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Abstract—This paper presents a simplified model for predicting
navigation uncertainty of a pedestrian. The model simulates
trajectories of a person’s foot, and these trajectories are then
used to generate simulated IMU readings. Eight different noise
errors are considered for both the simulated accelerometer
and gyroscope readings, including white noise, bias instability,
random walk, scale factor error, misalignment, turn-on bias,
limited full-scale range, and limited bandwidth. We conducted a
series of pedestrian walking experiments to validate the proposed
model. The experimental results showed that the position Root-
Mean-Square-Errors (RMSEs) in the simulations and in the
experiments had a discrepancy of 6% for about 40 [m] of walk.
The model also predicted the bounds of the vertical position
drift, which matched the trend of estimated vertical position
uncertainties in the experiments. We concluded that the model
could predict, with sufficient accuracy, the navigation uncertainty
for foot-mounted IMU-based systems, and we suggested future
research to enhance the model with additional details of foot
motion to further improve the prediction accuracy.

Index Terms—IMU, ZUPT, walking simulation, navigation

I. INTRODUCTION

Foot-mounted Inertial Navigation Systems (INS) have been
considered as a promising technology for pedestrian navigation
systems, which may enable a variety of critical Location-
Based Services (LBS), including contact tracing, firefighter
localization, and rehabilitation training. An INS uses self-
contained measurements collected from Inertial Measurement
Units (IMUs), operating seamlessly in environments where
Global Navigation Satellite Systems (GNSS) are not available
[1]. A foot-mounted configuration allows for enhancing the
INS with a Zero velocity UPdaTe (ZUPT) algorithm that resets
velocity errors during the stance phase of a gait cycle [2]. The
ZUPT algorithm significantly reduces accumulated navigation
errors of an INS and has been experimentally demonstrated to
have a positioning error of less than 1% of traveling distances
[3].

While evaluating the ZUPT-aided INS experimentally pro-
vides a realistic understanding of the system’s navigation
performance, it is challenging in experiments to isolate and
investigate the contribution of error sources in the system.
A simulation model for foot-mounted IMU-based navigation
systems would be beneficial for characterization of sensor
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Fig. 1. Modeling of walking dynamics using an inverted pendulum in the
stance phase and regular pendulum in the swing phase.

errors and could be used for prediction of the navigation
accuracy, for example, using the Monte Carlo simulation in-
corporating sensors’ uncertainty. Previous research developed
such simulation models by first generating reference position
trajectories of a pedestrian’s foot, transforming the position
information to simulated IMU readings, and considering dif-
ferent combinations of factors, including sensor white noises,
bias instabilities, random walks, misalignment, scale factors,
sampling rate, swing phase duration in a gait cycle, and stance
phase detection performance, that have effects on navigation
accuracy [4]–[7]. These models, however, are not suitable
for considering errors caused by insufficient sensors’ Full-
Scale Range (FSR) and bandwidth, which are known to be
significant contributors in foot-mounted navigation scenarios.

Traditional simulation models for foot-mounted INS simu-
lated IMU measurements based on reference positions gen-
erated with motion capture cameras [5] or foot-mounted
IMUs themselves [4], but it was found difficult to capture
signals that have magnitudes larger than the sensors’ FSR
and frequencies higher than the sensors’ sampling rate and
bandwidth. One example of such signals is high accelerations
due to mechanical shocks that occur during the heel-strike
and toe-off phases, and these shocks could saturate FSRs and
bandwidths of many consumer-grade IMUs [8]. The saturation
needs to be modeled in a pedestrian navigation simulation
to avoid predicting falsely optimistic navigation uncertainty
of the ZUPT-aided INS [9]. A relatively simple dynamic
analytical model that mimics swing and contact during the foot
motions would be advantageous, allowing studying the effects
of the high-frequency sampling of sensor readings and large-
magnitude signals during foot swing and contact on navigation
performance.

This paper presents an analytical model with reduced com-
plexity based on an inverted pendulum shown in Fig. 1. This



model is used to generate foot position for the case of foot-
mounted INS-based navigation. The proposed model accounts
for high acceleration shocks during the heel-strike and toe-
off phases, which enable simulating the effects of the limited
sensor FSR and bandwidth on navigation accuracy. Addition-
ally, six different IMU noise sources, including white noise,
bias instability, random walk, scale factor inconsistencies,
misalignment, and turn-on bias were added to the simulated
IMU signals.

