m]

v v vV 035
S v 0.44
Nol v 0.84
v 1027
v v v 0.82
No2 v 425
v 13.41
v v v 1.15
No3 v 438
v 15.83

b) Experimental Results

In this experiment, we used the loop-closure error, described in Section IV.1b), as the accuracy metric to compare the PINDOC
system implemented in different configurations. Four different PINDOC configurations involving ZUPT, ALT, F2F, and CL,
were used to produce navigation solutions for agent No.1, and three different PINDOC configurations involving ZUPT, ALT, and
CL, were used to estimate navigation solutions for agent No.2 and agent No.3. In the case of CL, inter-agent range measurements
between agent No.1 and agent No.2 as well as the range measurements between agent No.1 and agent No.3 were used. Table 4
presents the navigation accuracy of the different configurations for different agents.

Three remarks could be made based on the experimental results shown in Table 4.

» The navigation solutions of the three agents based on standalone ZUPT-aided INS had the largest errors because the stance
phase detector used in the ZUPT algorithm indicated stationary phases when the agents were inside a moving elevator,
leading to falsely updating the velocity estimate to zero. The errors introduced by the elevator were also discussed
previously in Section IV.1 ¢). When altimeters were used to enhance the navigation solutions, the errors associated with
the three agents were reduced.

* when inter-agent range measurements were used, the errors of agent No. 2 and agent No.3 were greatly reduced while
the error of agent No.l had only a marginal improvement. This phenomenon was because, as compared to the IMUs
on the Lab-On-Shoe platform, the VectorNav IMUs mounted on agent No.2 and agent No.3 had higher noise levels and
biases, leading to position uncertainties growing faster than the uncertainties of agent No.1. As a result, inter-agent range
measurements had larger impacts on positions of agent No.2 and agent No.3 in this experiment than those of agent No.1.

¢ Among all the PINDOC implementations used in the experiment, the implementation using ZUPT-aided INS augmented
with altimeter, foot-to-foot ranging, and inter-agent ranging had the smallest loop-closure errors of 0.35 m for agent No.1,
0.82 m for agent No.2, and 1.15 m for agent No.3. The trajectories of the three agents estimated by the later PINDOC
implementation are presented in Figure 8.

V. CONCLUSION

This paper experimentally evaluated the navigation performance of the PINDOC system, which integrates the deterministic, the
opportunistic, and the cooperative localization approaches. The deterministic approach uses a ZUPT-aided INS augmented with
measurements of altimeters and foot-to-foot ranging. The opportunistic navigation provides global position compensation to the
deterministic approach based on LTE psuedoranges. The cooperative localization is realized based on UWB-based inter-agent
range measurements. We reported two series of indoor pedestrian navigation experiments involving three agents to investigate
the navigation performance of the PINDOC. In the first series of experiments, one agent traveled in an indoor environment
that included terrains of flat planes, stairs, slopes, and elevators, for 600 m in 14 minutes, and the other two agents remained
stationary throughout the entire experiment. We compared a variety of PINDOC configurations using different combinations of
the deterministic, the opportunistic, and the cooperative components. Among all the configurations, the navigation solution using
the ZUPT-aided INS enhanced with altimeters, foot-to-foot ranging, UWB-based inter-agent ranging, and LTE psuedoranges
had the highest navigation accuracy in this experiment, with a position RMSE of 0.93 m and a position error SD of 0.44 m. The
second series of experiments involved three agents navigating in the same indoor environment along close-loop trajectories for
a duration of 12.5 minutes. We compared the localization accuracy of the PINDOC configurations using combinations of the



deterministic and the cooperative approaches in this experiment. The experimental results showed that the lowest loop-closure
errors were achieved with the localization solution using the ZUPT-aided INS enhanced with altimeters, foot-to-foot ranging,
and UWB-based inter-agent ranging, and the errors for the three agents were 0.35 m, 0.82 m, and 1.15 m, respectively.
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