II. APPROACH

This section discusses our approach to modeling foot tra-
jectories, foot-mounted IMU measurements, and IMU noise.

A. Rigid Body Walker

We used a walking model, referred to as the rigid body
walker [10]–[12], and investigated whether such a model is
capable of predicting with sufficient accuracy the trajectory of
the foot during walking. Fig. 1 shows the configuration of the
model, which consists of two rigid legs of length l of negligible
mass connected by a frictionless hinge joint. The motion of the
model is constrained to two dimensions. In this model, only
one foot is on the ground at any given moment, during which
time the system behaves like an inverted pendulum. The angle
dynamics of the stance leg with respect to gravity, denoted as
θ1, are expressed as

θ̈1 =
g

l
sin(θ1),

where g is the gravity constant. The motion of the swing
leg is dictated by the torsional hip spring, with a spring
constant, khip, acting between the stance and swing legs. This
is analogous to hip flexor and extensor muscle activity during
healthy human walking. The angle of the swing leg, θ2, with
respect to gravity, is calculated as

θ̈2 =
khip

mf l2
(θ1−θ2)+

g

l
(sin(θ1−θ2)cos(θ1))−θ̇1

2
sin(θ1−θ2),

where mf is the mass of the foot. With mf ≪ m, the
swing leg does not affect stance leg dynamics [13]. The
model is simulated to be analogous to human walking at
a speed of 1.00 [m/s] and a step length of 0.662 [m]. To
obtain generalized results, all model parameters were non-
dimensionalized with respect to body mass (m), leg length
(l, 0.87m for typical human) and gravity (g). As a result, the
simulated model gait had an average speed, v̄, of v̄=0.342

√
lg.

Initial conditions of the model are set such that model
dynamics repeat with each step. In other words, the model
is on a limit cycle and all system states are identical for
each step. The roles of the swing and stance leg switch when
the swing leg contacts the ground. At this point, the model
undergoes a perfectly inelastic collision, which redirects the
center of mass velocity to be tangential to the new stance leg.
Energy is lost as a result of this collision and must be replaced
in order to maintain steady-state walking. To compensate for
the energy loss, an impulse is applied along the stance leg
immediately prior to foot contact of the swing leg. In other
words, the impulse is perpendicular to the CoM direction of

motion before collision and is analogous to the push-off work
done by the lower leg muscles during human walking [13].

The pelvis positions of the rigid body walker, ppelvis, during
each step can be computed as

ppelvis = l

−(sin(θ1)− sin(θ1,0))
0

cos(θ1)

+ ppelvis,0,

where ppelvis,0 is the position of the pelvis at the end of the
previous step and θ1,0 is the angle of the stance leg at the
beginning of each step. Positions of the stance leg, pstance, and
the swing leg, pswing, are computed as

pstance = ppelvis+l

 sin(θ1)
0

−cos(θ1)

 ,pswing = ppelvis+l

 sin(θ2)
0

−cos(θ2)

 .
In our simulation, positions of a foot in the navigation frame,

denoted as pn, are obtained by alternating between positions
of the stance leg and the swing leg. Roll angle ϕ and yaw angle
ψ of the foot remain zero throughout the entire simulation, and
the pitch angle θ alternates between θ1 and θ2.

B. Synthesizing IMU Readings
This paper follows the strapdown INS algorithm, discussed

for example in [1], and transforms the ground truth position
pn and orientations along roll ϕ, pitch θ, and yaw ψ angles
generated from the rigid body walker to noise-free IMU
signals. Velocities in the navigation frame vn are computed
from the position pn, and accelerations in the navigation frame
anare obtained from the velocity. Angular rates of the body
frame with respect to the navigation frame ωb

nb are calculated
from orientations as

ωb
nb =

ϕ̇0
0

+ C3

0θ̇
0

+ C3C2

0
0

ψ̇

 ,
where C3 is a rotation matrix rotating ϕ degree along the roll

direction and C2 is a rotation matrix rotating θ degree along
the pitch direction. Local gravity is computed as

gnl = g − ωn
ie × (ωn

ie × pn),

where g is the gravity vector and ωn
ie is the Earth rate. Noise-

free accelerometer readings ua are obtained as

ua = Cb
n(a

n + (2ωn
ie + ωn

en)× vn + gnl ), (1)

where ωn
en is the transport rate of the navigation frame and

Cb
n is the Direction Cosine Matrix (DCM) representation of

ωb
nb. Noise-free gyroscope readings ug are expressed as

ug = ωb
nb + Cb

n(ω
n
ie + ωn

en). (2)

C. IMU Noise Model
This paper considers eight different error sources for each

sensor of an IMU, consisting of three accelerometers and three
gyroscopes. The error sources include stochastic components
of white noise, bias instability, and random walk; deterministic
components of scale factor inconsistency, misalignment, and
turn-on bias; and sensor limitations of FSR and bandwidth.
These error sources are added to the noise-free accelerometers
and gyroscopes readings described in (1) and (2).
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Fig. 2. Example profiles of simulated and measured IMU readings in two
steps, in the case of walking along a straight line. The left column represents
modeled sensors’ readings, and the right column represents experimental
sensors’ readings.

1) Stochastic Noise Model: Simulated accelerometer read-
ings corrupted with the stochastic components, denoted as ûa,
are expressed as

ûa = ua + n̂N + n̂B + n̂K , (3)

where n̂N , n̂B , and n̂K denote the white noise, bias instability,
and random walk components, respectively. This paper mod-
eled these three noise components with approaches presented
in [14], having the following formulations:

n̂N = ωN , ˙̂nB = −µB n̂B + ωB , ˙̂nK = ωK ,

where ωN , ωN , and ωK are zero-mean Gaussian noise with
variances of σ2

N , σ2
B , and σ2

K , respectively. The values of the
variances are to be determined via an optimization process that
fits the noise models to the Allan Variance plot of a real IMU.
µB is the correlation time associated with bias instability, and
the value of µB was set to 10 [s] in this paper.

2) Deterministic Noise Model: Simulated accelerometer
readings corrupted with both the stochastic and deterministic
components, denoted as ũa, are expressed as

ũa = M(ûa + b0), (4)

where M is a misalignment matrix with diagonal entries being
scale factor errors along the three axes and off-diagonal entries

TABLE I
PARAMETER SETTINGS FOR DIFFERENT NOISE MODELS.

Parameter Accel Value Gyro Value
White noise σN 0.0015 [m/s3/2] 1.74e−4 [rad/s1/2]
Bias instability σB 3.92e−4 [m/s2] 4.84e−5 [rad/s]
Random walk σK 1.01e−4 [m/s5/2] 1.41e−4 [rad/s3/2]
Scale factor error 0.05% 0.05%

Cross axis sensitivity 0.02◦ 0.02◦

Turn-on bias σb0 0.01 [g] 0.3 [deg/s]
Full-scale range αFSR 16 [g] 2000 [deg/s]
Bandwidth fcutoff 260 [Hz] 256 [Hz]

being cross-axis sensitivity, and b0 is the turn-on bias. In
this paper, values of b0 were determined from a zero-mean
Gaussian distribution with a variance of σ2

b0
at the beginning

of each simulation.
3) Sensor Measurement Limitation: This paper applies a

6th-order Butterworth low-pass filter on ũa with a cut-off
frequency, denoted as fcutoff, to simulate the limited bandwidth
of an IMU. To simulate sensor with limited FSR, αFSR,
we require that |ũa| < αFSR. Simulated IMU readings that
include the stochastic and deterministic noise components and
measurement limitation, denoted as ūa, is expressed as

ūa =


αFSR if lowpass(ũa, fcutoff) > αFSR

−αFSR if lowpass(ũa, fcutoff) < −αFSR

lowpass(ũa, fcutoff) otherwise
(5)

The processes described in (3)-(5) with different noise
parameter settings are used to obtain simulated gyroscope
readings corrupted with the error sources, denoted as ūg . In
this paper, IMU readings were simulated based on noise char-
acteristics of a VectorNav IMU VN-200. The parameters of
stochastic noise components were determined experimentally
with the Allan Variance test, and the deterministic compo-
nent and sensor measurement limitation parameters were set
nominally according to the sensor datasheet. Values of the
parameters used in our proposed approach are summarized in
TABLE I. The sampling rate of the simulated IMU was set to
800 [Hz].

Fig. 2 shows profiles of IMU readings in two steps generated
with the proposed simulation and collected with a VN-200
IMU. In Fig. 2, acceleration shocks could be observed during
the heel-strike and toe-off phases, in both the simulated and
experimented IMU readings. The acceleration shocks in the
simulation were generated because the rigid body walker
model discussed in Section II-A considers events of the
foot colliding with the ground, which causes a discontinuity
in velocity measurements. The maximum acceleration shock
generated in our model was around 200 [g].

III. EXPERIMENTAL VALIDATION

This paper compares the navigation accuracy of the ZUPT-
aided INS using a series of 20 simulations and 20 experiments.
In each run of the simulations, we used the model discussed
in Section II-A with 28 steps, resulting in a straight-line
trajectory of 42.86 [m]. In the experiments, an IMU VN-
200 was mounted on the toe-side of a subject’s boot, and the
sampling rate of the sensor was set to 800 [Hz]. The subject
walked a straight-line trajectory of 42.3 [m] with each step
length of approximately 0.75 [m] and a pace of around 60
steps per minute. The ZUPT-aided INS was implemented in an
Extended Kalman Filter (EKF) with the Acceleration-Moving
Variance (AMV) detector [15]. The initial yaw angle of each
navigation solution was assumed to be aligned with the North.

Fig. 3 shows the navigation results of the simulations (left
column) and experiments (right column). 3D Root-Mean-
Square-Error (RMSE), horizontal Circular Error Probable
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Fig. 3. Comparison of navigation accuracy of the ZUPT-aided INS in the cases
of rigid body walker simulation and experiments with VN-200 IMU. The left
column represents modeling, and the right column represents experiments.

(CEP), and vertical (⊥) RMSE between the simulated and
experimental results had a difference of 6%, 40%, and 7%,
respectively. The vertical positions in the simulations and
experiments drifted in the same direction. To the best of
our knowledge, this is the first pedestrian navigation simu-
lation model that captures with sufficient accuracy the vertical
positioning drifts. It could be shown with our model that
insufficient sensor FSR and bandwidth are the dominating
sources of the drifts. This observation supports the hypothesis
on the causes leading to the vertical positioning drifts in the
foot-mounted INS that were discussed in previous research
[9].

Two lessons could be learned by observing the results
presented in Fig. 3. First, the ⊥ RMSE of the simulation
results was larger than the experiments. This was due to the
fact that the simulated accelerometer readings, as shown in
Fig. 2, even though capturing the trend, had significantly larger
shocks along the z-axis than the experimental accelerometer
readings. When limiting in the simulated IMU readings the
accelerometer FSR to 16 [g], large accelerometer biases were
introduced, resulting in a larger vertical positioning error.
Second, the estimated trajectory length in the experiments had
larger deviations than in the simulation. We believe the reason
is that the simulated IMU signals had identical patterns in
each step, while, in the experiments, the signals had slightly
different patterns of the human subject’s walking style. Thus,

a fixed threshold in the stance phase detection could be
optimal in the simulation but not in the experiments. These
observations suggest that, in order to improve the accuracy
of navigation uncertainty prediction, future research should
augment the model with more sophisticated foot motions. One
potential research direction is to combine the analytical rigid
body walker with traditional approaches of generating foot
motion using motion cameras or IMUs.

IV. CONCLUSION

This paper proposed a simple, yet practical, model that
is sufficient to predict with high accuracy the navigation
uncertainty of a ZUPT-aided INS using a foot-mounted IMU.
The experimental results showed that the proposed simulation
model had a 6% discrepancy in position RMSEs, as compared
to experiments, but captured all main features of motion.
Our model also accurately predicted the drift in the vertical
direction, matching well the reported experiments.
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